2015-03-26 17:24:57 +01:00

983 lines
25 KiB
C

/*
* Driver for
* Samsung S5H1420 and
* PnpNetwork PN1010 QPSK Demodulator
*
* Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net>
* Copyright (C) 2005-8 Patrick Boettcher <pb@linuxtv.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <asm/div64.h>
#include <linux/i2c.h>
#include "dvb_frontend.h"
#include "s5h1420.h"
#include "s5h1420_priv.h"
#define TONE_FREQ 22000
struct s5h1420_state {
struct i2c_adapter* i2c;
const struct s5h1420_config* config;
struct dvb_frontend frontend;
struct i2c_adapter tuner_i2c_adapter;
u8 CON_1_val;
u8 postlocked:1;
u32 fclk;
u32 tunedfreq;
fe_code_rate_t fec_inner;
u32 symbol_rate;
/* FIXME: ugly workaround for flexcop's incapable i2c-controller
* it does not support repeated-start, workaround: write addr-1
* and then read
*/
u8 shadow[256];
};
static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
struct dvb_frontend_tune_settings* fesettings);
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "enable debugging");
#define dprintk(x...) do { \
if (debug) \
printk(KERN_DEBUG "S5H1420: " x); \
} while (0)
static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg)
{
int ret;
u8 b[2];
struct i2c_msg msg[] = {
{ .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 },
{ .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 },
};
b[0] = (reg - 1) & 0xff;
b[1] = state->shadow[(reg - 1) & 0xff];
if (state->config->repeated_start_workaround) {
ret = i2c_transfer(state->i2c, msg, 3);
if (ret != 3)
return ret;
} else {
ret = i2c_transfer(state->i2c, &msg[1], 1);
if (ret != 1)
return ret;
ret = i2c_transfer(state->i2c, &msg[2], 1);
if (ret != 1)
return ret;
}
/* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */
return b[0];
}
static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
{
u8 buf[] = { reg, data };
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
int err;
/* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */
err = i2c_transfer(state->i2c, &msg, 1);
if (err != 1) {
dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data);
return -EREMOTEIO;
}
state->shadow[reg] = data;
return 0;
}
static int s5h1420_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
struct s5h1420_state* state = fe->demodulator_priv;
dprintk("enter %s\n", __func__);
switch(voltage) {
case SEC_VOLTAGE_13:
s5h1420_writereg(state, 0x3c,
(s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
break;
case SEC_VOLTAGE_18:
s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
break;
case SEC_VOLTAGE_OFF:
s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
break;
}
dprintk("leave %s\n", __func__);
return 0;
}
static int s5h1420_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
struct s5h1420_state* state = fe->demodulator_priv;
dprintk("enter %s\n", __func__);
switch(tone) {
case SEC_TONE_ON:
s5h1420_writereg(state, 0x3b,
(s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
break;
case SEC_TONE_OFF:
s5h1420_writereg(state, 0x3b,
(s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
break;
}
dprintk("leave %s\n", __func__);
return 0;
}
static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
struct dvb_diseqc_master_cmd* cmd)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
int i;
unsigned long timeout;
int result = 0;
dprintk("enter %s\n", __func__);
if (cmd->msg_len > 8)
return -EINVAL;
/* setup for DISEQC */
val = s5h1420_readreg(state, 0x3b);
s5h1420_writereg(state, 0x3b, 0x02);
msleep(15);
/* write the DISEQC command bytes */
for(i=0; i< cmd->msg_len; i++) {
s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
}
/* kick off transmission */
s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
((cmd->msg_len-1) << 4) | 0x08);
/* wait for transmission to complete */
timeout = jiffies + ((100*HZ) / 1000);
while(time_before(jiffies, timeout)) {
if (!(s5h1420_readreg(state, 0x3b) & 0x08))
break;
msleep(5);
}
if (time_after(jiffies, timeout))
result = -ETIMEDOUT;
/* restore original settings */
s5h1420_writereg(state, 0x3b, val);
msleep(15);
dprintk("leave %s\n", __func__);
return result;
}
static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
struct dvb_diseqc_slave_reply* reply)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
int i;
int length;
unsigned long timeout;
int result = 0;
/* setup for DISEQC recieve */
val = s5h1420_readreg(state, 0x3b);
s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */
msleep(15);
/* wait for reception to complete */
timeout = jiffies + ((reply->timeout*HZ) / 1000);
while(time_before(jiffies, timeout)) {
if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */
break;
msleep(5);
}
if (time_after(jiffies, timeout)) {
result = -ETIMEDOUT;
goto exit;
}
/* check error flag - FIXME: not sure what this does - docs do not describe
* beyond "error flag for diseqc receive data :( */
if (s5h1420_readreg(state, 0x49)) {
result = -EIO;
goto exit;
}
/* check length */
length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
if (length > sizeof(reply->msg)) {
result = -EOVERFLOW;
goto exit;
}
reply->msg_len = length;
/* extract data */
for(i=0; i< length; i++) {
reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
}
exit:
/* restore original settings */
s5h1420_writereg(state, 0x3b, val);
msleep(15);
return result;
}
static int s5h1420_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
int result = 0;
unsigned long timeout;
/* setup for tone burst */
val = s5h1420_readreg(state, 0x3b);
s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);
/* set value for B position if requested */
if (minicmd == SEC_MINI_B) {
s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
}
msleep(15);
/* start transmission */
s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);
/* wait for transmission to complete */
timeout = jiffies + ((100*HZ) / 1000);
while(time_before(jiffies, timeout)) {
if (!(s5h1420_readreg(state, 0x3b) & 0x08))
break;
msleep(5);
}
if (time_after(jiffies, timeout))
result = -ETIMEDOUT;
/* restore original settings */
s5h1420_writereg(state, 0x3b, val);
msleep(15);
return result;
}
static fe_status_t s5h1420_get_status_bits(struct s5h1420_state* state)
{
u8 val;
fe_status_t status = 0;
val = s5h1420_readreg(state, 0x14);
if (val & 0x02)
status |= FE_HAS_SIGNAL;
if (val & 0x01)
status |= FE_HAS_CARRIER;
val = s5h1420_readreg(state, 0x36);
if (val & 0x01)
status |= FE_HAS_VITERBI;
if (val & 0x20)
status |= FE_HAS_SYNC;
if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC))
status |= FE_HAS_LOCK;
return status;
}
static int s5h1420_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
dprintk("enter %s\n", __func__);
if (status == NULL)
return -EINVAL;
/* determine lock state */
*status = s5h1420_get_status_bits(state);
/* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert
the inversion, wait a bit and check again */
if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) {
val = s5h1420_readreg(state, Vit10);
if ((val & 0x07) == 0x03) {
if (val & 0x08)
s5h1420_writereg(state, Vit09, 0x13);
else
s5h1420_writereg(state, Vit09, 0x1b);
/* wait a bit then update lock status */
mdelay(200);
*status = s5h1420_get_status_bits(state);
}
}
/* perform post lock setup */
if ((*status & FE_HAS_LOCK) && !state->postlocked) {
/* calculate the data rate */
u32 tmp = s5h1420_getsymbolrate(state);
switch (s5h1420_readreg(state, Vit10) & 0x07) {
case 0: tmp = (tmp * 2 * 1) / 2; break;
case 1: tmp = (tmp * 2 * 2) / 3; break;
case 2: tmp = (tmp * 2 * 3) / 4; break;
case 3: tmp = (tmp * 2 * 5) / 6; break;
case 4: tmp = (tmp * 2 * 6) / 7; break;
case 5: tmp = (tmp * 2 * 7) / 8; break;
}
if (tmp == 0) {
printk(KERN_ERR "s5h1420: avoided division by 0\n");
tmp = 1;
}
tmp = state->fclk / tmp;
/* set the MPEG_CLK_INTL for the calculated data rate */
if (tmp < 2)
val = 0x00;
else if (tmp < 5)
val = 0x01;
else if (tmp < 9)
val = 0x02;
else if (tmp < 13)
val = 0x03;
else if (tmp < 17)
val = 0x04;
else if (tmp < 25)
val = 0x05;
else if (tmp < 33)
val = 0x06;
else
val = 0x07;
dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val);
s5h1420_writereg(state, FEC01, 0x18);
s5h1420_writereg(state, FEC01, 0x10);
s5h1420_writereg(state, FEC01, val);
/* Enable "MPEG_Out" */
val = s5h1420_readreg(state, Mpeg02);
s5h1420_writereg(state, Mpeg02, val | (1 << 6));
/* kicker disable */
val = s5h1420_readreg(state, QPSK01) & 0x7f;
s5h1420_writereg(state, QPSK01, val);
/* DC freeze TODO it was never activated by default or it can stay activated */
if (s5h1420_getsymbolrate(state) >= 20000000) {
s5h1420_writereg(state, Loop04, 0x8a);
s5h1420_writereg(state, Loop05, 0x6a);
} else {
s5h1420_writereg(state, Loop04, 0x58);
s5h1420_writereg(state, Loop05, 0x27);
}
/* post-lock processing has been done! */
state->postlocked = 1;
}
dprintk("leave %s\n", __func__);
return 0;
}
static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct s5h1420_state* state = fe->demodulator_priv;
s5h1420_writereg(state, 0x46, 0x1d);
mdelay(25);
*ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
return 0;
}
static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val = s5h1420_readreg(state, 0x15);
*strength = (u16) ((val << 8) | val);
return 0;
}
static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct s5h1420_state* state = fe->demodulator_priv;
s5h1420_writereg(state, 0x46, 0x1f);
mdelay(25);
*ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
return 0;
}
static void s5h1420_reset(struct s5h1420_state* state)
{
dprintk("%s\n", __func__);
s5h1420_writereg (state, 0x01, 0x08);
s5h1420_writereg (state, 0x01, 0x00);
udelay(10);
}
static void s5h1420_setsymbolrate(struct s5h1420_state* state,
struct dvb_frontend_parameters *p)
{
u8 v;
u64 val;
dprintk("enter %s\n", __func__);
val = ((u64) p->u.qpsk.symbol_rate / 1000ULL) * (1ULL<<24);
if (p->u.qpsk.symbol_rate < 29000000)
val *= 2;
do_div(val, (state->fclk / 1000));
dprintk("symbol rate register: %06llx\n", (unsigned long long)val);
v = s5h1420_readreg(state, Loop01);
s5h1420_writereg(state, Loop01, v & 0x7f);
s5h1420_writereg(state, Tnco01, val >> 16);
s5h1420_writereg(state, Tnco02, val >> 8);
s5h1420_writereg(state, Tnco03, val & 0xff);
s5h1420_writereg(state, Loop01, v | 0x80);
dprintk("leave %s\n", __func__);
}
static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
{
return state->symbol_rate;
}
static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
{
int val;
u8 v;
dprintk("enter %s\n", __func__);
/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
* divide fclk by 1000000 to get the correct value. */
val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));
dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val);
v = s5h1420_readreg(state, Loop01);
s5h1420_writereg(state, Loop01, v & 0xbf);
s5h1420_writereg(state, Pnco01, val >> 16);
s5h1420_writereg(state, Pnco02, val >> 8);
s5h1420_writereg(state, Pnco03, val & 0xff);
s5h1420_writereg(state, Loop01, v | 0x40);
dprintk("leave %s\n", __func__);
}
static int s5h1420_getfreqoffset(struct s5h1420_state* state)
{
int val;
s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
val = s5h1420_readreg(state, 0x0e) << 16;
val |= s5h1420_readreg(state, 0x0f) << 8;
val |= s5h1420_readreg(state, 0x10);
s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
if (val & 0x800000)
val |= 0xff000000;
/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
* divide fclk by 1000000 to get the correct value. */
val = (((-val) * (state->fclk/1000000)) / (1<<24));
return val;
}
static void s5h1420_setfec_inversion(struct s5h1420_state* state,
struct dvb_frontend_parameters *p)
{
u8 inversion = 0;
u8 vit08, vit09;
dprintk("enter %s\n", __func__);
if (p->inversion == INVERSION_OFF)
inversion = state->config->invert ? 0x08 : 0;
else if (p->inversion == INVERSION_ON)
inversion = state->config->invert ? 0 : 0x08;
if ((p->u.qpsk.fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
vit08 = 0x3f;
vit09 = 0;
} else {
switch(p->u.qpsk.fec_inner) {
case FEC_1_2:
vit08 = 0x01; vit09 = 0x10;
break;
case FEC_2_3:
vit08 = 0x02; vit09 = 0x11;
break;
case FEC_3_4:
vit08 = 0x04; vit09 = 0x12;
break;
case FEC_5_6:
vit08 = 0x08; vit09 = 0x13;
break;
case FEC_6_7:
vit08 = 0x10; vit09 = 0x14;
break;
case FEC_7_8:
vit08 = 0x20; vit09 = 0x15;
break;
default:
return;
}
}
vit09 |= inversion;
dprintk("fec: %02x %02x\n", vit08, vit09);
s5h1420_writereg(state, Vit08, vit08);
s5h1420_writereg(state, Vit09, vit09);
dprintk("leave %s\n", __func__);
}
static fe_code_rate_t s5h1420_getfec(struct s5h1420_state* state)
{
switch(s5h1420_readreg(state, 0x32) & 0x07) {
case 0:
return FEC_1_2;
case 1:
return FEC_2_3;
case 2:
return FEC_3_4;
case 3:
return FEC_5_6;
case 4:
return FEC_6_7;
case 5:
return FEC_7_8;
}
return FEC_NONE;
}
static fe_spectral_inversion_t s5h1420_getinversion(struct s5h1420_state* state)
{
if (s5h1420_readreg(state, 0x32) & 0x08)
return INVERSION_ON;
return INVERSION_OFF;
}
static int s5h1420_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *p)
{
struct s5h1420_state* state = fe->demodulator_priv;
int frequency_delta;
struct dvb_frontend_tune_settings fesettings;
uint8_t clock_settting;
dprintk("enter %s\n", __func__);
/* check if we should do a fast-tune */
memcpy(&fesettings.parameters, p, sizeof(struct dvb_frontend_parameters));
s5h1420_get_tune_settings(fe, &fesettings);
frequency_delta = p->frequency - state->tunedfreq;
if ((frequency_delta > -fesettings.max_drift) &&
(frequency_delta < fesettings.max_drift) &&
(frequency_delta != 0) &&
(state->fec_inner == p->u.qpsk.fec_inner) &&
(state->symbol_rate == p->u.qpsk.symbol_rate)) {
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, p);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
if (fe->ops.tuner_ops.get_frequency) {
u32 tmp;
fe->ops.tuner_ops.get_frequency(fe, &tmp);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
s5h1420_setfreqoffset(state, p->frequency - tmp);
} else {
s5h1420_setfreqoffset(state, 0);
}
dprintk("simple tune\n");
return 0;
}
dprintk("tuning demod\n");
/* first of all, software reset */
s5h1420_reset(state);
/* set s5h1420 fclk PLL according to desired symbol rate */
if (p->u.qpsk.symbol_rate > 33000000)
state->fclk = 80000000;
else if (p->u.qpsk.symbol_rate > 28500000)
state->fclk = 59000000;
else if (p->u.qpsk.symbol_rate > 25000000)
state->fclk = 86000000;
else if (p->u.qpsk.symbol_rate > 1900000)
state->fclk = 88000000;
else
state->fclk = 44000000;
/* Clock */
switch (state->fclk) {
default:
case 88000000:
clock_settting = 80;
break;
case 86000000:
clock_settting = 78;
break;
case 80000000:
clock_settting = 72;
break;
case 59000000:
clock_settting = 51;
break;
case 44000000:
clock_settting = 36;
break;
}
dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8);
s5h1420_writereg(state, PLL02, 0x40);
s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
/* TODO DC offset removal, config parameter ? */
if (p->u.qpsk.symbol_rate > 29000000)
s5h1420_writereg(state, QPSK01, 0xae | 0x10);
else
s5h1420_writereg(state, QPSK01, 0xac | 0x10);
/* set misc registers */
s5h1420_writereg(state, CON_1, 0x00);
s5h1420_writereg(state, QPSK02, 0x00);
s5h1420_writereg(state, Pre01, 0xb0);
s5h1420_writereg(state, Loop01, 0xF0);
s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */
s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */
if (p->u.qpsk.symbol_rate > 20000000)
s5h1420_writereg(state, Loop04, 0x79);
else
s5h1420_writereg(state, Loop04, 0x58);
s5h1420_writereg(state, Loop05, 0x6b);
if (p->u.qpsk.symbol_rate >= 8000000)
s5h1420_writereg(state, Post01, (0 << 6) | 0x10);
else if (p->u.qpsk.symbol_rate >= 4000000)
s5h1420_writereg(state, Post01, (1 << 6) | 0x10);
else
s5h1420_writereg(state, Post01, (3 << 6) | 0x10);
s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */
s5h1420_writereg(state, Sync01, 0x33);
s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity);
s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */
s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */
s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */
s5h1420_writereg(state, DiS03, 0x00);
s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */
/* set tuner PLL */
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, p);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
s5h1420_setfreqoffset(state, 0);
}
/* set the reset of the parameters */
s5h1420_setsymbolrate(state, p);
s5h1420_setfec_inversion(state, p);
/* start QPSK */
s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1);
state->fec_inner = p->u.qpsk.fec_inner;
state->symbol_rate = p->u.qpsk.symbol_rate;
state->postlocked = 0;
state->tunedfreq = p->frequency;
dprintk("leave %s\n", __func__);
return 0;
}
static int s5h1420_get_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *p)
{
struct s5h1420_state* state = fe->demodulator_priv;
p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
p->inversion = s5h1420_getinversion(state);
p->u.qpsk.symbol_rate = s5h1420_getsymbolrate(state);
p->u.qpsk.fec_inner = s5h1420_getfec(state);
return 0;
}
static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
struct dvb_frontend_tune_settings* fesettings)
{
if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) {
fesettings->min_delay_ms = 50;
fesettings->step_size = 2000;
fesettings->max_drift = 8000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 1500;
fesettings->max_drift = 9000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 1000;
fesettings->max_drift = 8000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 500;
fesettings->max_drift = 7000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) {
fesettings->min_delay_ms = 200;
fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
fesettings->max_drift = 14 * fesettings->step_size;
} else {
fesettings->min_delay_ms = 200;
fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
fesettings->max_drift = 18 * fesettings->step_size;
}
return 0;
}
static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct s5h1420_state* state = fe->demodulator_priv;
if (enable)
return s5h1420_writereg(state, 0x02, state->CON_1_val | 1);
else
return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe);
}
static int s5h1420_init (struct dvb_frontend* fe)
{
struct s5h1420_state* state = fe->demodulator_priv;
/* disable power down and do reset */
state->CON_1_val = state->config->serial_mpeg << 4;
s5h1420_writereg(state, 0x02, state->CON_1_val);
msleep(10);
s5h1420_reset(state);
return 0;
}
static int s5h1420_sleep(struct dvb_frontend* fe)
{
struct s5h1420_state* state = fe->demodulator_priv;
state->CON_1_val = 0x12;
return s5h1420_writereg(state, 0x02, state->CON_1_val);
}
static void s5h1420_release(struct dvb_frontend* fe)
{
struct s5h1420_state* state = fe->demodulator_priv;
i2c_del_adapter(&state->tuner_i2c_adapter);
kfree(state);
}
static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct s5h1420_state *state = i2c_get_adapdata(i2c_adap);
struct i2c_msg m[1 + num];
u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */
memset(m, 0, sizeof(struct i2c_msg) * (1 + num));
m[0].addr = state->config->demod_address;
m[0].buf = tx_open;
m[0].len = 2;
memcpy(&m[1], msg, sizeof(struct i2c_msg) * num);
return i2c_transfer(state->i2c, m, 1+num) == 1 + num ? num : -EIO;
}
static struct i2c_algorithm s5h1420_tuner_i2c_algo = {
.master_xfer = s5h1420_tuner_i2c_tuner_xfer,
.functionality = s5h1420_tuner_i2c_func,
};
struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe)
{
struct s5h1420_state *state = fe->demodulator_priv;
return &state->tuner_i2c_adapter;
}
EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter);
static struct dvb_frontend_ops s5h1420_ops;
struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config,
struct i2c_adapter *i2c)
{
/* allocate memory for the internal state */
struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
u8 i;
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->postlocked = 0;
state->fclk = 88000000;
state->tunedfreq = 0;
state->fec_inner = FEC_NONE;
state->symbol_rate = 0;
/* check if the demod is there + identify it */
i = s5h1420_readreg(state, ID01);
if (i != 0x03)
goto error;
memset(state->shadow, 0xff, sizeof(state->shadow));
for (i = 0; i < 0x50; i++)
state->shadow[i] = s5h1420_readreg(state, i);
/* create dvb_frontend */
memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
/* create tuner i2c adapter */
strlcpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus",
sizeof(state->tuner_i2c_adapter.name));
state->tuner_i2c_adapter.class = I2C_CLASS_TV_DIGITAL,
state->tuner_i2c_adapter.algo = &s5h1420_tuner_i2c_algo;
state->tuner_i2c_adapter.algo_data = NULL;
i2c_set_adapdata(&state->tuner_i2c_adapter, state);
if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n");
goto error;
}
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(s5h1420_attach);
static struct dvb_frontend_ops s5h1420_ops = {
.info = {
.name = "Samsung S5H1420/PnpNetwork PN1010 DVB-S",
.type = FE_QPSK,
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 125, /* kHz for QPSK frontends */
.frequency_tolerance = 29500,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
/* .symbol_rate_tolerance = ???,*/
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK
},
.release = s5h1420_release,
.init = s5h1420_init,
.sleep = s5h1420_sleep,
.i2c_gate_ctrl = s5h1420_i2c_gate_ctrl,
.set_frontend = s5h1420_set_frontend,
.get_frontend = s5h1420_get_frontend,
.get_tune_settings = s5h1420_get_tune_settings,
.read_status = s5h1420_read_status,
.read_ber = s5h1420_read_ber,
.read_signal_strength = s5h1420_read_signal_strength,
.read_ucblocks = s5h1420_read_ucblocks,
.diseqc_send_master_cmd = s5h1420_send_master_cmd,
.diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
.diseqc_send_burst = s5h1420_send_burst,
.set_tone = s5h1420_set_tone,
.set_voltage = s5h1420_set_voltage,
};
MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver");
MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher");
MODULE_LICENSE("GPL");