437 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			437 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Physical mapping layer for MTD using the Axis partitiontable format
 | 
						|
 *
 | 
						|
 * Copyright (c) 2001, 2002 Axis Communications AB
 | 
						|
 *
 | 
						|
 * This file is under the GPL.
 | 
						|
 *
 | 
						|
 * First partition is always sector 0 regardless of if we find a partitiontable
 | 
						|
 * or not. In the start of the next sector, there can be a partitiontable that
 | 
						|
 * tells us what other partitions to define. If there isn't, we use a default
 | 
						|
 * partition split defined below.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <linux/mtd/concat.h>
 | 
						|
#include <linux/mtd/map.h>
 | 
						|
#include <linux/mtd/mtd.h>
 | 
						|
#include <linux/mtd/mtdram.h>
 | 
						|
#include <linux/mtd/partitions.h>
 | 
						|
 | 
						|
#include <asm/axisflashmap.h>
 | 
						|
#include <asm/mmu.h>
 | 
						|
#include <arch/sv_addr_ag.h>
 | 
						|
 | 
						|
#ifdef CONFIG_CRIS_LOW_MAP
 | 
						|
#define FLASH_UNCACHED_ADDR  KSEG_8
 | 
						|
#define FLASH_CACHED_ADDR    KSEG_5
 | 
						|
#else
 | 
						|
#define FLASH_UNCACHED_ADDR  KSEG_E
 | 
						|
#define FLASH_CACHED_ADDR    KSEG_F
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
 | 
						|
#define flash_data __u8
 | 
						|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
 | 
						|
#define flash_data __u16
 | 
						|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
 | 
						|
#define flash_data __u32
 | 
						|
#endif
 | 
						|
 | 
						|
/* From head.S */
 | 
						|
extern unsigned long romfs_start, romfs_length, romfs_in_flash;
 | 
						|
 | 
						|
/* The master mtd for the entire flash. */
 | 
						|
struct mtd_info* axisflash_mtd = NULL;
 | 
						|
 | 
						|
/* Map driver functions. */
 | 
						|
 | 
						|
static map_word flash_read(struct map_info *map, unsigned long ofs)
 | 
						|
{
 | 
						|
	map_word tmp;
 | 
						|
	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
 | 
						|
	return tmp;
 | 
						|
}
 | 
						|
 | 
						|
static void flash_copy_from(struct map_info *map, void *to,
 | 
						|
			    unsigned long from, ssize_t len)
 | 
						|
{
 | 
						|
	memcpy(to, (void *)(map->map_priv_1 + from), len);
 | 
						|
}
 | 
						|
 | 
						|
static void flash_write(struct map_info *map, map_word d, unsigned long adr)
 | 
						|
{
 | 
						|
	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The map for chip select e0.
 | 
						|
 *
 | 
						|
 * We run into tricky coherence situations if we mix cached with uncached
 | 
						|
 * accesses to we only use the uncached version here.
 | 
						|
 *
 | 
						|
 * The size field is the total size where the flash chips may be mapped on the
 | 
						|
 * chip select. MTD probes should find all devices there and it does not matter
 | 
						|
 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
 | 
						|
 * probes will ignore them.
 | 
						|
 *
 | 
						|
 * The start address in map_priv_1 is in virtual memory so we cannot use
 | 
						|
 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
 | 
						|
 * address of cse0.
 | 
						|
 */
 | 
						|
static struct map_info map_cse0 = {
 | 
						|
	.name = "cse0",
 | 
						|
	.size = MEM_CSE0_SIZE,
 | 
						|
	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
 | 
						|
	.read = flash_read,
 | 
						|
	.copy_from = flash_copy_from,
 | 
						|
	.write = flash_write,
 | 
						|
	.map_priv_1 = FLASH_UNCACHED_ADDR
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * The map for chip select e1.
 | 
						|
 *
 | 
						|
 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
 | 
						|
 * address, but there isn't.
 | 
						|
 */
 | 
						|
static struct map_info map_cse1 = {
 | 
						|
	.name = "cse1",
 | 
						|
	.size = MEM_CSE1_SIZE,
 | 
						|
	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
 | 
						|
	.read = flash_read,
 | 
						|
	.copy_from = flash_copy_from,
 | 
						|
	.write = flash_write,
 | 
						|
	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
 | 
						|
};
 | 
						|
 | 
						|
/* If no partition-table was found, we use this default-set. */
 | 
						|
#define MAX_PARTITIONS         7
 | 
						|
#define NUM_DEFAULT_PARTITIONS 3
 | 
						|
 | 
						|
/*
 | 
						|
 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
 | 
						|
 * size of one flash block and "filesystem"-partition needs 5 blocks to be able
 | 
						|
 * to use JFFS.
 | 
						|
 */
 | 
						|
static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
 | 
						|
	{
 | 
						|
		.name = "boot firmware",
 | 
						|
		.size = CONFIG_ETRAX_PTABLE_SECTOR,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "kernel",
 | 
						|
		.size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
 | 
						|
		.offset = CONFIG_ETRAX_PTABLE_SECTOR
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "filesystem",
 | 
						|
		.size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
 | 
						|
		.offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
/* Initialize the ones normally used. */
 | 
						|
static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
 | 
						|
	{
 | 
						|
		.name = "part0",
 | 
						|
		.size = CONFIG_ETRAX_PTABLE_SECTOR,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part1",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part2",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part3",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part4",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part5",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part6",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 | 
						|
/* Main flash device */
 | 
						|
static struct mtd_partition main_partition = {
 | 
						|
	.name = "main",
 | 
						|
	.size = 0,
 | 
						|
	.offset = 0
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
 | 
						|
 * chips in that order (because the amd_flash-driver is faster).
 | 
						|
 */
 | 
						|
static struct mtd_info *probe_cs(struct map_info *map_cs)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd_cs = NULL;
 | 
						|
 | 
						|
	printk(KERN_INFO
 | 
						|
               "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
 | 
						|
	       map_cs->name, map_cs->size, map_cs->map_priv_1);
 | 
						|
 | 
						|
#ifdef CONFIG_MTD_CFI
 | 
						|
	mtd_cs = do_map_probe("cfi_probe", map_cs);
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_MTD_JEDECPROBE
 | 
						|
	if (!mtd_cs)
 | 
						|
		mtd_cs = do_map_probe("jedec_probe", map_cs);
 | 
						|
#endif
 | 
						|
 | 
						|
	return mtd_cs;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Probe each chip select individually for flash chips. If there are chips on
 | 
						|
 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
 | 
						|
 * so that MTD partitions can cross chip boundries.
 | 
						|
 *
 | 
						|
 * The only known restriction to how you can mount your chips is that each
 | 
						|
 * chip select must hold similar flash chips. But you need external hardware
 | 
						|
 * to do that anyway and you can put totally different chips on cse0 and cse1
 | 
						|
 * so it isn't really much of a restriction.
 | 
						|
 */
 | 
						|
static struct mtd_info *flash_probe(void)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd_cse0;
 | 
						|
	struct mtd_info *mtd_cse1;
 | 
						|
	struct mtd_info *mtd_cse;
 | 
						|
 | 
						|
	mtd_cse0 = probe_cs(&map_cse0);
 | 
						|
	mtd_cse1 = probe_cs(&map_cse1);
 | 
						|
 | 
						|
	if (!mtd_cse0 && !mtd_cse1) {
 | 
						|
		/* No chip found. */
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (mtd_cse0 && mtd_cse1) {
 | 
						|
#ifdef CONFIG_MTD_CONCAT
 | 
						|
		struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
 | 
						|
 | 
						|
		/* Since the concatenation layer adds a small overhead we
 | 
						|
		 * could try to figure out if the chips in cse0 and cse1 are
 | 
						|
		 * identical and reprobe the whole cse0+cse1 window. But since
 | 
						|
		 * flash chips are slow, the overhead is relatively small.
 | 
						|
		 * So we use the MTD concatenation layer instead of further
 | 
						|
		 * complicating the probing procedure.
 | 
						|
		 */
 | 
						|
		mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
 | 
						|
					    "cse0+cse1");
 | 
						|
#else
 | 
						|
		printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
 | 
						|
		       "(mis)configuration!\n", map_cse0.name, map_cse1.name);
 | 
						|
		mtd_cse = NULL;
 | 
						|
#endif
 | 
						|
		if (!mtd_cse) {
 | 
						|
			printk(KERN_ERR "%s and %s: Concatenation failed!\n",
 | 
						|
			       map_cse0.name, map_cse1.name);
 | 
						|
 | 
						|
			/* The best we can do now is to only use what we found
 | 
						|
			 * at cse0.
 | 
						|
			 */
 | 
						|
			mtd_cse = mtd_cse0;
 | 
						|
			map_destroy(mtd_cse1);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
 | 
						|
	}
 | 
						|
 | 
						|
	return mtd_cse;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Probe the flash chip(s) and, if it succeeds, read the partition-table
 | 
						|
 * and register the partitions with MTD.
 | 
						|
 */
 | 
						|
static int __init init_axis_flash(void)
 | 
						|
{
 | 
						|
	struct mtd_info *mymtd;
 | 
						|
	int err = 0;
 | 
						|
	int pidx = 0;
 | 
						|
	struct partitiontable_head *ptable_head = NULL;
 | 
						|
	struct partitiontable_entry *ptable;
 | 
						|
	int use_default_ptable = 1; /* Until proven otherwise. */
 | 
						|
	const char pmsg[] = "  /dev/flash%d at 0x%08x, size 0x%08x\n";
 | 
						|
 | 
						|
	if (!(mymtd = flash_probe())) {
 | 
						|
		/* There's no reason to use this module if no flash chip can
 | 
						|
		 * be identified. Make sure that's understood.
 | 
						|
		 */
 | 
						|
		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
 | 
						|
	} else {
 | 
						|
		printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
 | 
						|
		       mymtd->name, mymtd->size);
 | 
						|
		axisflash_mtd = mymtd;
 | 
						|
	}
 | 
						|
 | 
						|
	if (mymtd) {
 | 
						|
		mymtd->owner = THIS_MODULE;
 | 
						|
		ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
 | 
						|
			      CONFIG_ETRAX_PTABLE_SECTOR +
 | 
						|
			      PARTITION_TABLE_OFFSET);
 | 
						|
	}
 | 
						|
	pidx++;  /* First partition is always set to the default. */
 | 
						|
 | 
						|
	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
 | 
						|
	    && (ptable_head->size <
 | 
						|
		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
 | 
						|
		PARTITIONTABLE_END_MARKER_SIZE))
 | 
						|
	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
 | 
						|
				  ptable_head->size -
 | 
						|
				  PARTITIONTABLE_END_MARKER_SIZE)
 | 
						|
		== PARTITIONTABLE_END_MARKER)) {
 | 
						|
		/* Looks like a start, sane length and end of a
 | 
						|
		 * partition table, lets check csum etc.
 | 
						|
		 */
 | 
						|
		int ptable_ok = 0;
 | 
						|
		struct partitiontable_entry *max_addr =
 | 
						|
			(struct partitiontable_entry *)
 | 
						|
			((unsigned long)ptable_head + sizeof(*ptable_head) +
 | 
						|
			 ptable_head->size);
 | 
						|
		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
 | 
						|
		unsigned char *p;
 | 
						|
		unsigned long csum = 0;
 | 
						|
 | 
						|
		ptable = (struct partitiontable_entry *)
 | 
						|
			((unsigned long)ptable_head + sizeof(*ptable_head));
 | 
						|
 | 
						|
		/* Lets be PARANOID, and check the checksum. */
 | 
						|
		p = (unsigned char*) ptable;
 | 
						|
 | 
						|
		while (p <= (unsigned char*)max_addr) {
 | 
						|
			csum += *p++;
 | 
						|
			csum += *p++;
 | 
						|
			csum += *p++;
 | 
						|
			csum += *p++;
 | 
						|
		}
 | 
						|
		ptable_ok = (csum == ptable_head->checksum);
 | 
						|
 | 
						|
		/* Read the entries and use/show the info.  */
 | 
						|
		printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
 | 
						|
		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
 | 
						|
		       max_addr);
 | 
						|
 | 
						|
		/* We have found a working bootblock.  Now read the
 | 
						|
		 * partition table.  Scan the table.  It ends when
 | 
						|
		 * there is 0xffffffff, that is, empty flash.
 | 
						|
		 */
 | 
						|
		while (ptable_ok
 | 
						|
		       && ptable->offset != 0xffffffff
 | 
						|
		       && ptable < max_addr
 | 
						|
		       && pidx < MAX_PARTITIONS) {
 | 
						|
 | 
						|
			axis_partitions[pidx].offset = offset + ptable->offset;
 | 
						|
			axis_partitions[pidx].size = ptable->size;
 | 
						|
 | 
						|
			printk(pmsg, pidx, axis_partitions[pidx].offset,
 | 
						|
			       axis_partitions[pidx].size);
 | 
						|
			pidx++;
 | 
						|
			ptable++;
 | 
						|
		}
 | 
						|
		use_default_ptable = !ptable_ok;
 | 
						|
	}
 | 
						|
 | 
						|
	if (romfs_in_flash) {
 | 
						|
		/* Add an overlapping device for the root partition (romfs). */
 | 
						|
 | 
						|
		axis_partitions[pidx].name = "romfs";
 | 
						|
		axis_partitions[pidx].size = romfs_length;
 | 
						|
		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
 | 
						|
		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
 | 
						|
 | 
						|
		printk(KERN_INFO
 | 
						|
                       " Adding readonly flash partition for romfs image:\n");
 | 
						|
		printk(pmsg, pidx, axis_partitions[pidx].offset,
 | 
						|
		       axis_partitions[pidx].size);
 | 
						|
		pidx++;
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 | 
						|
	if (mymtd) {
 | 
						|
		main_partition.size = mymtd->size;
 | 
						|
		err = add_mtd_partitions(mymtd, &main_partition, 1);
 | 
						|
		if (err)
 | 
						|
			panic("axisflashmap: Could not initialize "
 | 
						|
			      "partition for whole main mtd device!\n");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
        if (mymtd) {
 | 
						|
		if (use_default_ptable) {
 | 
						|
			printk(KERN_INFO " Using default partition table.\n");
 | 
						|
			err = add_mtd_partitions(mymtd, axis_default_partitions,
 | 
						|
						 NUM_DEFAULT_PARTITIONS);
 | 
						|
		} else {
 | 
						|
			err = add_mtd_partitions(mymtd, axis_partitions, pidx);
 | 
						|
		}
 | 
						|
 | 
						|
		if (err)
 | 
						|
			panic("axisflashmap could not add MTD partitions!\n");
 | 
						|
	}
 | 
						|
 | 
						|
	if (!romfs_in_flash) {
 | 
						|
		/* Create an RAM device for the root partition (romfs). */
 | 
						|
 | 
						|
#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
 | 
						|
		/* No use trying to boot this kernel from RAM. Panic! */
 | 
						|
		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
 | 
						|
		       "device due to kernel (mis)configuration!\n");
 | 
						|
		panic("This kernel cannot boot from RAM!\n");
 | 
						|
#else
 | 
						|
		struct mtd_info *mtd_ram;
 | 
						|
 | 
						|
		mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
 | 
						|
		if (!mtd_ram)
 | 
						|
			panic("axisflashmap couldn't allocate memory for "
 | 
						|
			      "mtd_info!\n");
 | 
						|
 | 
						|
		printk(KERN_INFO " Adding RAM partition for romfs image:\n");
 | 
						|
		printk(pmsg, pidx, (unsigned)romfs_start,
 | 
						|
			(unsigned)romfs_length);
 | 
						|
 | 
						|
		err = mtdram_init_device(mtd_ram,
 | 
						|
			(void *)romfs_start,
 | 
						|
			romfs_length,
 | 
						|
			"romfs");
 | 
						|
		if (err)
 | 
						|
			panic("axisflashmap could not initialize MTD RAM "
 | 
						|
			      "device!\n");
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/* This adds the above to the kernels init-call chain. */
 | 
						|
module_init(init_axis_flash);
 | 
						|
 | 
						|
EXPORT_SYMBOL(axisflash_mtd);
 |