313 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			313 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *
 | |
|  *  Stereo and SAP detection for cx88
 | |
|  *
 | |
|  *  Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, write to the Free Software
 | |
|  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <asm/div64.h>
 | |
| 
 | |
| #include "cx88.h"
 | |
| #include "cx88-reg.h"
 | |
| 
 | |
| #define INT_PI			((s32)(3.141592653589 * 32768.0))
 | |
| 
 | |
| #define compat_remainder(a, b) \
 | |
| 	 ((float)(((s32)((a)*100))%((s32)((b)*100)))/100.0)
 | |
| 
 | |
| #define baseband_freq(carrier, srate, tone) ((s32)( \
 | |
| 	 (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
 | |
| 
 | |
| /* We calculate the baseband frequencies of the carrier and the pilot tones
 | |
|  * based on the the sampling rate of the audio rds fifo. */
 | |
| 
 | |
| #define FREQ_A2_CARRIER         baseband_freq(54687.5, 2689.36, 0.0)
 | |
| #define FREQ_A2_DUAL            baseband_freq(54687.5, 2689.36, 274.1)
 | |
| #define FREQ_A2_STEREO          baseband_freq(54687.5, 2689.36, 117.5)
 | |
| 
 | |
| /* The frequencies below are from the reference driver. They probably need
 | |
|  * further adjustments, because they are not tested at all. You may even need
 | |
|  * to play a bit with the registers of the chip to select the proper signal
 | |
|  * for the input of the audio rds fifo, and measure it's sampling rate to
 | |
|  * calculate the proper baseband frequencies... */
 | |
| 
 | |
| #define FREQ_A2M_CARRIER	((s32)(2.114516 * 32768.0))
 | |
| #define FREQ_A2M_DUAL		((s32)(2.754916 * 32768.0))
 | |
| #define FREQ_A2M_STEREO		((s32)(2.462326 * 32768.0))
 | |
| 
 | |
| #define FREQ_EIAJ_CARRIER	((s32)(1.963495 * 32768.0)) /* 5pi/8  */
 | |
| #define FREQ_EIAJ_DUAL		((s32)(2.562118 * 32768.0))
 | |
| #define FREQ_EIAJ_STEREO	((s32)(2.601053 * 32768.0))
 | |
| 
 | |
| #define FREQ_BTSC_DUAL		((s32)(1.963495 * 32768.0)) /* 5pi/8  */
 | |
| #define FREQ_BTSC_DUAL_REF	((s32)(1.374446 * 32768.0)) /* 7pi/16 */
 | |
| 
 | |
| #define FREQ_BTSC_SAP		((s32)(2.471532 * 32768.0))
 | |
| #define FREQ_BTSC_SAP_REF	((s32)(1.730072 * 32768.0))
 | |
| 
 | |
| /* The spectrum of the signal should be empty between these frequencies. */
 | |
| #define FREQ_NOISE_START	((s32)(0.100000 * 32768.0))
 | |
| #define FREQ_NOISE_END		((s32)(1.200000 * 32768.0))
 | |
| 
 | |
| static unsigned int dsp_debug;
 | |
| module_param(dsp_debug, int, 0644);
 | |
| MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
 | |
| 
 | |
| #define dprintk(level, fmt, arg...)	if (dsp_debug >= level) \
 | |
| 	printk(KERN_DEBUG "%s/0: " fmt, core->name , ## arg)
 | |
| 
 | |
| static s32 int_cos(u32 x)
 | |
| {
 | |
| 	u32 t2, t4, t6, t8;
 | |
| 	s32 ret;
 | |
| 	u16 period = x / INT_PI;
 | |
| 	if (period % 2)
 | |
| 		return -int_cos(x - INT_PI);
 | |
| 	x = x % INT_PI;
 | |
| 	if (x > INT_PI/2)
 | |
| 		return -int_cos(INT_PI/2 - (x % (INT_PI/2)));
 | |
| 	/* Now x is between 0 and INT_PI/2.
 | |
| 	 * To calculate cos(x) we use it's Taylor polinom. */
 | |
| 	t2 = x*x/32768/2;
 | |
| 	t4 = t2*x/32768*x/32768/3/4;
 | |
| 	t6 = t4*x/32768*x/32768/5/6;
 | |
| 	t8 = t6*x/32768*x/32768/7/8;
 | |
| 	ret = 32768-t2+t4-t6+t8;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u32 int_goertzel(s16 x[], u32 N, u32 freq)
 | |
| {
 | |
| 	/* We use the Goertzel algorithm to determine the power of the
 | |
| 	 * given frequency in the signal */
 | |
| 	s32 s_prev = 0;
 | |
| 	s32 s_prev2 = 0;
 | |
| 	s32 coeff = 2*int_cos(freq);
 | |
| 	u32 i;
 | |
| 
 | |
| 	u64 tmp;
 | |
| 	u32 divisor;
 | |
| 
 | |
| 	for (i = 0; i < N; i++) {
 | |
| 		s32 s = x[i] + ((s64)coeff*s_prev/32768) - s_prev2;
 | |
| 		s_prev2 = s_prev;
 | |
| 		s_prev = s;
 | |
| 	}
 | |
| 
 | |
| 	tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
 | |
| 		      (s64)coeff * s_prev2 * s_prev / 32768;
 | |
| 
 | |
| 	/* XXX: N must be low enough so that N*N fits in s32.
 | |
| 	 * Else we need two divisions. */
 | |
| 	divisor = N * N;
 | |
| 	do_div(tmp, divisor);
 | |
| 
 | |
| 	return (u32) tmp;
 | |
| }
 | |
| 
 | |
| static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
 | |
| {
 | |
| 	u32 sum = int_goertzel(x, N, freq);
 | |
| 	return (u32)int_sqrt(sum);
 | |
| }
 | |
| 
 | |
| static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 sum = 0;
 | |
| 	u32 freq_step;
 | |
| 	int samples = 5;
 | |
| 
 | |
| 	if (N > 192) {
 | |
| 		/* The last 192 samples are enough for noise detection */
 | |
| 		x += (N-192);
 | |
| 		N = 192;
 | |
| 	}
 | |
| 
 | |
| 	freq_step = (freq_end - freq_start) / (samples - 1);
 | |
| 
 | |
| 	for (i = 0; i < samples; i++) {
 | |
| 		sum += int_goertzel(x, N, freq_start);
 | |
| 		freq_start += freq_step;
 | |
| 	}
 | |
| 
 | |
| 	return (u32)int_sqrt(sum / samples);
 | |
| }
 | |
| 
 | |
| static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
 | |
| {
 | |
| 	s32 carrier, stereo, dual, noise;
 | |
| 	s32 carrier_freq, stereo_freq, dual_freq;
 | |
| 	s32 ret;
 | |
| 
 | |
| 	switch (core->tvaudio) {
 | |
| 	case WW_BG:
 | |
| 	case WW_DK:
 | |
| 		carrier_freq = FREQ_A2_CARRIER;
 | |
| 		stereo_freq = FREQ_A2_STEREO;
 | |
| 		dual_freq = FREQ_A2_DUAL;
 | |
| 		break;
 | |
| 	case WW_M:
 | |
| 		carrier_freq = FREQ_A2M_CARRIER;
 | |
| 		stereo_freq = FREQ_A2M_STEREO;
 | |
| 		dual_freq = FREQ_A2M_DUAL;
 | |
| 		break;
 | |
| 	case WW_EIAJ:
 | |
| 		carrier_freq = FREQ_EIAJ_CARRIER;
 | |
| 		stereo_freq = FREQ_EIAJ_STEREO;
 | |
| 		dual_freq = FREQ_EIAJ_DUAL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_WARNING "%s/0: unsupported audio mode %d for %s\n",
 | |
| 		       core->name, core->tvaudio, __func__);
 | |
| 		return UNSET;
 | |
| 	}
 | |
| 
 | |
| 	carrier = freq_magnitude(x, N, carrier_freq);
 | |
| 	stereo  = freq_magnitude(x, N, stereo_freq);
 | |
| 	dual    = freq_magnitude(x, N, dual_freq);
 | |
| 	noise   = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
 | |
| 
 | |
| 	dprintk(1, "detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, "
 | |
| 		   "noise=%d\n", carrier, stereo, dual, noise);
 | |
| 
 | |
| 	if (stereo > dual)
 | |
| 		ret = V4L2_TUNER_SUB_STEREO;
 | |
| 	else
 | |
| 		ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
 | |
| 
 | |
| 	if (core->tvaudio == WW_EIAJ) {
 | |
| 		/* EIAJ checks may need adjustments */
 | |
| 		if ((carrier > max(stereo, dual)*2) &&
 | |
| 		    (carrier < max(stereo, dual)*6) &&
 | |
| 		    (carrier > 20 && carrier < 200) &&
 | |
| 		    (max(stereo, dual) > min(stereo, dual))) {
 | |
| 			/* For EIAJ the carrier is always present,
 | |
| 			   so we probably don't need noise detection */
 | |
| 			return ret;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((carrier > max(stereo, dual)*2) &&
 | |
| 		    (carrier < max(stereo, dual)*8) &&
 | |
| 		    (carrier > 20 && carrier < 200) &&
 | |
| 		    (noise < 10) &&
 | |
| 		    (max(stereo, dual) > min(stereo, dual)*2)) {
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	return V4L2_TUNER_SUB_MONO;
 | |
| }
 | |
| 
 | |
| static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
 | |
| {
 | |
| 	s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
 | |
| 	s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
 | |
| 	s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
 | |
| 	s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
 | |
| 	dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d"
 | |
| 		   "\n", dual_ref, dual, sap_ref, sap);
 | |
| 	/* FIXME: Currently not supported */
 | |
| 	return UNSET;
 | |
| }
 | |
| 
 | |
| static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
 | |
| {
 | |
| 	struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
 | |
| 	s16 *samples;
 | |
| 
 | |
| 	unsigned int i;
 | |
| 	unsigned int bpl = srch->fifo_size/AUD_RDS_LINES;
 | |
| 	unsigned int spl = bpl/4;
 | |
| 	unsigned int sample_count = spl*(AUD_RDS_LINES-1);
 | |
| 
 | |
| 	u32 current_address = cx_read(srch->ptr1_reg);
 | |
| 	u32 offset = (current_address - srch->fifo_start + bpl);
 | |
| 
 | |
| 	dprintk(1, "read RDS samples: current_address=%08x (offset=%08x), "
 | |
| 		"sample_count=%d, aud_intstat=%08x\n", current_address,
 | |
| 		current_address - srch->fifo_start, sample_count,
 | |
| 		cx_read(MO_AUD_INTSTAT));
 | |
| 
 | |
| 	samples = kmalloc(sizeof(s16)*sample_count, GFP_KERNEL);
 | |
| 	if (!samples)
 | |
| 		return NULL;
 | |
| 
 | |
| 	*N = sample_count;
 | |
| 
 | |
| 	for (i = 0; i < sample_count; i++)  {
 | |
| 		offset = offset % (AUD_RDS_LINES*bpl);
 | |
| 		samples[i] = cx_read(srch->fifo_start + offset);
 | |
| 		offset += 4;
 | |
| 	}
 | |
| 
 | |
| 	if (dsp_debug >= 2) {
 | |
| 		dprintk(2, "RDS samples dump: ");
 | |
| 		for (i = 0; i < sample_count; i++)
 | |
| 			printk("%hd ", samples[i]);
 | |
| 		printk(".\n");
 | |
| 	}
 | |
| 
 | |
| 	return samples;
 | |
| }
 | |
| 
 | |
| s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
 | |
| {
 | |
| 	s16 *samples;
 | |
| 	u32 N = 0;
 | |
| 	s32 ret = UNSET;
 | |
| 
 | |
| 	/* If audio RDS fifo is disabled, we can't read the samples */
 | |
| 	if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
 | |
| 		return ret;
 | |
| 	if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Wait at least 500 ms after an audio standard change */
 | |
| 	if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
 | |
| 		return ret;
 | |
| 
 | |
| 	samples = read_rds_samples(core, &N);
 | |
| 
 | |
| 	if (!samples)
 | |
| 		return ret;
 | |
| 
 | |
| 	switch (core->tvaudio) {
 | |
| 	case WW_BG:
 | |
| 	case WW_DK:
 | |
| 		ret = detect_a2_a2m_eiaj(core, samples, N);
 | |
| 		break;
 | |
| 	case WW_BTSC:
 | |
| 		ret = detect_btsc(core, samples, N);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	kfree(samples);
 | |
| 
 | |
| 	if (UNSET != ret)
 | |
| 		dprintk(1, "stereo/sap detection result:%s%s%s\n",
 | |
| 			   (ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
 | |
| 			   (ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
 | |
| 			   (ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
 | |
| 
 |