2015-03-26 17:24:57 +01:00

1443 lines
38 KiB
C

/*
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
*
* Floating-point emulation code
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* BEGIN_DESC
*
* File:
* @(#) pa/fp/fpudispatch.c $Revision: 1.1 $
*
* Purpose:
* <<please update with a synopsis of the functionality provided by this file>>
*
* External Interfaces:
* <<the following list was autogenerated, please review>>
* emfpudispatch(ir, dummy1, dummy2, fpregs)
* fpudispatch(ir, excp_code, holder, fpregs)
*
* Internal Interfaces:
* <<the following list was autogenerated, please review>>
* static u_int decode_06(u_int, u_int *)
* static u_int decode_0c(u_int, u_int, u_int, u_int *)
* static u_int decode_0e(u_int, u_int, u_int, u_int *)
* static u_int decode_26(u_int, u_int *)
* static u_int decode_2e(u_int, u_int *)
* static void update_status_cbit(u_int *, u_int, u_int, u_int)
*
* Theory:
* <<please update with a overview of the operation of this file>>
*
* END_DESC
*/
#define FPUDEBUG 0
#include "float.h"
#include <linux/kernel.h>
#include <asm/processor.h>
/* #include <sys/debug.h> */
/* #include <machine/sys/mdep_private.h> */
#define COPR_INST 0x30000000
/*
* definition of extru macro. If pos and len are constants, the compiler
* will generate an extru instruction when optimized
*/
#define extru(r,pos,len) (((r) >> (31-(pos))) & (( 1 << (len)) - 1))
/* definitions of bit field locations in the instruction */
#define fpmajorpos 5
#define fpr1pos 10
#define fpr2pos 15
#define fptpos 31
#define fpsubpos 18
#define fpclass1subpos 16
#define fpclasspos 22
#define fpfmtpos 20
#define fpdfpos 18
#define fpnulpos 26
/*
* the following are the extra bits for the 0E major op
*/
#define fpxr1pos 24
#define fpxr2pos 19
#define fpxtpos 25
#define fpxpos 23
#define fp0efmtpos 20
/*
* the following are for the multi-ops
*/
#define fprm1pos 10
#define fprm2pos 15
#define fptmpos 31
#define fprapos 25
#define fptapos 20
#define fpmultifmt 26
/*
* the following are for the fused FP instructions
*/
/* fprm1pos 10 */
/* fprm2pos 15 */
#define fpraupos 18
#define fpxrm2pos 19
/* fpfmtpos 20 */
#define fpralpos 23
#define fpxrm1pos 24
/* fpxtpos 25 */
#define fpfusedsubop 26
/* fptpos 31 */
/*
* offset to constant zero in the FP emulation registers
*/
#define fpzeroreg (32*sizeof(double)/sizeof(u_int))
/*
* extract the major opcode from the instruction
*/
#define get_major(op) extru(op,fpmajorpos,6)
/*
* extract the two bit class field from the FP instruction. The class is at bit
* positions 21-22
*/
#define get_class(op) extru(op,fpclasspos,2)
/*
* extract the 3 bit subop field. For all but class 1 instructions, it is
* located at bit positions 16-18
*/
#define get_subop(op) extru(op,fpsubpos,3)
/*
* extract the 2 or 3 bit subop field from class 1 instructions. It is located
* at bit positions 15-16 (PA1.1) or 14-16 (PA2.0)
*/
#define get_subop1_PA1_1(op) extru(op,fpclass1subpos,2) /* PA89 (1.1) fmt */
#define get_subop1_PA2_0(op) extru(op,fpclass1subpos,3) /* PA 2.0 fmt */
/* definitions of unimplemented exceptions */
#define MAJOR_0C_EXCP 0x09
#define MAJOR_0E_EXCP 0x0b
#define MAJOR_06_EXCP 0x03
#define MAJOR_26_EXCP 0x23
#define MAJOR_2E_EXCP 0x2b
#define PA83_UNIMP_EXCP 0x01
/*
* Special Defines for TIMEX specific code
*/
#define FPU_TYPE_FLAG_POS (EM_FPU_TYPE_OFFSET>>2)
#define TIMEX_ROLEX_FPU_MASK (TIMEX_EXTEN_FLAG|ROLEX_EXTEN_FLAG)
/*
* Static function definitions
*/
#define _PROTOTYPES
#if defined(_PROTOTYPES) || defined(_lint)
static u_int decode_0c(u_int, u_int, u_int, u_int *);
static u_int decode_0e(u_int, u_int, u_int, u_int *);
static u_int decode_06(u_int, u_int *);
static u_int decode_26(u_int, u_int *);
static u_int decode_2e(u_int, u_int *);
static void update_status_cbit(u_int *, u_int, u_int, u_int);
#else /* !_PROTOTYPES&&!_lint */
static u_int decode_0c();
static u_int decode_0e();
static u_int decode_06();
static u_int decode_26();
static u_int decode_2e();
static void update_status_cbit();
#endif /* _PROTOTYPES&&!_lint */
#define VASSERT(x)
static void parisc_linux_get_fpu_type(u_int fpregs[])
{
/* on pa-linux the fpu type is not filled in by the
* caller; it is constructed here
*/
if (boot_cpu_data.cpu_type == pcxs)
fpregs[FPU_TYPE_FLAG_POS] = TIMEX_EXTEN_FLAG;
else if (boot_cpu_data.cpu_type == pcxt ||
boot_cpu_data.cpu_type == pcxt_)
fpregs[FPU_TYPE_FLAG_POS] = ROLEX_EXTEN_FLAG;
else if (boot_cpu_data.cpu_type >= pcxu)
fpregs[FPU_TYPE_FLAG_POS] = PA2_0_FPU_FLAG;
}
/*
* this routine will decode the excepting floating point instruction and
* call the approiate emulation routine.
* It is called by decode_fpu with the following parameters:
* fpudispatch(current_ir, unimplemented_code, 0, &Fpu_register)
* where current_ir is the instruction to be emulated,
* unimplemented_code is the exception_code that the hardware generated
* and &Fpu_register is the address of emulated FP reg 0.
*/
u_int
fpudispatch(u_int ir, u_int excp_code, u_int holder, u_int fpregs[])
{
u_int class, subop;
u_int fpu_type_flags;
/* All FP emulation code assumes that ints are 4-bytes in length */
VASSERT(sizeof(int) == 4);
parisc_linux_get_fpu_type(fpregs);
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
class = get_class(ir);
if (class == 1) {
if (fpu_type_flags & PA2_0_FPU_FLAG)
subop = get_subop1_PA2_0(ir);
else
subop = get_subop1_PA1_1(ir);
}
else
subop = get_subop(ir);
if (FPUDEBUG) printk("class %d subop %d\n", class, subop);
switch (excp_code) {
case MAJOR_0C_EXCP:
case PA83_UNIMP_EXCP:
return(decode_0c(ir,class,subop,fpregs));
case MAJOR_0E_EXCP:
return(decode_0e(ir,class,subop,fpregs));
case MAJOR_06_EXCP:
return(decode_06(ir,fpregs));
case MAJOR_26_EXCP:
return(decode_26(ir,fpregs));
case MAJOR_2E_EXCP:
return(decode_2e(ir,fpregs));
default:
/* "crashme Night Gallery painting nr 2. (asm_crash.s).
* This was fixed for multi-user kernels, but
* workstation kernels had a panic here. This allowed
* any arbitrary user to panic the kernel by executing
* setting the FP exception registers to strange values
* and generating an emulation trap. The emulation and
* exception code must never be able to panic the
* kernel.
*/
return(UNIMPLEMENTEDEXCEPTION);
}
}
/*
* this routine is called by $emulation_trap to emulate a coprocessor
* instruction if one doesn't exist
*/
u_int
emfpudispatch(u_int ir, u_int dummy1, u_int dummy2, u_int fpregs[])
{
u_int class, subop, major;
u_int fpu_type_flags;
/* All FP emulation code assumes that ints are 4-bytes in length */
VASSERT(sizeof(int) == 4);
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
major = get_major(ir);
class = get_class(ir);
if (class == 1) {
if (fpu_type_flags & PA2_0_FPU_FLAG)
subop = get_subop1_PA2_0(ir);
else
subop = get_subop1_PA1_1(ir);
}
else
subop = get_subop(ir);
switch (major) {
case 0x0C:
return(decode_0c(ir,class,subop,fpregs));
case 0x0E:
return(decode_0e(ir,class,subop,fpregs));
case 0x06:
return(decode_06(ir,fpregs));
case 0x26:
return(decode_26(ir,fpregs));
case 0x2E:
return(decode_2e(ir,fpregs));
default:
return(PA83_UNIMP_EXCP);
}
}
static u_int
decode_0c(u_int ir, u_int class, u_int subop, u_int fpregs[])
{
u_int r1,r2,t; /* operand register offsets */
u_int fmt; /* also sf for class 1 conversions */
u_int df; /* for class 1 conversions */
u_int *status;
u_int retval, local_status;
u_int fpu_type_flags;
if (ir == COPR_INST) {
fpregs[0] = EMULATION_VERSION << 11;
return(NOEXCEPTION);
}
status = &fpregs[0]; /* fp status register */
local_status = fpregs[0]; /* and local copy */
r1 = extru(ir,fpr1pos,5) * sizeof(double)/sizeof(u_int);
if (r1 == 0) /* map fr0 source to constant zero */
r1 = fpzeroreg;
t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
if (t == 0 && class != 2) /* don't allow fr0 as a dest */
return(MAJOR_0C_EXCP);
fmt = extru(ir,fpfmtpos,2); /* get fmt completer */
switch (class) {
case 0:
switch (subop) {
case 0: /* COPR 0,0 emulated above*/
case 1:
return(MAJOR_0C_EXCP);
case 2: /* FCPY */
switch (fmt) {
case 2: /* illegal */
return(MAJOR_0C_EXCP);
case 3: /* quad */
t &= ~3; /* force to even reg #s */
r1 &= ~3;
fpregs[t+3] = fpregs[r1+3];
fpregs[t+2] = fpregs[r1+2];
case 1: /* double */
fpregs[t+1] = fpregs[r1+1];
case 0: /* single */
fpregs[t] = fpregs[r1];
return(NOEXCEPTION);
}
case 3: /* FABS */
switch (fmt) {
case 2: /* illegal */
return(MAJOR_0C_EXCP);
case 3: /* quad */
t &= ~3; /* force to even reg #s */
r1 &= ~3;
fpregs[t+3] = fpregs[r1+3];
fpregs[t+2] = fpregs[r1+2];
case 1: /* double */
fpregs[t+1] = fpregs[r1+1];
case 0: /* single */
/* copy and clear sign bit */
fpregs[t] = fpregs[r1] & 0x7fffffff;
return(NOEXCEPTION);
}
case 6: /* FNEG */
switch (fmt) {
case 2: /* illegal */
return(MAJOR_0C_EXCP);
case 3: /* quad */
t &= ~3; /* force to even reg #s */
r1 &= ~3;
fpregs[t+3] = fpregs[r1+3];
fpregs[t+2] = fpregs[r1+2];
case 1: /* double */
fpregs[t+1] = fpregs[r1+1];
case 0: /* single */
/* copy and invert sign bit */
fpregs[t] = fpregs[r1] ^ 0x80000000;
return(NOEXCEPTION);
}
case 7: /* FNEGABS */
switch (fmt) {
case 2: /* illegal */
return(MAJOR_0C_EXCP);
case 3: /* quad */
t &= ~3; /* force to even reg #s */
r1 &= ~3;
fpregs[t+3] = fpregs[r1+3];
fpregs[t+2] = fpregs[r1+2];
case 1: /* double */
fpregs[t+1] = fpregs[r1+1];
case 0: /* single */
/* copy and set sign bit */
fpregs[t] = fpregs[r1] | 0x80000000;
return(NOEXCEPTION);
}
case 4: /* FSQRT */
switch (fmt) {
case 0:
return(sgl_fsqrt(&fpregs[r1],0,
&fpregs[t],status));
case 1:
return(dbl_fsqrt(&fpregs[r1],0,
&fpregs[t],status));
case 2:
case 3: /* quad not implemented */
return(MAJOR_0C_EXCP);
}
case 5: /* FRND */
switch (fmt) {
case 0:
return(sgl_frnd(&fpregs[r1],0,
&fpregs[t],status));
case 1:
return(dbl_frnd(&fpregs[r1],0,
&fpregs[t],status));
case 2:
case 3: /* quad not implemented */
return(MAJOR_0C_EXCP);
}
} /* end of switch (subop) */
case 1: /* class 1 */
df = extru(ir,fpdfpos,2); /* get dest format */
if ((df & 2) || (fmt & 2)) {
/*
* fmt's 2 and 3 are illegal of not implemented
* quad conversions
*/
return(MAJOR_0C_EXCP);
}
/*
* encode source and dest formats into 2 bits.
* high bit is source, low bit is dest.
* bit = 1 --> double precision
*/
fmt = (fmt << 1) | df;
switch (subop) {
case 0: /* FCNVFF */
switch(fmt) {
case 0: /* sgl/sgl */
return(MAJOR_0C_EXCP);
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(MAJOR_0C_EXCP);
}
case 1: /* FCNVXF */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
&fpregs[t],status));
}
case 2: /* FCNVFX */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
&fpregs[t],status));
}
case 3: /* FCNVFXT */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
&fpregs[t],status));
}
case 5: /* FCNVUF (PA2.0 only) */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
&fpregs[t],status));
}
case 6: /* FCNVFU (PA2.0 only) */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
&fpregs[t],status));
}
case 7: /* FCNVFUT (PA2.0 only) */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
&fpregs[t],status));
}
case 4: /* undefined */
return(MAJOR_0C_EXCP);
} /* end of switch subop */
case 2: /* class 2 */
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
r2 = extru(ir, fpr2pos, 5) * sizeof(double)/sizeof(u_int);
if (r2 == 0)
r2 = fpzeroreg;
if (fpu_type_flags & PA2_0_FPU_FLAG) {
/* FTEST if nullify bit set, otherwise FCMP */
if (extru(ir, fpnulpos, 1)) { /* FTEST */
switch (fmt) {
case 0:
/*
* arg0 is not used
* second param is the t field used for
* ftest,acc and ftest,rej
* third param is the subop (y-field)
*/
BUG();
/* Unsupported
* return(ftest(0L,extru(ir,fptpos,5),
* &fpregs[0],subop));
*/
case 1:
case 2:
case 3:
return(MAJOR_0C_EXCP);
}
} else { /* FCMP */
switch (fmt) {
case 0:
retval = sgl_fcmp(&fpregs[r1],
&fpregs[r2],extru(ir,fptpos,5),
&local_status);
update_status_cbit(status,local_status,
fpu_type_flags, subop);
return(retval);
case 1:
retval = dbl_fcmp(&fpregs[r1],
&fpregs[r2],extru(ir,fptpos,5),
&local_status);
update_status_cbit(status,local_status,
fpu_type_flags, subop);
return(retval);
case 2: /* illegal */
case 3: /* quad not implemented */
return(MAJOR_0C_EXCP);
}
}
} /* end of if for PA2.0 */
else { /* PA1.0 & PA1.1 */
switch (subop) {
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
return(MAJOR_0C_EXCP);
case 0: /* FCMP */
switch (fmt) {
case 0:
retval = sgl_fcmp(&fpregs[r1],
&fpregs[r2],extru(ir,fptpos,5),
&local_status);
update_status_cbit(status,local_status,
fpu_type_flags, subop);
return(retval);
case 1:
retval = dbl_fcmp(&fpregs[r1],
&fpregs[r2],extru(ir,fptpos,5),
&local_status);
update_status_cbit(status,local_status,
fpu_type_flags, subop);
return(retval);
case 2: /* illegal */
case 3: /* quad not implemented */
return(MAJOR_0C_EXCP);
}
case 1: /* FTEST */
switch (fmt) {
case 0:
/*
* arg0 is not used
* second param is the t field used for
* ftest,acc and ftest,rej
* third param is the subop (y-field)
*/
BUG();
/* unsupported
* return(ftest(0L,extru(ir,fptpos,5),
* &fpregs[0],subop));
*/
case 1:
case 2:
case 3:
return(MAJOR_0C_EXCP);
}
} /* end of switch subop */
} /* end of else for PA1.0 & PA1.1 */
case 3: /* class 3 */
r2 = extru(ir,fpr2pos,5) * sizeof(double)/sizeof(u_int);
if (r2 == 0)
r2 = fpzeroreg;
switch (subop) {
case 5:
case 6:
case 7:
return(MAJOR_0C_EXCP);
case 0: /* FADD */
switch (fmt) {
case 0:
return(sgl_fadd(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 1:
return(dbl_fadd(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 2: /* illegal */
case 3: /* quad not implemented */
return(MAJOR_0C_EXCP);
}
case 1: /* FSUB */
switch (fmt) {
case 0:
return(sgl_fsub(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 1:
return(dbl_fsub(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 2: /* illegal */
case 3: /* quad not implemented */
return(MAJOR_0C_EXCP);
}
case 2: /* FMPY */
switch (fmt) {
case 0:
return(sgl_fmpy(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 1:
return(dbl_fmpy(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 2: /* illegal */
case 3: /* quad not implemented */
return(MAJOR_0C_EXCP);
}
case 3: /* FDIV */
switch (fmt) {
case 0:
return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 1:
return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 2: /* illegal */
case 3: /* quad not implemented */
return(MAJOR_0C_EXCP);
}
case 4: /* FREM */
switch (fmt) {
case 0:
return(sgl_frem(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 1:
return(dbl_frem(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 2: /* illegal */
case 3: /* quad not implemented */
return(MAJOR_0C_EXCP);
}
} /* end of class 3 switch */
} /* end of switch(class) */
/* If we get here, something is really wrong! */
return(MAJOR_0C_EXCP);
}
static u_int
decode_0e(ir,class,subop,fpregs)
u_int ir,class,subop;
u_int fpregs[];
{
u_int r1,r2,t; /* operand register offsets */
u_int fmt; /* also sf for class 1 conversions */
u_int df; /* dest format for class 1 conversions */
u_int *status;
u_int retval, local_status;
u_int fpu_type_flags;
status = &fpregs[0];
local_status = fpregs[0];
r1 = ((extru(ir,fpr1pos,5)<<1)|(extru(ir,fpxr1pos,1)));
if (r1 == 0)
r1 = fpzeroreg;
t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
if (t == 0 && class != 2)
return(MAJOR_0E_EXCP);
if (class < 2) /* class 0 or 1 has 2 bit fmt */
fmt = extru(ir,fpfmtpos,2);
else /* class 2 and 3 have 1 bit fmt */
fmt = extru(ir,fp0efmtpos,1);
/*
* An undefined combination, double precision accessing the
* right half of a FPR, can get us into trouble.
* Let's just force proper alignment on it.
*/
if (fmt == DBL) {
r1 &= ~1;
if (class != 1)
t &= ~1;
}
switch (class) {
case 0:
switch (subop) {
case 0: /* unimplemented */
case 1:
return(MAJOR_0E_EXCP);
case 2: /* FCPY */
switch (fmt) {
case 2:
case 3:
return(MAJOR_0E_EXCP);
case 1: /* double */
fpregs[t+1] = fpregs[r1+1];
case 0: /* single */
fpregs[t] = fpregs[r1];
return(NOEXCEPTION);
}
case 3: /* FABS */
switch (fmt) {
case 2:
case 3:
return(MAJOR_0E_EXCP);
case 1: /* double */
fpregs[t+1] = fpregs[r1+1];
case 0: /* single */
fpregs[t] = fpregs[r1] & 0x7fffffff;
return(NOEXCEPTION);
}
case 6: /* FNEG */
switch (fmt) {
case 2:
case 3:
return(MAJOR_0E_EXCP);
case 1: /* double */
fpregs[t+1] = fpregs[r1+1];
case 0: /* single */
fpregs[t] = fpregs[r1] ^ 0x80000000;
return(NOEXCEPTION);
}
case 7: /* FNEGABS */
switch (fmt) {
case 2:
case 3:
return(MAJOR_0E_EXCP);
case 1: /* double */
fpregs[t+1] = fpregs[r1+1];
case 0: /* single */
fpregs[t] = fpregs[r1] | 0x80000000;
return(NOEXCEPTION);
}
case 4: /* FSQRT */
switch (fmt) {
case 0:
return(sgl_fsqrt(&fpregs[r1],0,
&fpregs[t], status));
case 1:
return(dbl_fsqrt(&fpregs[r1],0,
&fpregs[t], status));
case 2:
case 3:
return(MAJOR_0E_EXCP);
}
case 5: /* FRMD */
switch (fmt) {
case 0:
return(sgl_frnd(&fpregs[r1],0,
&fpregs[t], status));
case 1:
return(dbl_frnd(&fpregs[r1],0,
&fpregs[t], status));
case 2:
case 3:
return(MAJOR_0E_EXCP);
}
} /* end of switch (subop */
case 1: /* class 1 */
df = extru(ir,fpdfpos,2); /* get dest format */
/*
* Fix Crashme problem (writing to 31R in double precision)
* here too.
*/
if (df == DBL) {
t &= ~1;
}
if ((df & 2) || (fmt & 2))
return(MAJOR_0E_EXCP);
fmt = (fmt << 1) | df;
switch (subop) {
case 0: /* FCNVFF */
switch(fmt) {
case 0: /* sgl/sgl */
return(MAJOR_0E_EXCP);
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(MAJOR_0E_EXCP);
}
case 1: /* FCNVXF */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
&fpregs[t],status));
}
case 2: /* FCNVFX */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
&fpregs[t],status));
}
case 3: /* FCNVFXT */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
&fpregs[t],status));
}
case 5: /* FCNVUF (PA2.0 only) */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
&fpregs[t],status));
}
case 6: /* FCNVFU (PA2.0 only) */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
&fpregs[t],status));
}
case 7: /* FCNVFUT (PA2.0 only) */
switch(fmt) {
case 0: /* sgl/sgl */
return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
&fpregs[t],status));
case 1: /* sgl/dbl */
return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
&fpregs[t],status));
case 2: /* dbl/sgl */
return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
&fpregs[t],status));
case 3: /* dbl/dbl */
return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
&fpregs[t],status));
}
case 4: /* undefined */
return(MAJOR_0C_EXCP);
} /* end of switch subop */
case 2: /* class 2 */
/*
* Be careful out there.
* Crashme can generate cases where FR31R is specified
* as the source or target of a double precision operation.
* Since we just pass the address of the floating-point
* register to the emulation routines, this can cause
* corruption of fpzeroreg.
*/
if (fmt == DBL)
r2 = (extru(ir,fpr2pos,5)<<1);
else
r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
if (r2 == 0)
r2 = fpzeroreg;
if (fpu_type_flags & PA2_0_FPU_FLAG) {
/* FTEST if nullify bit set, otherwise FCMP */
if (extru(ir, fpnulpos, 1)) { /* FTEST */
/* not legal */
return(MAJOR_0E_EXCP);
} else { /* FCMP */
switch (fmt) {
/*
* fmt is only 1 bit long
*/
case 0:
retval = sgl_fcmp(&fpregs[r1],
&fpregs[r2],extru(ir,fptpos,5),
&local_status);
update_status_cbit(status,local_status,
fpu_type_flags, subop);
return(retval);
case 1:
retval = dbl_fcmp(&fpregs[r1],
&fpregs[r2],extru(ir,fptpos,5),
&local_status);
update_status_cbit(status,local_status,
fpu_type_flags, subop);
return(retval);
}
}
} /* end of if for PA2.0 */
else { /* PA1.0 & PA1.1 */
switch (subop) {
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
return(MAJOR_0E_EXCP);
case 0: /* FCMP */
switch (fmt) {
/*
* fmt is only 1 bit long
*/
case 0:
retval = sgl_fcmp(&fpregs[r1],
&fpregs[r2],extru(ir,fptpos,5),
&local_status);
update_status_cbit(status,local_status,
fpu_type_flags, subop);
return(retval);
case 1:
retval = dbl_fcmp(&fpregs[r1],
&fpregs[r2],extru(ir,fptpos,5),
&local_status);
update_status_cbit(status,local_status,
fpu_type_flags, subop);
return(retval);
}
} /* end of switch subop */
} /* end of else for PA1.0 & PA1.1 */
case 3: /* class 3 */
/*
* Be careful out there.
* Crashme can generate cases where FR31R is specified
* as the source or target of a double precision operation.
* Since we just pass the address of the floating-point
* register to the emulation routines, this can cause
* corruption of fpzeroreg.
*/
if (fmt == DBL)
r2 = (extru(ir,fpr2pos,5)<<1);
else
r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
if (r2 == 0)
r2 = fpzeroreg;
switch (subop) {
case 5:
case 6:
case 7:
return(MAJOR_0E_EXCP);
/*
* Note that fmt is only 1 bit for class 3 */
case 0: /* FADD */
switch (fmt) {
case 0:
return(sgl_fadd(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 1:
return(dbl_fadd(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
}
case 1: /* FSUB */
switch (fmt) {
case 0:
return(sgl_fsub(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 1:
return(dbl_fsub(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
}
case 2: /* FMPY or XMPYU */
/*
* check for integer multiply (x bit set)
*/
if (extru(ir,fpxpos,1)) {
/*
* emulate XMPYU
*/
switch (fmt) {
case 0:
/*
* bad instruction if t specifies
* the right half of a register
*/
if (t & 1)
return(MAJOR_0E_EXCP);
BUG();
/* unsupported
* impyu(&fpregs[r1],&fpregs[r2],
* &fpregs[t]);
*/
return(NOEXCEPTION);
case 1:
return(MAJOR_0E_EXCP);
}
}
else { /* FMPY */
switch (fmt) {
case 0:
return(sgl_fmpy(&fpregs[r1],
&fpregs[r2],&fpregs[t],status));
case 1:
return(dbl_fmpy(&fpregs[r1],
&fpregs[r2],&fpregs[t],status));
}
}
case 3: /* FDIV */
switch (fmt) {
case 0:
return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 1:
return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
}
case 4: /* FREM */
switch (fmt) {
case 0:
return(sgl_frem(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
case 1:
return(dbl_frem(&fpregs[r1],&fpregs[r2],
&fpregs[t],status));
}
} /* end of class 3 switch */
} /* end of switch(class) */
/* If we get here, something is really wrong! */
return(MAJOR_0E_EXCP);
}
/*
* routine to decode the 06 (FMPYADD and FMPYCFXT) instruction
*/
static u_int
decode_06(ir,fpregs)
u_int ir;
u_int fpregs[];
{
u_int rm1, rm2, tm, ra, ta; /* operands */
u_int fmt;
u_int error = 0;
u_int status;
u_int fpu_type_flags;
union {
double dbl;
float flt;
struct { u_int i1; u_int i2; } ints;
} mtmp, atmp;
status = fpregs[0]; /* use a local copy of status reg */
fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */
if (fmt == 0) { /* DBL */
rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
if (rm1 == 0)
rm1 = fpzeroreg;
rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
if (rm2 == 0)
rm2 = fpzeroreg;
tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
if (tm == 0)
return(MAJOR_06_EXCP);
ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
if (ta == 0)
return(MAJOR_06_EXCP);
if (fpu_type_flags & TIMEX_ROLEX_FPU_MASK) {
if (ra == 0) {
/* special case FMPYCFXT, see sgl case below */
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],
&mtmp.ints.i1,&status))
error = 1;
if (dbl_to_sgl_fcnvfxt(&fpregs[ta],
&atmp.ints.i1,&atmp.ints.i1,&status))
error = 1;
}
else {
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
&status))
error = 1;
if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
&status))
error = 1;
}
}
else
{
if (ra == 0)
ra = fpzeroreg;
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
&status))
error = 1;
if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
&status))
error = 1;
}
if (error)
return(MAJOR_06_EXCP);
else {
/* copy results */
fpregs[tm] = mtmp.ints.i1;
fpregs[tm+1] = mtmp.ints.i2;
fpregs[ta] = atmp.ints.i1;
fpregs[ta+1] = atmp.ints.i2;
fpregs[0] = status;
return(NOEXCEPTION);
}
}
else { /* SGL */
/*
* calculate offsets for single precision numbers
* See table 6-14 in PA-89 architecture for mapping
*/
rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */
rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */
rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */
rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */
tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */
tm |= extru(ir,fptmpos-4,1); /* add right word offset */
ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */
ra |= extru(ir,fprapos-4,1); /* add right word offset */
ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */
ta |= extru(ir,fptapos-4,1); /* add right word offset */
if (ra == 0x20 &&(fpu_type_flags & TIMEX_ROLEX_FPU_MASK)) {
/* special case FMPYCFXT (really 0)
* This instruction is only present on the Timex and
* Rolex fpu's in so if it is the special case and
* one of these fpu's we run the FMPYCFXT instruction
*/
if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
&status))
error = 1;
if (sgl_to_sgl_fcnvfxt(&fpregs[ta],&atmp.ints.i1,
&atmp.ints.i1,&status))
error = 1;
}
else {
if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
&status))
error = 1;
if (sgl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
&status))
error = 1;
}
if (error)
return(MAJOR_06_EXCP);
else {
/* copy results */
fpregs[tm] = mtmp.ints.i1;
fpregs[ta] = atmp.ints.i1;
fpregs[0] = status;
return(NOEXCEPTION);
}
}
}
/*
* routine to decode the 26 (FMPYSUB) instruction
*/
static u_int
decode_26(ir,fpregs)
u_int ir;
u_int fpregs[];
{
u_int rm1, rm2, tm, ra, ta; /* operands */
u_int fmt;
u_int error = 0;
u_int status;
union {
double dbl;
float flt;
struct { u_int i1; u_int i2; } ints;
} mtmp, atmp;
status = fpregs[0];
fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */
if (fmt == 0) { /* DBL */
rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
if (rm1 == 0)
rm1 = fpzeroreg;
rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
if (rm2 == 0)
rm2 = fpzeroreg;
tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
if (tm == 0)
return(MAJOR_26_EXCP);
ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
if (ra == 0)
return(MAJOR_26_EXCP);
ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
if (ta == 0)
return(MAJOR_26_EXCP);
if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
error = 1;
if (dbl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
error = 1;
if (error)
return(MAJOR_26_EXCP);
else {
/* copy results */
fpregs[tm] = mtmp.ints.i1;
fpregs[tm+1] = mtmp.ints.i2;
fpregs[ta] = atmp.ints.i1;
fpregs[ta+1] = atmp.ints.i2;
fpregs[0] = status;
return(NOEXCEPTION);
}
}
else { /* SGL */
/*
* calculate offsets for single precision numbers
* See table 6-14 in PA-89 architecture for mapping
*/
rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */
rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */
rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */
rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */
tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */
tm |= extru(ir,fptmpos-4,1); /* add right word offset */
ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */
ra |= extru(ir,fprapos-4,1); /* add right word offset */
ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */
ta |= extru(ir,fptapos-4,1); /* add right word offset */
if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
error = 1;
if (sgl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
error = 1;
if (error)
return(MAJOR_26_EXCP);
else {
/* copy results */
fpregs[tm] = mtmp.ints.i1;
fpregs[ta] = atmp.ints.i1;
fpregs[0] = status;
return(NOEXCEPTION);
}
}
}
/*
* routine to decode the 2E (FMPYFADD,FMPYNFADD) instructions
*/
static u_int
decode_2e(ir,fpregs)
u_int ir;
u_int fpregs[];
{
u_int rm1, rm2, ra, t; /* operands */
u_int fmt;
fmt = extru(ir,fpfmtpos,1); /* get fmt completer */
if (fmt == DBL) { /* DBL */
rm1 = extru(ir,fprm1pos,5) * sizeof(double)/sizeof(u_int);
if (rm1 == 0)
rm1 = fpzeroreg;
rm2 = extru(ir,fprm2pos,5) * sizeof(double)/sizeof(u_int);
if (rm2 == 0)
rm2 = fpzeroreg;
ra = ((extru(ir,fpraupos,3)<<2)|(extru(ir,fpralpos,3)>>1)) *
sizeof(double)/sizeof(u_int);
if (ra == 0)
ra = fpzeroreg;
t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
if (t == 0)
return(MAJOR_2E_EXCP);
if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
return(dbl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
&fpregs[ra], &fpregs[0], &fpregs[t]));
} else {
return(dbl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
&fpregs[ra], &fpregs[0], &fpregs[t]));
}
} /* end DBL */
else { /* SGL */
rm1 = (extru(ir,fprm1pos,5)<<1)|(extru(ir,fpxrm1pos,1));
if (rm1 == 0)
rm1 = fpzeroreg;
rm2 = (extru(ir,fprm2pos,5)<<1)|(extru(ir,fpxrm2pos,1));
if (rm2 == 0)
rm2 = fpzeroreg;
ra = (extru(ir,fpraupos,3)<<3)|extru(ir,fpralpos,3);
if (ra == 0)
ra = fpzeroreg;
t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
if (t == 0)
return(MAJOR_2E_EXCP);
if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
return(sgl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
&fpregs[ra], &fpregs[0], &fpregs[t]));
} else {
return(sgl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
&fpregs[ra], &fpregs[0], &fpregs[t]));
}
} /* end SGL */
}
/*
* update_status_cbit
*
* This routine returns the correct FP status register value in
* *status, based on the C-bit & V-bit returned by the FCMP
* emulation routine in new_status. The architecture type
* (PA83, PA89 or PA2.0) is available in fpu_type. The y_field
* and the architecture type are used to determine what flavor
* of FCMP is being emulated.
*/
static void
update_status_cbit(status, new_status, fpu_type, y_field)
u_int *status, new_status;
u_int fpu_type;
u_int y_field;
{
/*
* For PA89 FPU's which implement the Compare Queue and
* for PA2.0 FPU's, update the Compare Queue if the y-field = 0,
* otherwise update the specified bit in the Compare Array.
* Note that the y-field will always be 0 for non-PA2.0 FPU's.
*/
if ((fpu_type & TIMEX_EXTEN_FLAG) ||
(fpu_type & ROLEX_EXTEN_FLAG) ||
(fpu_type & PA2_0_FPU_FLAG)) {
if (y_field == 0) {
*status = ((*status & 0x04000000) >> 5) | /* old Cbit */
((*status & 0x003ff000) >> 1) | /* old CQ */
(new_status & 0xffc007ff); /* all other bits*/
} else {
*status = (*status & 0x04000000) | /* old Cbit */
((new_status & 0x04000000) >> (y_field+4)) |
(new_status & ~0x04000000 & /* other bits */
~(0x04000000 >> (y_field+4)));
}
}
/* if PA83, just update the C-bit */
else {
*status = new_status;
}
}