635 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			635 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Memory arbiter functions. Allocates bandwidth through the
 | 
						|
 * arbiter and sets up arbiter breakpoints.
 | 
						|
 *
 | 
						|
 * The algorithm first assigns slots to the clients that has specified
 | 
						|
 * bandwidth (e.g. ethernet) and then the remaining slots are divided
 | 
						|
 * on all the active clients.
 | 
						|
 *
 | 
						|
 * Copyright (c) 2004-2007 Axis Communications AB.
 | 
						|
 *
 | 
						|
 * The artpec-3 has two arbiters. The memory hierarchy looks like this:
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * CPU DMAs
 | 
						|
 *  |   |
 | 
						|
 *  |   |
 | 
						|
 * --------------    ------------------
 | 
						|
 * | foo arbiter|----| Internal memory|
 | 
						|
 * --------------    ------------------
 | 
						|
 *      |
 | 
						|
 * --------------
 | 
						|
 * | L2 cache   |
 | 
						|
 * --------------
 | 
						|
 *             |
 | 
						|
 * h264 etc    |
 | 
						|
 *    |        |
 | 
						|
 *    |        |
 | 
						|
 * --------------
 | 
						|
 * | bar arbiter|
 | 
						|
 * --------------
 | 
						|
 *       |
 | 
						|
 * ---------
 | 
						|
 * | SDRAM |
 | 
						|
 * ---------
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <hwregs/reg_map.h>
 | 
						|
#include <hwregs/reg_rdwr.h>
 | 
						|
#include <hwregs/marb_foo_defs.h>
 | 
						|
#include <hwregs/marb_bar_defs.h>
 | 
						|
#include <arbiter.h>
 | 
						|
#include <hwregs/intr_vect.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/irq.h>
 | 
						|
#include <linux/signal.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/irq_regs.h>
 | 
						|
 | 
						|
#define D(x)
 | 
						|
 | 
						|
struct crisv32_watch_entry {
 | 
						|
  unsigned long instance;
 | 
						|
  watch_callback *cb;
 | 
						|
  unsigned long start;
 | 
						|
  unsigned long end;
 | 
						|
  int used;
 | 
						|
};
 | 
						|
 | 
						|
#define NUMBER_OF_BP 4
 | 
						|
#define SDRAM_BANDWIDTH 400000000
 | 
						|
#define INTMEM_BANDWIDTH 400000000
 | 
						|
#define NBR_OF_SLOTS 64
 | 
						|
#define NBR_OF_REGIONS 2
 | 
						|
#define NBR_OF_CLIENTS 15
 | 
						|
#define ARBITERS 2
 | 
						|
#define UNASSIGNED 100
 | 
						|
 | 
						|
struct arbiter {
 | 
						|
  unsigned long instance;
 | 
						|
  int nbr_regions;
 | 
						|
  int nbr_clients;
 | 
						|
  int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
 | 
						|
  int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
 | 
						|
};
 | 
						|
 | 
						|
static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] =
 | 
						|
{
 | 
						|
  {
 | 
						|
  {regi_marb_foo_bp0},
 | 
						|
  {regi_marb_foo_bp1},
 | 
						|
  {regi_marb_foo_bp2},
 | 
						|
  {regi_marb_foo_bp3}
 | 
						|
  },
 | 
						|
  {
 | 
						|
  {regi_marb_bar_bp0},
 | 
						|
  {regi_marb_bar_bp1},
 | 
						|
  {regi_marb_bar_bp2},
 | 
						|
  {regi_marb_bar_bp3}
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct arbiter arbiters[ARBITERS] =
 | 
						|
{
 | 
						|
  { /* L2 cache arbiter */
 | 
						|
    .instance = regi_marb_foo,
 | 
						|
    .nbr_regions = 2,
 | 
						|
    .nbr_clients = 15
 | 
						|
  },
 | 
						|
  { /* DDR2 arbiter */
 | 
						|
    .instance = regi_marb_bar,
 | 
						|
    .nbr_regions = 1,
 | 
						|
    .nbr_clients = 9
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH};
 | 
						|
 | 
						|
DEFINE_SPINLOCK(arbiter_lock);
 | 
						|
 | 
						|
static irqreturn_t
 | 
						|
crisv32_foo_arbiter_irq(int irq, void *dev_id);
 | 
						|
static irqreturn_t
 | 
						|
crisv32_bar_arbiter_irq(int irq, void *dev_id);
 | 
						|
 | 
						|
/*
 | 
						|
 * "I'm the arbiter, I know the score.
 | 
						|
 *  From square one I'll be watching all 64."
 | 
						|
 * (memory arbiter slots, that is)
 | 
						|
 *
 | 
						|
 *  Or in other words:
 | 
						|
 * Program the memory arbiter slots for "region" according to what's
 | 
						|
 * in requested_slots[] and active_clients[], while minimizing
 | 
						|
 * latency. A caller may pass a non-zero positive amount for
 | 
						|
 * "unused_slots", which must then be the unallocated, remaining
 | 
						|
 * number of slots, free to hand out to any client.
 | 
						|
 */
 | 
						|
 | 
						|
static void crisv32_arbiter_config(int arbiter, int region, int unused_slots)
 | 
						|
{
 | 
						|
	int slot;
 | 
						|
	int client;
 | 
						|
	int interval = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This vector corresponds to the hardware arbiter slots (see
 | 
						|
	 * the hardware documentation for semantics). We initialize
 | 
						|
	 * each slot with a suitable sentinel value outside the valid
 | 
						|
	 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
 | 
						|
	 * client indexes. Then it's fed to the hardware.
 | 
						|
	 */
 | 
						|
	s8 val[NBR_OF_SLOTS];
 | 
						|
 | 
						|
	for (slot = 0; slot < NBR_OF_SLOTS; slot++)
 | 
						|
	    val[slot] = -1;
 | 
						|
 | 
						|
	for (client = 0; client < arbiters[arbiter].nbr_clients; client++) {
 | 
						|
	    int pos;
 | 
						|
	    /* Allocate the requested non-zero number of slots, but
 | 
						|
	     * also give clients with zero-requests one slot each
 | 
						|
	     * while stocks last. We do the latter here, in client
 | 
						|
	     * order. This makes sure zero-request clients are the
 | 
						|
	     * first to get to any spare slots, else those slots
 | 
						|
	     * could, when bandwidth is allocated close to the limit,
 | 
						|
	     * all be allocated to low-index non-zero-request clients
 | 
						|
	     * in the default-fill loop below. Another positive but
 | 
						|
	     * secondary effect is a somewhat better spread of the
 | 
						|
	     * zero-bandwidth clients in the vector, avoiding some of
 | 
						|
	     * the latency that could otherwise be caused by the
 | 
						|
	     * partitioning of non-zero-bandwidth clients at low
 | 
						|
	     * indexes and zero-bandwidth clients at high
 | 
						|
	     * indexes. (Note that this spreading can only affect the
 | 
						|
	     * unallocated bandwidth.)  All the above only matters for
 | 
						|
	     * memory-intensive situations, of course.
 | 
						|
	     */
 | 
						|
	    if (!arbiters[arbiter].requested_slots[region][client]) {
 | 
						|
		/*
 | 
						|
		 * Skip inactive clients. Also skip zero-slot
 | 
						|
		 * allocations in this pass when there are no known
 | 
						|
		 * free slots.
 | 
						|
		 */
 | 
						|
		if (!arbiters[arbiter].active_clients[region][client] ||
 | 
						|
				unused_slots <= 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		unused_slots--;
 | 
						|
 | 
						|
		/* Only allocate one slot for this client. */
 | 
						|
		interval = NBR_OF_SLOTS;
 | 
						|
	    } else
 | 
						|
		interval = NBR_OF_SLOTS /
 | 
						|
			arbiters[arbiter].requested_slots[region][client];
 | 
						|
 | 
						|
	    pos = 0;
 | 
						|
	    while (pos < NBR_OF_SLOTS) {
 | 
						|
		if (val[pos] >= 0)
 | 
						|
		   pos++;
 | 
						|
		else {
 | 
						|
			val[pos] = client;
 | 
						|
			pos += interval;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	client = 0;
 | 
						|
	for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
 | 
						|
		/*
 | 
						|
		 * Allocate remaining slots in round-robin
 | 
						|
		 * client-number order for active clients. For this
 | 
						|
		 * pass, we ignore requested bandwidth and previous
 | 
						|
		 * allocations.
 | 
						|
		 */
 | 
						|
		if (val[slot] < 0) {
 | 
						|
			int first = client;
 | 
						|
			while (!arbiters[arbiter].active_clients[region][client]) {
 | 
						|
				client = (client + 1) %
 | 
						|
					arbiters[arbiter].nbr_clients;
 | 
						|
				if (client == first)
 | 
						|
				   break;
 | 
						|
			}
 | 
						|
			val[slot] = client;
 | 
						|
			client = (client + 1) % arbiters[arbiter].nbr_clients;
 | 
						|
		}
 | 
						|
		if (arbiter == 0) {
 | 
						|
			if (region == EXT_REGION)
 | 
						|
				REG_WR_INT_VECT(marb_foo, regi_marb_foo,
 | 
						|
					rw_l2_slots, slot, val[slot]);
 | 
						|
			else if (region == INT_REGION)
 | 
						|
				REG_WR_INT_VECT(marb_foo, regi_marb_foo,
 | 
						|
					rw_intm_slots, slot, val[slot]);
 | 
						|
		} else {
 | 
						|
			REG_WR_INT_VECT(marb_bar, regi_marb_bar,
 | 
						|
				rw_ddr2_slots, slot, val[slot]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
extern char _stext, _etext;
 | 
						|
 | 
						|
static void crisv32_arbiter_init(void)
 | 
						|
{
 | 
						|
	static int initialized;
 | 
						|
 | 
						|
	if (initialized)
 | 
						|
		return;
 | 
						|
 | 
						|
	initialized = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CPU caches are always set to active, but with zero
 | 
						|
	 * bandwidth allocated. It should be ok to allocate zero
 | 
						|
	 * bandwidth for the caches, because DMA for other channels
 | 
						|
	 * will supposedly finish, once their programmed amount is
 | 
						|
	 * done, and then the caches will get access according to the
 | 
						|
	 * "fixed scheme" for unclaimed slots. Though, if for some
 | 
						|
	 * use-case somewhere, there's a maximum CPU latency for
 | 
						|
	 * e.g. some interrupt, we have to start allocating specific
 | 
						|
	 * bandwidth for the CPU caches too.
 | 
						|
	 */
 | 
						|
	arbiters[0].active_clients[EXT_REGION][11] = 1;
 | 
						|
	arbiters[0].active_clients[EXT_REGION][12] = 1;
 | 
						|
	crisv32_arbiter_config(0, EXT_REGION, 0);
 | 
						|
	crisv32_arbiter_config(0, INT_REGION, 0);
 | 
						|
	crisv32_arbiter_config(1, EXT_REGION, 0);
 | 
						|
 | 
						|
	if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq,
 | 
						|
			IRQF_DISABLED, "arbiter", NULL))
 | 
						|
		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
 | 
						|
 | 
						|
	if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq,
 | 
						|
			IRQF_DISABLED, "arbiter", NULL))
 | 
						|
		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
 | 
						|
 | 
						|
#ifndef CONFIG_ETRAX_KGDB
 | 
						|
	/* Global watch for writes to kernel text segment. */
 | 
						|
	crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
 | 
						|
		MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients),
 | 
						|
			      arbiter_all_write, NULL);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Set up max burst sizes by default */
 | 
						|
	REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3);
 | 
						|
	REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3);
 | 
						|
	REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3);
 | 
						|
	REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3);
 | 
						|
	REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3);
 | 
						|
	REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3);
 | 
						|
	REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3);
 | 
						|
	REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3);
 | 
						|
	REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3);
 | 
						|
}
 | 
						|
 | 
						|
int crisv32_arbiter_allocate_bandwidth(int client, int region,
 | 
						|
				      unsigned long bandwidth)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int total_assigned = 0;
 | 
						|
	int total_clients = 0;
 | 
						|
	int req;
 | 
						|
	int arbiter = 0;
 | 
						|
 | 
						|
	crisv32_arbiter_init();
 | 
						|
 | 
						|
	if (client & 0xffff0000) {
 | 
						|
		arbiter = 1;
 | 
						|
		client >>= 16;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < arbiters[arbiter].nbr_clients; i++) {
 | 
						|
		total_assigned += arbiters[arbiter].requested_slots[region][i];
 | 
						|
		total_clients += arbiters[arbiter].active_clients[region][i];
 | 
						|
	}
 | 
						|
 | 
						|
	/* Avoid division by 0 for 0-bandwidth requests. */
 | 
						|
	req = bandwidth == 0
 | 
						|
		? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We make sure that there are enough slots only for non-zero
 | 
						|
	 * requests. Requesting 0 bandwidth *may* allocate slots,
 | 
						|
	 * though if all bandwidth is allocated, such a client won't
 | 
						|
	 * get any and will have to rely on getting memory access
 | 
						|
	 * according to the fixed scheme that's the default when one
 | 
						|
	 * of the slot-allocated clients doesn't claim their slot.
 | 
						|
	 */
 | 
						|
	if (total_assigned + req > NBR_OF_SLOTS)
 | 
						|
	   return -ENOMEM;
 | 
						|
 | 
						|
	arbiters[arbiter].active_clients[region][client] = 1;
 | 
						|
	arbiters[arbiter].requested_slots[region][client] = req;
 | 
						|
	crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
 | 
						|
 | 
						|
	/* Propagate allocation from foo to bar */
 | 
						|
	if (arbiter == 0)
 | 
						|
		crisv32_arbiter_allocate_bandwidth(8 << 16,
 | 
						|
			EXT_REGION, bandwidth);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Main entry for bandwidth deallocation.
 | 
						|
 *
 | 
						|
 * Strictly speaking, for a somewhat constant set of clients where
 | 
						|
 * each client gets a constant bandwidth and is just enabled or
 | 
						|
 * disabled (somewhat dynamically), no action is necessary here to
 | 
						|
 * avoid starvation for non-zero-allocation clients, as the allocated
 | 
						|
 * slots will just be unused. However, handing out those unused slots
 | 
						|
 * to active clients avoids needless latency if the "fixed scheme"
 | 
						|
 * would give unclaimed slots to an eager low-index client.
 | 
						|
 */
 | 
						|
 | 
						|
void crisv32_arbiter_deallocate_bandwidth(int client, int region)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int total_assigned = 0;
 | 
						|
	int arbiter = 0;
 | 
						|
 | 
						|
	if (client & 0xffff0000)
 | 
						|
		arbiter = 1;
 | 
						|
 | 
						|
	arbiters[arbiter].requested_slots[region][client] = 0;
 | 
						|
	arbiters[arbiter].active_clients[region][client] = 0;
 | 
						|
 | 
						|
	for (i = 0; i < arbiters[arbiter].nbr_clients; i++)
 | 
						|
		total_assigned += arbiters[arbiter].requested_slots[region][i];
 | 
						|
 | 
						|
	crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
 | 
						|
}
 | 
						|
 | 
						|
int crisv32_arbiter_watch(unsigned long start, unsigned long size,
 | 
						|
			  unsigned long clients, unsigned long accesses,
 | 
						|
			  watch_callback *cb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int arbiter;
 | 
						|
	int used[2];
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	crisv32_arbiter_init();
 | 
						|
 | 
						|
	if (start > 0x80000000) {
 | 
						|
		printk(KERN_ERR "Arbiter: %lX doesn't look like a "
 | 
						|
			"physical address", start);
 | 
						|
		return -EFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&arbiter_lock);
 | 
						|
 | 
						|
	if (clients & 0xffff)
 | 
						|
		used[0] = 1;
 | 
						|
	if (clients & 0xffff0000)
 | 
						|
		used[1] = 1;
 | 
						|
 | 
						|
	for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
 | 
						|
		if (!used[arbiter])
 | 
						|
			continue;
 | 
						|
 | 
						|
		for (i = 0; i < NUMBER_OF_BP; i++) {
 | 
						|
			if (!watches[arbiter][i].used) {
 | 
						|
				unsigned intr_mask;
 | 
						|
				if (arbiter)
 | 
						|
					intr_mask = REG_RD_INT(marb_bar,
 | 
						|
						regi_marb_bar, rw_intr_mask);
 | 
						|
				else
 | 
						|
					intr_mask = REG_RD_INT(marb_foo,
 | 
						|
						regi_marb_foo, rw_intr_mask);
 | 
						|
 | 
						|
				watches[arbiter][i].used = 1;
 | 
						|
				watches[arbiter][i].start = start;
 | 
						|
				watches[arbiter][i].end = start + size;
 | 
						|
				watches[arbiter][i].cb = cb;
 | 
						|
 | 
						|
				ret |= (i + 1) << (arbiter + 8);
 | 
						|
				if (arbiter) {
 | 
						|
					REG_WR_INT(marb_bar_bp,
 | 
						|
						watches[arbiter][i].instance,
 | 
						|
						rw_first_addr,
 | 
						|
						watches[arbiter][i].start);
 | 
						|
					REG_WR_INT(marb_bar_bp,
 | 
						|
						watches[arbiter][i].instance,
 | 
						|
						rw_last_addr,
 | 
						|
						watches[arbiter][i].end);
 | 
						|
					REG_WR_INT(marb_bar_bp,
 | 
						|
						watches[arbiter][i].instance,
 | 
						|
						rw_op, accesses);
 | 
						|
					REG_WR_INT(marb_bar_bp,
 | 
						|
						watches[arbiter][i].instance,
 | 
						|
						rw_clients,
 | 
						|
						clients & 0xffff);
 | 
						|
				} else {
 | 
						|
					REG_WR_INT(marb_foo_bp,
 | 
						|
						watches[arbiter][i].instance,
 | 
						|
						rw_first_addr,
 | 
						|
						watches[arbiter][i].start);
 | 
						|
					REG_WR_INT(marb_foo_bp,
 | 
						|
						watches[arbiter][i].instance,
 | 
						|
						rw_last_addr,
 | 
						|
						watches[arbiter][i].end);
 | 
						|
					REG_WR_INT(marb_foo_bp,
 | 
						|
						watches[arbiter][i].instance,
 | 
						|
						rw_op, accesses);
 | 
						|
					REG_WR_INT(marb_foo_bp,
 | 
						|
						watches[arbiter][i].instance,
 | 
						|
						rw_clients, clients >> 16);
 | 
						|
				}
 | 
						|
 | 
						|
				if (i == 0)
 | 
						|
					intr_mask |= 1;
 | 
						|
				else if (i == 1)
 | 
						|
					intr_mask |= 2;
 | 
						|
				else if (i == 2)
 | 
						|
					intr_mask |= 4;
 | 
						|
				else if (i == 3)
 | 
						|
					intr_mask |= 8;
 | 
						|
 | 
						|
				if (arbiter)
 | 
						|
					REG_WR_INT(marb_bar, regi_marb_bar,
 | 
						|
						rw_intr_mask, intr_mask);
 | 
						|
				else
 | 
						|
					REG_WR_INT(marb_foo, regi_marb_foo,
 | 
						|
						rw_intr_mask, intr_mask);
 | 
						|
 | 
						|
				spin_unlock(&arbiter_lock);
 | 
						|
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(&arbiter_lock);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
	else
 | 
						|
		return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
int crisv32_arbiter_unwatch(int id)
 | 
						|
{
 | 
						|
	int arbiter;
 | 
						|
	int intr_mask;
 | 
						|
 | 
						|
	crisv32_arbiter_init();
 | 
						|
 | 
						|
	spin_lock(&arbiter_lock);
 | 
						|
 | 
						|
	for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
 | 
						|
		int id2;
 | 
						|
 | 
						|
		if (arbiter)
 | 
						|
			intr_mask = REG_RD_INT(marb_bar, regi_marb_bar,
 | 
						|
				rw_intr_mask);
 | 
						|
		else
 | 
						|
			intr_mask = REG_RD_INT(marb_foo, regi_marb_foo,
 | 
						|
				rw_intr_mask);
 | 
						|
 | 
						|
		id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8);
 | 
						|
		if (id2 == 0)
 | 
						|
			continue;
 | 
						|
		id2--;
 | 
						|
		if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) {
 | 
						|
			spin_unlock(&arbiter_lock);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		memset(&watches[arbiter][id2], 0,
 | 
						|
			sizeof(struct crisv32_watch_entry));
 | 
						|
 | 
						|
		if (id2 == 0)
 | 
						|
			intr_mask &= ~1;
 | 
						|
		else if (id2 == 1)
 | 
						|
			intr_mask &= ~2;
 | 
						|
		else if (id2 == 2)
 | 
						|
			intr_mask &= ~4;
 | 
						|
		else if (id2 == 3)
 | 
						|
			intr_mask &= ~8;
 | 
						|
 | 
						|
		if (arbiter)
 | 
						|
			REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask,
 | 
						|
				intr_mask);
 | 
						|
		else
 | 
						|
			REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask,
 | 
						|
				intr_mask);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&arbiter_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
extern void show_registers(struct pt_regs *regs);
 | 
						|
 | 
						|
 | 
						|
static irqreturn_t
 | 
						|
crisv32_foo_arbiter_irq(int irq, void *dev_id)
 | 
						|
{
 | 
						|
	reg_marb_foo_r_masked_intr masked_intr =
 | 
						|
		REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
 | 
						|
	reg_marb_foo_bp_r_brk_clients r_clients;
 | 
						|
	reg_marb_foo_bp_r_brk_addr r_addr;
 | 
						|
	reg_marb_foo_bp_r_brk_op r_op;
 | 
						|
	reg_marb_foo_bp_r_brk_first_client r_first;
 | 
						|
	reg_marb_foo_bp_r_brk_size r_size;
 | 
						|
	reg_marb_foo_bp_rw_ack ack = {0};
 | 
						|
	reg_marb_foo_rw_ack_intr ack_intr = {
 | 
						|
		.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
 | 
						|
	};
 | 
						|
	struct crisv32_watch_entry *watch;
 | 
						|
	unsigned arbiter = (unsigned)dev_id;
 | 
						|
 | 
						|
	masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
 | 
						|
 | 
						|
	if (masked_intr.bp0)
 | 
						|
		watch = &watches[arbiter][0];
 | 
						|
	else if (masked_intr.bp1)
 | 
						|
		watch = &watches[arbiter][1];
 | 
						|
	else if (masked_intr.bp2)
 | 
						|
		watch = &watches[arbiter][2];
 | 
						|
	else if (masked_intr.bp3)
 | 
						|
		watch = &watches[arbiter][3];
 | 
						|
	else
 | 
						|
		return IRQ_NONE;
 | 
						|
 | 
						|
	/* Retrieve all useful information and print it. */
 | 
						|
	r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients);
 | 
						|
	r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr);
 | 
						|
	r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op);
 | 
						|
	r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client);
 | 
						|
	r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size);
 | 
						|
 | 
						|
	printk(KERN_DEBUG "Arbiter IRQ\n");
 | 
						|
	printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients),
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr),
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op),
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first),
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size));
 | 
						|
 | 
						|
	REG_WR(marb_foo_bp, watch->instance, rw_ack, ack);
 | 
						|
	REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr);
 | 
						|
 | 
						|
	printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs());
 | 
						|
 | 
						|
	if (watch->cb)
 | 
						|
		watch->cb();
 | 
						|
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
static irqreturn_t
 | 
						|
crisv32_bar_arbiter_irq(int irq, void *dev_id)
 | 
						|
{
 | 
						|
	reg_marb_bar_r_masked_intr masked_intr =
 | 
						|
		REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
 | 
						|
	reg_marb_bar_bp_r_brk_clients r_clients;
 | 
						|
	reg_marb_bar_bp_r_brk_addr r_addr;
 | 
						|
	reg_marb_bar_bp_r_brk_op r_op;
 | 
						|
	reg_marb_bar_bp_r_brk_first_client r_first;
 | 
						|
	reg_marb_bar_bp_r_brk_size r_size;
 | 
						|
	reg_marb_bar_bp_rw_ack ack = {0};
 | 
						|
	reg_marb_bar_rw_ack_intr ack_intr = {
 | 
						|
		.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
 | 
						|
	};
 | 
						|
	struct crisv32_watch_entry *watch;
 | 
						|
	unsigned arbiter = (unsigned)dev_id;
 | 
						|
 | 
						|
	masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
 | 
						|
 | 
						|
	if (masked_intr.bp0)
 | 
						|
		watch = &watches[arbiter][0];
 | 
						|
	else if (masked_intr.bp1)
 | 
						|
		watch = &watches[arbiter][1];
 | 
						|
	else if (masked_intr.bp2)
 | 
						|
		watch = &watches[arbiter][2];
 | 
						|
	else if (masked_intr.bp3)
 | 
						|
		watch = &watches[arbiter][3];
 | 
						|
	else
 | 
						|
		return IRQ_NONE;
 | 
						|
 | 
						|
	/* Retrieve all useful information and print it. */
 | 
						|
	r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients);
 | 
						|
	r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr);
 | 
						|
	r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op);
 | 
						|
	r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client);
 | 
						|
	r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size);
 | 
						|
 | 
						|
	printk(KERN_DEBUG "Arbiter IRQ\n");
 | 
						|
	printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients),
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr),
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op),
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first),
 | 
						|
	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size));
 | 
						|
 | 
						|
	REG_WR(marb_bar_bp, watch->instance, rw_ack, ack);
 | 
						|
	REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr);
 | 
						|
 | 
						|
	printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs()->erp);
 | 
						|
 | 
						|
	if (watch->cb)
 | 
						|
		watch->cb();
 | 
						|
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 |