satip-axe/kernel/drivers/net/tokenring/tms380tr.c
2015-03-26 17:24:57 +01:00

2405 lines
63 KiB
C

/*
* tms380tr.c: A network driver library for Texas Instruments TMS380-based
* Token Ring Adapters.
*
* Originally sktr.c: Written 1997 by Christoph Goos
*
* A fine result of the Linux Systems Network Architecture Project.
* http://www.linux-sna.org
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* The following modules are currently available for card support:
* - tmspci (Generic PCI card support)
* - abyss (Madge PCI support)
* - tmsisa (SysKonnect TR4/16 ISA)
*
* Sources:
* - The hardware related parts of this driver are take from
* the SysKonnect Token Ring driver for Windows NT.
* - I used the IBM Token Ring driver 'ibmtr.c' as a base for this
* driver, as well as the 'skeleton.c' driver by Donald Becker.
* - Also various other drivers in the linux source tree were taken
* as samples for some tasks.
* - TI TMS380 Second-Generation Token Ring User's Guide
* - TI datasheets for respective chips
* - David Hein at Texas Instruments
* - Various Madge employees
*
* Maintainer(s):
* JS Jay Schulist jschlst@samba.org
* CG Christoph Goos cgoos@syskonnect.de
* AF Adam Fritzler
* MLP Mike Phillips phillim@amtrak.com
* JF Jochen Friedrich jochen@scram.de
*
* Modification History:
* 29-Aug-97 CG Created
* 04-Apr-98 CG Fixed problems caused by tok_timer_check
* 10-Apr-98 CG Fixed lockups at cable disconnection
* 27-May-98 JS Formated to Linux Kernel Format
* 31-May-98 JS Hacked in PCI support
* 16-Jun-98 JS Modulized for multiple cards with one driver
* Sep-99 AF Renamed to tms380tr (supports more than SK's)
* 23-Sep-99 AF Added Compaq and Thomas-Conrad PCI support
* Fixed a bug causing double copies on PCI
* Fixed for new multicast stuff (2.2/2.3)
* 25-Sep-99 AF Uped TPL_NUM from 3 to 9
* Removed extraneous 'No free TPL'
* 22-Dec-99 AF Added Madge PCI Mk2 support and generalized
* parts of the initilization procedure.
* 30-Dec-99 AF Turned tms380tr into a library ala 8390.
* Madge support is provided in the abyss module
* Generic PCI support is in the tmspci module.
* 30-Nov-00 JF Updated PCI code to support IO MMU via
* pci_map_static(). Alpha uses this MMU for ISA
* as well.
* 14-Jan-01 JF Fix DMA on ifdown/ifup sequences. Some
* cleanup.
* 13-Jan-02 JF Add spinlock to fix race condition.
* 09-Nov-02 JF Fixed printks to not SPAM the console during
* normal operation.
* 30-Dec-02 JF Removed incorrect __init from
* tms380tr_init_card.
* 22-Jul-05 JF Converted to dma-mapping.
*
* To do:
* 1. Multi/Broadcast packet handling (this may have fixed itself)
* 2. Write a sktrisa module that includes the old ISA support (done)
* 3. Allow modules to load their own microcode
* 4. Speed up the BUD process -- freezing the kernel for 3+sec is
* quite unacceptable.
* 5. Still a few remaining stalls when the cable is unplugged.
*/
#ifdef MODULE
static const char version[] = "tms380tr.c: v1.10 30/12/2002 by Christoph Goos, Adam Fritzler\n";
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/trdevice.h>
#include <linux/firmware.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "tms380tr.h" /* Our Stuff */
/* Use 0 for production, 1 for verification, 2 for debug, and
* 3 for very verbose debug.
*/
#ifndef TMS380TR_DEBUG
#define TMS380TR_DEBUG 0
#endif
static unsigned int tms380tr_debug = TMS380TR_DEBUG;
/* Index to functions, as function prototypes.
* Alphabetical by function name.
*/
/* "A" */
/* "B" */
static int tms380tr_bringup_diags(struct net_device *dev);
/* "C" */
static void tms380tr_cancel_tx_queue(struct net_local* tp);
static int tms380tr_chipset_init(struct net_device *dev);
static void tms380tr_chk_irq(struct net_device *dev);
static void tms380tr_chk_outstanding_cmds(struct net_device *dev);
static void tms380tr_chk_src_addr(unsigned char *frame, unsigned char *hw_addr);
static unsigned char tms380tr_chk_ssb(struct net_local *tp, unsigned short IrqType);
int tms380tr_close(struct net_device *dev);
static void tms380tr_cmd_status_irq(struct net_device *dev);
/* "D" */
static void tms380tr_disable_interrupts(struct net_device *dev);
#if TMS380TR_DEBUG > 0
static void tms380tr_dump(unsigned char *Data, int length);
#endif
/* "E" */
static void tms380tr_enable_interrupts(struct net_device *dev);
static void tms380tr_exec_cmd(struct net_device *dev, unsigned short Command);
static void tms380tr_exec_sifcmd(struct net_device *dev, unsigned int WriteValue);
/* "F" */
/* "G" */
static struct net_device_stats *tms380tr_get_stats(struct net_device *dev);
/* "H" */
static netdev_tx_t tms380tr_hardware_send_packet(struct sk_buff *skb,
struct net_device *dev);
/* "I" */
static int tms380tr_init_adapter(struct net_device *dev);
static void tms380tr_init_ipb(struct net_local *tp);
static void tms380tr_init_net_local(struct net_device *dev);
static void tms380tr_init_opb(struct net_device *dev);
/* "M" */
/* "O" */
int tms380tr_open(struct net_device *dev);
static void tms380tr_open_adapter(struct net_device *dev);
/* "P" */
/* "R" */
static void tms380tr_rcv_status_irq(struct net_device *dev);
static int tms380tr_read_ptr(struct net_device *dev);
static void tms380tr_read_ram(struct net_device *dev, unsigned char *Data,
unsigned short Address, int Length);
static int tms380tr_reset_adapter(struct net_device *dev);
static void tms380tr_reset_interrupt(struct net_device *dev);
static void tms380tr_ring_status_irq(struct net_device *dev);
/* "S" */
static netdev_tx_t tms380tr_send_packet(struct sk_buff *skb,
struct net_device *dev);
static void tms380tr_set_multicast_list(struct net_device *dev);
static int tms380tr_set_mac_address(struct net_device *dev, void *addr);
/* "T" */
static void tms380tr_timer_chk(unsigned long data);
static void tms380tr_timer_end_wait(unsigned long data);
static void tms380tr_tx_status_irq(struct net_device *dev);
/* "U" */
static void tms380tr_update_rcv_stats(struct net_local *tp,
unsigned char DataPtr[], unsigned int Length);
/* "W" */
void tms380tr_wait(unsigned long time);
static void tms380tr_write_rpl_status(RPL *rpl, unsigned int Status);
static void tms380tr_write_tpl_status(TPL *tpl, unsigned int Status);
#define SIFREADB(reg) \
(((struct net_local *)netdev_priv(dev))->sifreadb(dev, reg))
#define SIFWRITEB(val, reg) \
(((struct net_local *)netdev_priv(dev))->sifwriteb(dev, val, reg))
#define SIFREADW(reg) \
(((struct net_local *)netdev_priv(dev))->sifreadw(dev, reg))
#define SIFWRITEW(val, reg) \
(((struct net_local *)netdev_priv(dev))->sifwritew(dev, val, reg))
#if 0 /* TMS380TR_DEBUG > 0 */
static int madgemc_sifprobe(struct net_device *dev)
{
unsigned char old, chk1, chk2;
old = SIFREADB(SIFADR); /* Get the old SIFADR value */
chk1 = 0; /* Begin with check value 0 */
do {
madgemc_setregpage(dev, 0);
/* Write new SIFADR value */
SIFWRITEB(chk1, SIFADR);
chk2 = SIFREADB(SIFADR);
if (chk2 != chk1)
return -1;
madgemc_setregpage(dev, 1);
/* Read, invert and write */
chk2 = SIFREADB(SIFADD);
if (chk2 != chk1)
return -1;
madgemc_setregpage(dev, 0);
chk2 ^= 0x0FE;
SIFWRITEB(chk2, SIFADR);
/* Read, invert and compare */
madgemc_setregpage(dev, 1);
chk2 = SIFREADB(SIFADD);
madgemc_setregpage(dev, 0);
chk2 ^= 0x0FE;
if(chk1 != chk2)
return (-1); /* No adapter */
chk1 -= 2;
} while(chk1 != 0); /* Repeat 128 times (all byte values) */
madgemc_setregpage(dev, 0); /* sanity */
/* Restore the SIFADR value */
SIFWRITEB(old, SIFADR);
return (0);
}
#endif
/*
* Open/initialize the board. This is called sometime after
* booting when the 'ifconfig' program is run.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
int tms380tr_open(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err;
/* init the spinlock */
spin_lock_init(&tp->lock);
init_timer(&tp->timer);
/* Reset the hardware here. Don't forget to set the station address. */
#ifdef CONFIG_ISA
if(dev->dma > 0)
{
unsigned long flags=claim_dma_lock();
disable_dma(dev->dma);
set_dma_mode(dev->dma, DMA_MODE_CASCADE);
enable_dma(dev->dma);
release_dma_lock(flags);
}
#endif
err = tms380tr_chipset_init(dev);
if(err)
{
printk(KERN_INFO "%s: Chipset initialization error\n",
dev->name);
return (-1);
}
tp->timer.expires = jiffies + 30*HZ;
tp->timer.function = tms380tr_timer_end_wait;
tp->timer.data = (unsigned long)dev;
add_timer(&tp->timer);
printk(KERN_DEBUG "%s: Adapter RAM size: %dK\n",
dev->name, tms380tr_read_ptr(dev));
tms380tr_enable_interrupts(dev);
tms380tr_open_adapter(dev);
netif_start_queue(dev);
/* Wait for interrupt from hardware. If interrupt does not come,
* there will be a timeout from the timer.
*/
tp->Sleeping = 1;
interruptible_sleep_on(&tp->wait_for_tok_int);
del_timer(&tp->timer);
/* If AdapterVirtOpenFlag is 1, the adapter is now open for use */
if(tp->AdapterVirtOpenFlag == 0)
{
tms380tr_disable_interrupts(dev);
return (-1);
}
tp->StartTime = jiffies;
/* Start function control timer */
tp->timer.expires = jiffies + 2*HZ;
tp->timer.function = tms380tr_timer_chk;
tp->timer.data = (unsigned long)dev;
add_timer(&tp->timer);
return (0);
}
/*
* Timeout function while waiting for event
*/
static void tms380tr_timer_end_wait(unsigned long data)
{
struct net_device *dev = (struct net_device*)data;
struct net_local *tp = netdev_priv(dev);
if(tp->Sleeping)
{
tp->Sleeping = 0;
wake_up_interruptible(&tp->wait_for_tok_int);
}
return;
}
/*
* Initialize the chipset
*/
static int tms380tr_chipset_init(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int err;
tms380tr_init_ipb(tp);
tms380tr_init_opb(dev);
tms380tr_init_net_local(dev);
if(tms380tr_debug > 3)
printk(KERN_DEBUG "%s: Resetting adapter...\n", dev->name);
err = tms380tr_reset_adapter(dev);
if(err < 0)
return (-1);
if(tms380tr_debug > 3)
printk(KERN_DEBUG "%s: Bringup diags...\n", dev->name);
err = tms380tr_bringup_diags(dev);
if(err < 0)
return (-1);
if(tms380tr_debug > 3)
printk(KERN_DEBUG "%s: Init adapter...\n", dev->name);
err = tms380tr_init_adapter(dev);
if(err < 0)
return (-1);
if(tms380tr_debug > 3)
printk(KERN_DEBUG "%s: Done!\n", dev->name);
return (0);
}
/*
* Initializes the net_local structure.
*/
static void tms380tr_init_net_local(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
int i;
dma_addr_t dmabuf;
tp->scb.CMD = 0;
tp->scb.Parm[0] = 0;
tp->scb.Parm[1] = 0;
tp->ssb.STS = 0;
tp->ssb.Parm[0] = 0;
tp->ssb.Parm[1] = 0;
tp->ssb.Parm[2] = 0;
tp->CMDqueue = 0;
tp->AdapterOpenFlag = 0;
tp->AdapterVirtOpenFlag = 0;
tp->ScbInUse = 0;
tp->OpenCommandIssued = 0;
tp->ReOpenInProgress = 0;
tp->HaltInProgress = 0;
tp->TransmitHaltScheduled = 0;
tp->LobeWireFaultLogged = 0;
tp->LastOpenStatus = 0;
tp->MaxPacketSize = DEFAULT_PACKET_SIZE;
/* Create circular chain of transmit lists */
for (i = 0; i < TPL_NUM; i++)
{
tp->Tpl[i].NextTPLAddr = htonl(((char *)(&tp->Tpl[(i+1) % TPL_NUM]) - (char *)tp) + tp->dmabuffer); /* DMA buffer may be MMU driven */
tp->Tpl[i].Status = 0;
tp->Tpl[i].FrameSize = 0;
tp->Tpl[i].FragList[0].DataCount = 0;
tp->Tpl[i].FragList[0].DataAddr = 0;
tp->Tpl[i].NextTPLPtr = &tp->Tpl[(i+1) % TPL_NUM];
tp->Tpl[i].MData = NULL;
tp->Tpl[i].TPLIndex = i;
tp->Tpl[i].DMABuff = 0;
tp->Tpl[i].BusyFlag = 0;
}
tp->TplFree = tp->TplBusy = &tp->Tpl[0];
/* Create circular chain of receive lists */
for (i = 0; i < RPL_NUM; i++)
{
tp->Rpl[i].NextRPLAddr = htonl(((char *)(&tp->Rpl[(i+1) % RPL_NUM]) - (char *)tp) + tp->dmabuffer); /* DMA buffer may be MMU driven */
tp->Rpl[i].Status = (RX_VALID | RX_START_FRAME | RX_END_FRAME | RX_FRAME_IRQ);
tp->Rpl[i].FrameSize = 0;
tp->Rpl[i].FragList[0].DataCount = cpu_to_be16((unsigned short)tp->MaxPacketSize);
/* Alloc skb and point adapter to data area */
tp->Rpl[i].Skb = dev_alloc_skb(tp->MaxPacketSize);
tp->Rpl[i].DMABuff = 0;
/* skb == NULL ? then use local buffer */
if(tp->Rpl[i].Skb == NULL)
{
tp->Rpl[i].SkbStat = SKB_UNAVAILABLE;
tp->Rpl[i].FragList[0].DataAddr = htonl(((char *)tp->LocalRxBuffers[i] - (char *)tp) + tp->dmabuffer);
tp->Rpl[i].MData = tp->LocalRxBuffers[i];
}
else /* SKB != NULL */
{
tp->Rpl[i].Skb->dev = dev;
skb_put(tp->Rpl[i].Skb, tp->MaxPacketSize);
/* data unreachable for DMA ? then use local buffer */
dmabuf = dma_map_single(tp->pdev, tp->Rpl[i].Skb->data, tp->MaxPacketSize, DMA_FROM_DEVICE);
if(tp->dmalimit && (dmabuf + tp->MaxPacketSize > tp->dmalimit))
{
tp->Rpl[i].SkbStat = SKB_DATA_COPY;
tp->Rpl[i].FragList[0].DataAddr = htonl(((char *)tp->LocalRxBuffers[i] - (char *)tp) + tp->dmabuffer);
tp->Rpl[i].MData = tp->LocalRxBuffers[i];
}
else /* DMA directly in skb->data */
{
tp->Rpl[i].SkbStat = SKB_DMA_DIRECT;
tp->Rpl[i].FragList[0].DataAddr = htonl(dmabuf);
tp->Rpl[i].MData = tp->Rpl[i].Skb->data;
tp->Rpl[i].DMABuff = dmabuf;
}
}
tp->Rpl[i].NextRPLPtr = &tp->Rpl[(i+1) % RPL_NUM];
tp->Rpl[i].RPLIndex = i;
}
tp->RplHead = &tp->Rpl[0];
tp->RplTail = &tp->Rpl[RPL_NUM-1];
tp->RplTail->Status = (RX_START_FRAME | RX_END_FRAME | RX_FRAME_IRQ);
return;
}
/*
* Initializes the initialisation parameter block.
*/
static void tms380tr_init_ipb(struct net_local *tp)
{
tp->ipb.Init_Options = BURST_MODE;
tp->ipb.CMD_Status_IV = 0;
tp->ipb.TX_IV = 0;
tp->ipb.RX_IV = 0;
tp->ipb.Ring_Status_IV = 0;
tp->ipb.SCB_Clear_IV = 0;
tp->ipb.Adapter_CHK_IV = 0;
tp->ipb.RX_Burst_Size = BURST_SIZE;
tp->ipb.TX_Burst_Size = BURST_SIZE;
tp->ipb.DMA_Abort_Thrhld = DMA_RETRIES;
tp->ipb.SCB_Addr = 0;
tp->ipb.SSB_Addr = 0;
return;
}
/*
* Initializes the open parameter block.
*/
static void tms380tr_init_opb(struct net_device *dev)
{
struct net_local *tp;
unsigned long Addr;
unsigned short RplSize = RPL_SIZE;
unsigned short TplSize = TPL_SIZE;
unsigned short BufferSize = BUFFER_SIZE;
int i;
tp = netdev_priv(dev);
tp->ocpl.OPENOptions = 0;
tp->ocpl.OPENOptions |= ENABLE_FULL_DUPLEX_SELECTION;
tp->ocpl.FullDuplex = 0;
tp->ocpl.FullDuplex |= OPEN_FULL_DUPLEX_OFF;
/*
* Set node address
*
* We go ahead and put it in the OPB even though on
* most of the generic adapters this isn't required.
* Its simpler this way. -- ASF
*/
for (i=0;i<6;i++)
tp->ocpl.NodeAddr[i] = ((unsigned char *)dev->dev_addr)[i];
tp->ocpl.GroupAddr = 0;
tp->ocpl.FunctAddr = 0;
tp->ocpl.RxListSize = cpu_to_be16((unsigned short)RplSize);
tp->ocpl.TxListSize = cpu_to_be16((unsigned short)TplSize);
tp->ocpl.BufSize = cpu_to_be16((unsigned short)BufferSize);
tp->ocpl.Reserved = 0;
tp->ocpl.TXBufMin = TX_BUF_MIN;
tp->ocpl.TXBufMax = TX_BUF_MAX;
Addr = htonl(((char *)tp->ProductID - (char *)tp) + tp->dmabuffer);
tp->ocpl.ProdIDAddr[0] = LOWORD(Addr);
tp->ocpl.ProdIDAddr[1] = HIWORD(Addr);
return;
}
/*
* Send OPEN command to adapter
*/
static void tms380tr_open_adapter(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
if(tp->OpenCommandIssued)
return;
tp->OpenCommandIssued = 1;
tms380tr_exec_cmd(dev, OC_OPEN);
return;
}
/*
* Clear the adapter's interrupt flag. Clear system interrupt enable
* (SINTEN): disable adapter to system interrupts.
*/
static void tms380tr_disable_interrupts(struct net_device *dev)
{
SIFWRITEB(0, SIFACL);
return;
}
/*
* Set the adapter's interrupt flag. Set system interrupt enable
* (SINTEN): enable adapter to system interrupts.
*/
static void tms380tr_enable_interrupts(struct net_device *dev)
{
SIFWRITEB(ACL_SINTEN, SIFACL);
return;
}
/*
* Put command in command queue, try to execute it.
*/
static void tms380tr_exec_cmd(struct net_device *dev, unsigned short Command)
{
struct net_local *tp = netdev_priv(dev);
tp->CMDqueue |= Command;
tms380tr_chk_outstanding_cmds(dev);
return;
}
static void tms380tr_timeout(struct net_device *dev)
{
/*
* If we get here, some higher level has decided we are broken.
* There should really be a "kick me" function call instead.
*
* Resetting the token ring adapter takes a long time so just
* fake transmission time and go on trying. Our own timeout
* routine is in tms380tr_timer_chk()
*/
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
/*
* Gets skb from system, queues it and checks if it can be sent
*/
static netdev_tx_t tms380tr_send_packet(struct sk_buff *skb,
struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
netdev_tx_t rc;
rc = tms380tr_hardware_send_packet(skb, dev);
if(tp->TplFree->NextTPLPtr->BusyFlag)
netif_stop_queue(dev);
return rc;
}
/*
* Move frames into adapter tx queue
*/
static netdev_tx_t tms380tr_hardware_send_packet(struct sk_buff *skb,
struct net_device *dev)
{
TPL *tpl;
short length;
unsigned char *buf;
unsigned long flags;
int i;
dma_addr_t dmabuf, newbuf;
struct net_local *tp = netdev_priv(dev);
/* Try to get a free TPL from the chain.
*
* NOTE: We *must* always leave one unused TPL in the chain,
* because otherwise the adapter might send frames twice.
*/
spin_lock_irqsave(&tp->lock, flags);
if(tp->TplFree->NextTPLPtr->BusyFlag) { /* No free TPL */
if (tms380tr_debug > 0)
printk(KERN_DEBUG "%s: No free TPL\n", dev->name);
spin_unlock_irqrestore(&tp->lock, flags);
return NETDEV_TX_BUSY;
}
dmabuf = 0;
/* Is buffer reachable for Busmaster-DMA? */
length = skb->len;
dmabuf = dma_map_single(tp->pdev, skb->data, length, DMA_TO_DEVICE);
if(tp->dmalimit && (dmabuf + length > tp->dmalimit)) {
/* Copy frame to local buffer */
dma_unmap_single(tp->pdev, dmabuf, length, DMA_TO_DEVICE);
dmabuf = 0;
i = tp->TplFree->TPLIndex;
buf = tp->LocalTxBuffers[i];
skb_copy_from_linear_data(skb, buf, length);
newbuf = ((char *)buf - (char *)tp) + tp->dmabuffer;
}
else {
/* Send direct from skb->data */
newbuf = dmabuf;
buf = skb->data;
}
/* Source address in packet? */
tms380tr_chk_src_addr(buf, dev->dev_addr);
tp->LastSendTime = jiffies;
tpl = tp->TplFree; /* Get the "free" TPL */
tpl->BusyFlag = 1; /* Mark TPL as busy */
tp->TplFree = tpl->NextTPLPtr;
/* Save the skb for delayed return of skb to system */
tpl->Skb = skb;
tpl->DMABuff = dmabuf;
tpl->FragList[0].DataCount = cpu_to_be16((unsigned short)length);
tpl->FragList[0].DataAddr = htonl(newbuf);
/* Write the data length in the transmit list. */
tpl->FrameSize = cpu_to_be16((unsigned short)length);
tpl->MData = buf;
/* Transmit the frame and set the status values. */
tms380tr_write_tpl_status(tpl, TX_VALID | TX_START_FRAME
| TX_END_FRAME | TX_PASS_SRC_ADDR
| TX_FRAME_IRQ);
/* Let adapter send the frame. */
tms380tr_exec_sifcmd(dev, CMD_TX_VALID);
spin_unlock_irqrestore(&tp->lock, flags);
return NETDEV_TX_OK;
}
/*
* Write the given value to the 'Status' field of the specified TPL.
* NOTE: This function should be used whenever the status of any TPL must be
* modified by the driver, because the compiler may otherwise change the
* order of instructions such that writing the TPL status may be executed at
* an undesireable time. When this function is used, the status is always
* written when the function is called.
*/
static void tms380tr_write_tpl_status(TPL *tpl, unsigned int Status)
{
tpl->Status = Status;
}
static void tms380tr_chk_src_addr(unsigned char *frame, unsigned char *hw_addr)
{
unsigned char SRBit;
if((((unsigned long)frame[8]) & ~0x80) != 0) /* Compare 4 bytes */
return;
if((unsigned short)frame[12] != 0) /* Compare 2 bytes */
return;
SRBit = frame[8] & 0x80;
memcpy(&frame[8], hw_addr, 6);
frame[8] |= SRBit;
return;
}
/*
* The timer routine: Check if adapter still open and working, reopen if not.
*/
static void tms380tr_timer_chk(unsigned long data)
{
struct net_device *dev = (struct net_device*)data;
struct net_local *tp = netdev_priv(dev);
if(tp->HaltInProgress)
return;
tms380tr_chk_outstanding_cmds(dev);
if(time_before(tp->LastSendTime + SEND_TIMEOUT, jiffies)
&& (tp->TplFree != tp->TplBusy))
{
/* Anything to send, but stalled too long */
tp->LastSendTime = jiffies;
tms380tr_exec_cmd(dev, OC_CLOSE); /* Does reopen automatically */
}
tp->timer.expires = jiffies + 2*HZ;
add_timer(&tp->timer);
if(tp->AdapterOpenFlag || tp->ReOpenInProgress)
return;
tp->ReOpenInProgress = 1;
tms380tr_open_adapter(dev);
return;
}
/*
* The typical workload of the driver: Handle the network interface interrupts.
*/
irqreturn_t tms380tr_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct net_local *tp;
unsigned short irq_type;
int handled = 0;
tp = netdev_priv(dev);
irq_type = SIFREADW(SIFSTS);
while(irq_type & STS_SYSTEM_IRQ) {
handled = 1;
irq_type &= STS_IRQ_MASK;
if(!tms380tr_chk_ssb(tp, irq_type)) {
printk(KERN_DEBUG "%s: DATA LATE occurred\n", dev->name);
break;
}
switch(irq_type) {
case STS_IRQ_RECEIVE_STATUS:
tms380tr_reset_interrupt(dev);
tms380tr_rcv_status_irq(dev);
break;
case STS_IRQ_TRANSMIT_STATUS:
/* Check if TRANSMIT.HALT command is complete */
if(tp->ssb.Parm[0] & COMMAND_COMPLETE) {
tp->TransmitCommandActive = 0;
tp->TransmitHaltScheduled = 0;
/* Issue a new transmit command. */
tms380tr_exec_cmd(dev, OC_TRANSMIT);
}
tms380tr_reset_interrupt(dev);
tms380tr_tx_status_irq(dev);
break;
case STS_IRQ_COMMAND_STATUS:
/* The SSB contains status of last command
* other than receive/transmit.
*/
tms380tr_cmd_status_irq(dev);
break;
case STS_IRQ_SCB_CLEAR:
/* The SCB is free for another command. */
tp->ScbInUse = 0;
tms380tr_chk_outstanding_cmds(dev);
break;
case STS_IRQ_RING_STATUS:
tms380tr_ring_status_irq(dev);
break;
case STS_IRQ_ADAPTER_CHECK:
tms380tr_chk_irq(dev);
break;
case STS_IRQ_LLC_STATUS:
printk(KERN_DEBUG "tms380tr: unexpected LLC status IRQ\n");
break;
case STS_IRQ_TIMER:
printk(KERN_DEBUG "tms380tr: unexpected Timer IRQ\n");
break;
case STS_IRQ_RECEIVE_PENDING:
printk(KERN_DEBUG "tms380tr: unexpected Receive Pending IRQ\n");
break;
default:
printk(KERN_DEBUG "Unknown Token Ring IRQ (0x%04x)\n", irq_type);
break;
}
/* Reset system interrupt if not already done. */
if(irq_type != STS_IRQ_TRANSMIT_STATUS
&& irq_type != STS_IRQ_RECEIVE_STATUS) {
tms380tr_reset_interrupt(dev);
}
irq_type = SIFREADW(SIFSTS);
}
return IRQ_RETVAL(handled);
}
/*
* Reset the INTERRUPT SYSTEM bit and issue SSB CLEAR command.
*/
static void tms380tr_reset_interrupt(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
SSB *ssb = &tp->ssb;
/*
* [Workaround for "Data Late"]
* Set all fields of the SSB to well-defined values so we can
* check if the adapter has written the SSB.
*/
ssb->STS = (unsigned short) -1;
ssb->Parm[0] = (unsigned short) -1;
ssb->Parm[1] = (unsigned short) -1;
ssb->Parm[2] = (unsigned short) -1;
/* Free SSB by issuing SSB_CLEAR command after reading IRQ code
* and clear STS_SYSTEM_IRQ bit: enable adapter for further interrupts.
*/
tms380tr_exec_sifcmd(dev, CMD_SSB_CLEAR | CMD_CLEAR_SYSTEM_IRQ);
return;
}
/*
* Check if the SSB has actually been written by the adapter.
*/
static unsigned char tms380tr_chk_ssb(struct net_local *tp, unsigned short IrqType)
{
SSB *ssb = &tp->ssb; /* The address of the SSB. */
/* C 0 1 2 INTERRUPT CODE
* - - - - --------------
* 1 1 1 1 TRANSMIT STATUS
* 1 1 1 1 RECEIVE STATUS
* 1 ? ? 0 COMMAND STATUS
* 0 0 0 0 SCB CLEAR
* 1 1 0 0 RING STATUS
* 0 0 0 0 ADAPTER CHECK
*
* 0 = SSB field not affected by interrupt
* 1 = SSB field is affected by interrupt
*
* C = SSB ADDRESS +0: COMMAND
* 0 = SSB ADDRESS +2: STATUS 0
* 1 = SSB ADDRESS +4: STATUS 1
* 2 = SSB ADDRESS +6: STATUS 2
*/
/* Check if this interrupt does use the SSB. */
if(IrqType != STS_IRQ_TRANSMIT_STATUS
&& IrqType != STS_IRQ_RECEIVE_STATUS
&& IrqType != STS_IRQ_COMMAND_STATUS
&& IrqType != STS_IRQ_RING_STATUS)
{
return (1); /* SSB not involved. */
}
/* Note: All fields of the SSB have been set to all ones (-1) after it
* has last been used by the software (see DriverIsr()).
*
* Check if the affected SSB fields are still unchanged.
*/
if(ssb->STS == (unsigned short) -1)
return (0); /* Command field not yet available. */
if(IrqType == STS_IRQ_COMMAND_STATUS)
return (1); /* Status fields not always affected. */
if(ssb->Parm[0] == (unsigned short) -1)
return (0); /* Status 1 field not yet available. */
if(IrqType == STS_IRQ_RING_STATUS)
return (1); /* Status 2 & 3 fields not affected. */
/* Note: At this point, the interrupt is either TRANSMIT or RECEIVE. */
if(ssb->Parm[1] == (unsigned short) -1)
return (0); /* Status 2 field not yet available. */
if(ssb->Parm[2] == (unsigned short) -1)
return (0); /* Status 3 field not yet available. */
return (1); /* All SSB fields have been written by the adapter. */
}
/*
* Evaluates the command results status in the SSB status field.
*/
static void tms380tr_cmd_status_irq(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned short ssb_cmd, ssb_parm_0;
unsigned short ssb_parm_1;
char *open_err = "Open error -";
char *code_err = "Open code -";
/* Copy the ssb values to local variables */
ssb_cmd = tp->ssb.STS;
ssb_parm_0 = tp->ssb.Parm[0];
ssb_parm_1 = tp->ssb.Parm[1];
if(ssb_cmd == OPEN)
{
tp->Sleeping = 0;
if(!tp->ReOpenInProgress)
wake_up_interruptible(&tp->wait_for_tok_int);
tp->OpenCommandIssued = 0;
tp->ScbInUse = 0;
if((ssb_parm_0 & 0x00FF) == GOOD_COMPLETION)
{
/* Success, the adapter is open. */
tp->LobeWireFaultLogged = 0;
tp->AdapterOpenFlag = 1;
tp->AdapterVirtOpenFlag = 1;
tp->TransmitCommandActive = 0;
tms380tr_exec_cmd(dev, OC_TRANSMIT);
tms380tr_exec_cmd(dev, OC_RECEIVE);
if(tp->ReOpenInProgress)
tp->ReOpenInProgress = 0;
return;
}
else /* The adapter did not open. */
{
if(ssb_parm_0 & NODE_ADDR_ERROR)
printk(KERN_INFO "%s: Node address error\n",
dev->name);
if(ssb_parm_0 & LIST_SIZE_ERROR)
printk(KERN_INFO "%s: List size error\n",
dev->name);
if(ssb_parm_0 & BUF_SIZE_ERROR)
printk(KERN_INFO "%s: Buffer size error\n",
dev->name);
if(ssb_parm_0 & TX_BUF_COUNT_ERROR)
printk(KERN_INFO "%s: Tx buffer count error\n",
dev->name);
if(ssb_parm_0 & INVALID_OPEN_OPTION)
printk(KERN_INFO "%s: Invalid open option\n",
dev->name);
if(ssb_parm_0 & OPEN_ERROR)
{
/* Show the open phase. */
switch(ssb_parm_0 & OPEN_PHASES_MASK)
{
case LOBE_MEDIA_TEST:
if(!tp->LobeWireFaultLogged)
{
tp->LobeWireFaultLogged = 1;
printk(KERN_INFO "%s: %s Lobe wire fault (check cable !).\n", dev->name, open_err);
}
tp->ReOpenInProgress = 1;
tp->AdapterOpenFlag = 0;
tp->AdapterVirtOpenFlag = 1;
tms380tr_open_adapter(dev);
return;
case PHYSICAL_INSERTION:
printk(KERN_INFO "%s: %s Physical insertion.\n", dev->name, open_err);
break;
case ADDRESS_VERIFICATION:
printk(KERN_INFO "%s: %s Address verification.\n", dev->name, open_err);
break;
case PARTICIPATION_IN_RING_POLL:
printk(KERN_INFO "%s: %s Participation in ring poll.\n", dev->name, open_err);
break;
case REQUEST_INITIALISATION:
printk(KERN_INFO "%s: %s Request initialisation.\n", dev->name, open_err);
break;
case FULLDUPLEX_CHECK:
printk(KERN_INFO "%s: %s Full duplex check.\n", dev->name, open_err);
break;
default:
printk(KERN_INFO "%s: %s Unknown open phase\n", dev->name, open_err);
break;
}
/* Show the open errors. */
switch(ssb_parm_0 & OPEN_ERROR_CODES_MASK)
{
case OPEN_FUNCTION_FAILURE:
printk(KERN_INFO "%s: %s OPEN_FUNCTION_FAILURE", dev->name, code_err);
tp->LastOpenStatus =
OPEN_FUNCTION_FAILURE;
break;
case OPEN_SIGNAL_LOSS:
printk(KERN_INFO "%s: %s OPEN_SIGNAL_LOSS\n", dev->name, code_err);
tp->LastOpenStatus =
OPEN_SIGNAL_LOSS;
break;
case OPEN_TIMEOUT:
printk(KERN_INFO "%s: %s OPEN_TIMEOUT\n", dev->name, code_err);
tp->LastOpenStatus =
OPEN_TIMEOUT;
break;
case OPEN_RING_FAILURE:
printk(KERN_INFO "%s: %s OPEN_RING_FAILURE\n", dev->name, code_err);
tp->LastOpenStatus =
OPEN_RING_FAILURE;
break;
case OPEN_RING_BEACONING:
printk(KERN_INFO "%s: %s OPEN_RING_BEACONING\n", dev->name, code_err);
tp->LastOpenStatus =
OPEN_RING_BEACONING;
break;
case OPEN_DUPLICATE_NODEADDR:
printk(KERN_INFO "%s: %s OPEN_DUPLICATE_NODEADDR\n", dev->name, code_err);
tp->LastOpenStatus =
OPEN_DUPLICATE_NODEADDR;
break;
case OPEN_REQUEST_INIT:
printk(KERN_INFO "%s: %s OPEN_REQUEST_INIT\n", dev->name, code_err);
tp->LastOpenStatus =
OPEN_REQUEST_INIT;
break;
case OPEN_REMOVE_RECEIVED:
printk(KERN_INFO "%s: %s OPEN_REMOVE_RECEIVED", dev->name, code_err);
tp->LastOpenStatus =
OPEN_REMOVE_RECEIVED;
break;
case OPEN_FULLDUPLEX_SET:
printk(KERN_INFO "%s: %s OPEN_FULLDUPLEX_SET\n", dev->name, code_err);
tp->LastOpenStatus =
OPEN_FULLDUPLEX_SET;
break;
default:
printk(KERN_INFO "%s: %s Unknown open err code", dev->name, code_err);
tp->LastOpenStatus =
OPEN_FUNCTION_FAILURE;
break;
}
}
tp->AdapterOpenFlag = 0;
tp->AdapterVirtOpenFlag = 0;
return;
}
}
else
{
if(ssb_cmd != READ_ERROR_LOG)
return;
/* Add values from the error log table to the MAC
* statistics counters and update the errorlogtable
* memory.
*/
tp->MacStat.line_errors += tp->errorlogtable.Line_Error;
tp->MacStat.burst_errors += tp->errorlogtable.Burst_Error;
tp->MacStat.A_C_errors += tp->errorlogtable.ARI_FCI_Error;
tp->MacStat.lost_frames += tp->errorlogtable.Lost_Frame_Error;
tp->MacStat.recv_congest_count += tp->errorlogtable.Rx_Congest_Error;
tp->MacStat.rx_errors += tp->errorlogtable.Rx_Congest_Error;
tp->MacStat.frame_copied_errors += tp->errorlogtable.Frame_Copied_Error;
tp->MacStat.token_errors += tp->errorlogtable.Token_Error;
tp->MacStat.dummy1 += tp->errorlogtable.DMA_Bus_Error;
tp->MacStat.dummy1 += tp->errorlogtable.DMA_Parity_Error;
tp->MacStat.abort_delimiters += tp->errorlogtable.AbortDelimeters;
tp->MacStat.frequency_errors += tp->errorlogtable.Frequency_Error;
tp->MacStat.internal_errors += tp->errorlogtable.Internal_Error;
}
return;
}
/*
* The inverse routine to tms380tr_open().
*/
int tms380tr_close(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
netif_stop_queue(dev);
del_timer(&tp->timer);
/* Flush the Tx and disable Rx here. */
tp->HaltInProgress = 1;
tms380tr_exec_cmd(dev, OC_CLOSE);
tp->timer.expires = jiffies + 1*HZ;
tp->timer.function = tms380tr_timer_end_wait;
tp->timer.data = (unsigned long)dev;
add_timer(&tp->timer);
tms380tr_enable_interrupts(dev);
tp->Sleeping = 1;
interruptible_sleep_on(&tp->wait_for_tok_int);
tp->TransmitCommandActive = 0;
del_timer(&tp->timer);
tms380tr_disable_interrupts(dev);
#ifdef CONFIG_ISA
if(dev->dma > 0)
{
unsigned long flags=claim_dma_lock();
disable_dma(dev->dma);
release_dma_lock(flags);
}
#endif
SIFWRITEW(0xFF00, SIFCMD);
#if 0
if(dev->dma > 0) /* what the? */
SIFWRITEB(0xff, POSREG);
#endif
tms380tr_cancel_tx_queue(tp);
return (0);
}
/*
* Get the current statistics. This may be called with the card open
* or closed.
*/
static struct net_device_stats *tms380tr_get_stats(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
return ((struct net_device_stats *)&tp->MacStat);
}
/*
* Set or clear the multicast filter for this adapter.
*/
static void tms380tr_set_multicast_list(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned int OpenOptions;
OpenOptions = tp->ocpl.OPENOptions &
~(PASS_ADAPTER_MAC_FRAMES
| PASS_ATTENTION_FRAMES
| PASS_BEACON_MAC_FRAMES
| COPY_ALL_MAC_FRAMES
| COPY_ALL_NON_MAC_FRAMES);
tp->ocpl.FunctAddr = 0;
if(dev->flags & IFF_PROMISC)
/* Enable promiscuous mode */
OpenOptions |= COPY_ALL_NON_MAC_FRAMES |
COPY_ALL_MAC_FRAMES;
else
{
if(dev->flags & IFF_ALLMULTI)
{
/* Disable promiscuous mode, use normal mode. */
tp->ocpl.FunctAddr = 0xFFFFFFFF;
}
else
{
int i;
struct dev_mc_list *mclist = dev->mc_list;
for (i=0; i< dev->mc_count; i++)
{
((char *)(&tp->ocpl.FunctAddr))[0] |=
mclist->dmi_addr[2];
((char *)(&tp->ocpl.FunctAddr))[1] |=
mclist->dmi_addr[3];
((char *)(&tp->ocpl.FunctAddr))[2] |=
mclist->dmi_addr[4];
((char *)(&tp->ocpl.FunctAddr))[3] |=
mclist->dmi_addr[5];
mclist = mclist->next;
}
}
tms380tr_exec_cmd(dev, OC_SET_FUNCT_ADDR);
}
tp->ocpl.OPENOptions = OpenOptions;
tms380tr_exec_cmd(dev, OC_MODIFY_OPEN_PARMS);
return;
}
/*
* Wait for some time (microseconds)
*/
void tms380tr_wait(unsigned long time)
{
#if 0
long tmp;
tmp = jiffies + time/(1000000/HZ);
do {
tmp = schedule_timeout_interruptible(tmp);
} while(time_after(tmp, jiffies));
#else
udelay(time);
#endif
return;
}
/*
* Write a command value to the SIFCMD register
*/
static void tms380tr_exec_sifcmd(struct net_device *dev, unsigned int WriteValue)
{
unsigned short cmd;
unsigned short SifStsValue;
unsigned long loop_counter;
WriteValue = ((WriteValue ^ CMD_SYSTEM_IRQ) | CMD_INTERRUPT_ADAPTER);
cmd = (unsigned short)WriteValue;
loop_counter = 0,5 * 800000;
do {
SifStsValue = SIFREADW(SIFSTS);
} while((SifStsValue & CMD_INTERRUPT_ADAPTER) && loop_counter--);
SIFWRITEW(cmd, SIFCMD);
return;
}
/*
* Processes adapter hardware reset, halts adapter and downloads firmware,
* clears the halt bit.
*/
static int tms380tr_reset_adapter(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned short *fw_ptr;
unsigned short count, c, count2;
const struct firmware *fw_entry = NULL;
if (request_firmware(&fw_entry, "tms380tr.bin", tp->pdev) != 0) {
printk(KERN_ALERT "%s: firmware %s is missing, cannot start.\n",
dev->name, "tms380tr.bin");
return (-1);
}
fw_ptr = (unsigned short *)fw_entry->data;
count2 = fw_entry->size / 2;
/* Hardware adapter reset */
SIFWRITEW(ACL_ARESET, SIFACL);
tms380tr_wait(40);
c = SIFREADW(SIFACL);
tms380tr_wait(20);
if(dev->dma == 0) /* For PCI adapters */
{
c &= ~(ACL_NSELOUT0 | ACL_NSELOUT1); /* Clear bits */
if(tp->setnselout)
c |= (*tp->setnselout)(dev);
}
/* In case a command is pending - forget it */
tp->ScbInUse = 0;
c &= ~ACL_ARESET; /* Clear adapter reset bit */
c |= ACL_CPHALT; /* Halt adapter CPU, allow download */
c |= ACL_BOOT;
c |= ACL_SINTEN;
c &= ~ACL_PSDMAEN; /* Clear pseudo dma bit */
SIFWRITEW(c, SIFACL);
tms380tr_wait(40);
count = 0;
/* Download firmware via DIO interface: */
do {
if (count2 < 3) continue;
/* Download first address part */
SIFWRITEW(*fw_ptr, SIFADX);
fw_ptr++;
count2--;
/* Download second address part */
SIFWRITEW(*fw_ptr, SIFADD);
fw_ptr++;
count2--;
if((count = *fw_ptr) != 0) /* Load loop counter */
{
fw_ptr++; /* Download block data */
count2--;
if (count > count2) continue;
for(; count > 0; count--)
{
SIFWRITEW(*fw_ptr, SIFINC);
fw_ptr++;
count2--;
}
}
else /* Stop, if last block downloaded */
{
c = SIFREADW(SIFACL);
c &= (~ACL_CPHALT | ACL_SINTEN);
/* Clear CPHALT and start BUD */
SIFWRITEW(c, SIFACL);
if (fw_entry)
release_firmware(fw_entry);
return (1);
}
} while(count == 0);
if (fw_entry)
release_firmware(fw_entry);
printk(KERN_INFO "%s: Adapter Download Failed\n", dev->name);
return (-1);
}
MODULE_FIRMWARE("tms380tr.bin");
/*
* Starts bring up diagnostics of token ring adapter and evaluates
* diagnostic results.
*/
static int tms380tr_bringup_diags(struct net_device *dev)
{
int loop_cnt, retry_cnt;
unsigned short Status;
tms380tr_wait(HALF_SECOND);
tms380tr_exec_sifcmd(dev, EXEC_SOFT_RESET);
tms380tr_wait(HALF_SECOND);
retry_cnt = BUD_MAX_RETRIES; /* maximal number of retrys */
do {
retry_cnt--;
if(tms380tr_debug > 3)
printk(KERN_DEBUG "BUD-Status: ");
loop_cnt = BUD_MAX_LOOPCNT; /* maximum: three seconds*/
do { /* Inspect BUD results */
loop_cnt--;
tms380tr_wait(HALF_SECOND);
Status = SIFREADW(SIFSTS);
Status &= STS_MASK;
if(tms380tr_debug > 3)
printk(KERN_DEBUG " %04X \n", Status);
/* BUD successfully completed */
if(Status == STS_INITIALIZE)
return (1);
/* Unrecoverable hardware error, BUD not completed? */
} while((loop_cnt > 0) && ((Status & (STS_ERROR | STS_TEST))
!= (STS_ERROR | STS_TEST)));
/* Error preventing completion of BUD */
if(retry_cnt > 0)
{
printk(KERN_INFO "%s: Adapter Software Reset.\n",
dev->name);
tms380tr_exec_sifcmd(dev, EXEC_SOFT_RESET);
tms380tr_wait(HALF_SECOND);
}
} while(retry_cnt > 0);
Status = SIFREADW(SIFSTS);
printk(KERN_INFO "%s: Hardware error\n", dev->name);
/* Hardware error occurred! */
Status &= 0x001f;
if (Status & 0x0010)
printk(KERN_INFO "%s: BUD Error: Timeout\n", dev->name);
else if ((Status & 0x000f) > 6)
printk(KERN_INFO "%s: BUD Error: Illegal Failure\n", dev->name);
else
printk(KERN_INFO "%s: Bring Up Diagnostics Error (%04X) occurred\n", dev->name, Status & 0x000f);
return (-1);
}
/*
* Copy initialisation data to adapter memory, beginning at address
* 1:0A00; Starting DMA test and evaluating result bits.
*/
static int tms380tr_init_adapter(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
const unsigned char SCB_Test[6] = {0x00, 0x00, 0xC1, 0xE2, 0xD4, 0x8B};
const unsigned char SSB_Test[8] = {0xFF, 0xFF, 0xD1, 0xD7,
0xC5, 0xD9, 0xC3, 0xD4};
void *ptr = (void *)&tp->ipb;
unsigned short *ipb_ptr = (unsigned short *)ptr;
unsigned char *cb_ptr = (unsigned char *) &tp->scb;
unsigned char *sb_ptr = (unsigned char *) &tp->ssb;
unsigned short Status;
int i, loop_cnt, retry_cnt;
/* Normalize: byte order low/high, word order high/low! (only IPB!) */
tp->ipb.SCB_Addr = SWAPW(((char *)&tp->scb - (char *)tp) + tp->dmabuffer);
tp->ipb.SSB_Addr = SWAPW(((char *)&tp->ssb - (char *)tp) + tp->dmabuffer);
if(tms380tr_debug > 3)
{
printk(KERN_DEBUG "%s: buffer (real): %lx\n", dev->name, (long) &tp->scb);
printk(KERN_DEBUG "%s: buffer (virt): %lx\n", dev->name, (long) ((char *)&tp->scb - (char *)tp) + (long) tp->dmabuffer);
printk(KERN_DEBUG "%s: buffer (DMA) : %lx\n", dev->name, (long) tp->dmabuffer);
printk(KERN_DEBUG "%s: buffer (tp) : %lx\n", dev->name, (long) tp);
}
/* Maximum: three initialization retries */
retry_cnt = INIT_MAX_RETRIES;
do {
retry_cnt--;
/* Transfer initialization block */
SIFWRITEW(0x0001, SIFADX);
/* To address 0001:0A00 of adapter RAM */
SIFWRITEW(0x0A00, SIFADD);
/* Write 11 words to adapter RAM */
for(i = 0; i < 11; i++)
SIFWRITEW(ipb_ptr[i], SIFINC);
/* Execute SCB adapter command */
tms380tr_exec_sifcmd(dev, CMD_EXECUTE);
loop_cnt = INIT_MAX_LOOPCNT; /* Maximum: 11 seconds */
/* While remaining retries, no error and not completed */
do {
Status = 0;
loop_cnt--;
tms380tr_wait(HALF_SECOND);
/* Mask interesting status bits */
Status = SIFREADW(SIFSTS);
Status &= STS_MASK;
} while(((Status &(STS_INITIALIZE | STS_ERROR | STS_TEST)) != 0)
&& ((Status & STS_ERROR) == 0) && (loop_cnt != 0));
if((Status & (STS_INITIALIZE | STS_ERROR | STS_TEST)) == 0)
{
/* Initialization completed without error */
i = 0;
do { /* Test if contents of SCB is valid */
if(SCB_Test[i] != *(cb_ptr + i))
{
printk(KERN_INFO "%s: DMA failed\n", dev->name);
/* DMA data error: wrong data in SCB */
return (-1);
}
i++;
} while(i < 6);
i = 0;
do { /* Test if contents of SSB is valid */
if(SSB_Test[i] != *(sb_ptr + i))
/* DMA data error: wrong data in SSB */
return (-1);
i++;
} while (i < 8);
return (1); /* Adapter successfully initialized */
}
else
{
if((Status & STS_ERROR) != 0)
{
/* Initialization error occurred */
Status = SIFREADW(SIFSTS);
Status &= STS_ERROR_MASK;
/* ShowInitialisationErrorCode(Status); */
printk(KERN_INFO "%s: Status error: %d\n", dev->name, Status);
return (-1); /* Unrecoverable error */
}
else
{
if(retry_cnt > 0)
{
/* Reset adapter and try init again */
tms380tr_exec_sifcmd(dev, EXEC_SOFT_RESET);
tms380tr_wait(HALF_SECOND);
}
}
}
} while(retry_cnt > 0);
printk(KERN_INFO "%s: Retry exceeded\n", dev->name);
return (-1);
}
/*
* Check for outstanding commands in command queue and tries to execute
* command immediately. Corresponding command flag in command queue is cleared.
*/
static void tms380tr_chk_outstanding_cmds(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned long Addr = 0;
if(tp->CMDqueue == 0)
return; /* No command execution */
/* If SCB in use: no command */
if(tp->ScbInUse == 1)
return;
/* Check if adapter is opened, avoiding COMMAND_REJECT
* interrupt by the adapter!
*/
if(tp->AdapterOpenFlag == 0)
{
if(tp->CMDqueue & OC_OPEN)
{
/* Execute OPEN command */
tp->CMDqueue ^= OC_OPEN;
Addr = htonl(((char *)&tp->ocpl - (char *)tp) + tp->dmabuffer);
tp->scb.Parm[0] = LOWORD(Addr);
tp->scb.Parm[1] = HIWORD(Addr);
tp->scb.CMD = OPEN;
}
else
/* No OPEN command queued, but adapter closed. Note:
* We'll try to re-open the adapter in DriverPoll()
*/
return; /* No adapter command issued */
}
else
{
/* Adapter is open; evaluate command queue: try to execute
* outstanding commands (depending on priority!) CLOSE
* command queued
*/
if(tp->CMDqueue & OC_CLOSE)
{
tp->CMDqueue ^= OC_CLOSE;
tp->AdapterOpenFlag = 0;
tp->scb.Parm[0] = 0; /* Parm[0], Parm[1] are ignored */
tp->scb.Parm[1] = 0; /* but should be set to zero! */
tp->scb.CMD = CLOSE;
if(!tp->HaltInProgress)
tp->CMDqueue |= OC_OPEN; /* re-open adapter */
else
tp->CMDqueue = 0; /* no more commands */
}
else
{
if(tp->CMDqueue & OC_RECEIVE)
{
tp->CMDqueue ^= OC_RECEIVE;
Addr = htonl(((char *)tp->RplHead - (char *)tp) + tp->dmabuffer);
tp->scb.Parm[0] = LOWORD(Addr);
tp->scb.Parm[1] = HIWORD(Addr);
tp->scb.CMD = RECEIVE;
}
else
{
if(tp->CMDqueue & OC_TRANSMIT_HALT)
{
/* NOTE: TRANSMIT.HALT must be checked
* before TRANSMIT.
*/
tp->CMDqueue ^= OC_TRANSMIT_HALT;
tp->scb.CMD = TRANSMIT_HALT;
/* Parm[0] and Parm[1] are ignored
* but should be set to zero!
*/
tp->scb.Parm[0] = 0;
tp->scb.Parm[1] = 0;
}
else
{
if(tp->CMDqueue & OC_TRANSMIT)
{
/* NOTE: TRANSMIT must be
* checked after TRANSMIT.HALT
*/
if(tp->TransmitCommandActive)
{
if(!tp->TransmitHaltScheduled)
{
tp->TransmitHaltScheduled = 1;
tms380tr_exec_cmd(dev, OC_TRANSMIT_HALT) ;
}
tp->TransmitCommandActive = 0;
return;
}
tp->CMDqueue ^= OC_TRANSMIT;
tms380tr_cancel_tx_queue(tp);
Addr = htonl(((char *)tp->TplBusy - (char *)tp) + tp->dmabuffer);
tp->scb.Parm[0] = LOWORD(Addr);
tp->scb.Parm[1] = HIWORD(Addr);
tp->scb.CMD = TRANSMIT;
tp->TransmitCommandActive = 1;
}
else
{
if(tp->CMDqueue & OC_MODIFY_OPEN_PARMS)
{
tp->CMDqueue ^= OC_MODIFY_OPEN_PARMS;
tp->scb.Parm[0] = tp->ocpl.OPENOptions; /* new OPEN options*/
tp->scb.Parm[0] |= ENABLE_FULL_DUPLEX_SELECTION;
tp->scb.Parm[1] = 0; /* is ignored but should be zero */
tp->scb.CMD = MODIFY_OPEN_PARMS;
}
else
{
if(tp->CMDqueue & OC_SET_FUNCT_ADDR)
{
tp->CMDqueue ^= OC_SET_FUNCT_ADDR;
tp->scb.Parm[0] = LOWORD(tp->ocpl.FunctAddr);
tp->scb.Parm[1] = HIWORD(tp->ocpl.FunctAddr);
tp->scb.CMD = SET_FUNCT_ADDR;
}
else
{
if(tp->CMDqueue & OC_SET_GROUP_ADDR)
{
tp->CMDqueue ^= OC_SET_GROUP_ADDR;
tp->scb.Parm[0] = LOWORD(tp->ocpl.GroupAddr);
tp->scb.Parm[1] = HIWORD(tp->ocpl.GroupAddr);
tp->scb.CMD = SET_GROUP_ADDR;
}
else
{
if(tp->CMDqueue & OC_READ_ERROR_LOG)
{
tp->CMDqueue ^= OC_READ_ERROR_LOG;
Addr = htonl(((char *)&tp->errorlogtable - (char *)tp) + tp->dmabuffer);
tp->scb.Parm[0] = LOWORD(Addr);
tp->scb.Parm[1] = HIWORD(Addr);
tp->scb.CMD = READ_ERROR_LOG;
}
else
{
printk(KERN_WARNING "CheckForOutstandingCommand: unknown Command\n");
tp->CMDqueue = 0;
return;
}
}
}
}
}
}
}
}
}
tp->ScbInUse = 1; /* Set semaphore: SCB in use. */
/* Execute SCB and generate IRQ when done. */
tms380tr_exec_sifcmd(dev, CMD_EXECUTE | CMD_SCB_REQUEST);
return;
}
/*
* IRQ conditions: signal loss on the ring, transmit or receive of beacon
* frames (disabled if bit 1 of OPEN option is set); report error MAC
* frame transmit (disabled if bit 2 of OPEN option is set); open or short
* circuit fault on the lobe is detected; remove MAC frame received;
* error counter overflow (255); opened adapter is the only station in ring.
* After some of the IRQs the adapter is closed!
*/
static void tms380tr_ring_status_irq(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
tp->CurrentRingStatus = be16_to_cpu((unsigned short)tp->ssb.Parm[0]);
/* First: fill up statistics */
if(tp->ssb.Parm[0] & SIGNAL_LOSS)
{
printk(KERN_INFO "%s: Signal Loss\n", dev->name);
tp->MacStat.line_errors++;
}
/* Adapter is closed, but initialized */
if(tp->ssb.Parm[0] & LOBE_WIRE_FAULT)
{
printk(KERN_INFO "%s: Lobe Wire Fault, Reopen Adapter\n",
dev->name);
tp->MacStat.line_errors++;
}
if(tp->ssb.Parm[0] & RING_RECOVERY)
printk(KERN_INFO "%s: Ring Recovery\n", dev->name);
/* Counter overflow: read error log */
if(tp->ssb.Parm[0] & COUNTER_OVERFLOW)
{
printk(KERN_INFO "%s: Counter Overflow\n", dev->name);
tms380tr_exec_cmd(dev, OC_READ_ERROR_LOG);
}
/* Adapter is closed, but initialized */
if(tp->ssb.Parm[0] & REMOVE_RECEIVED)
printk(KERN_INFO "%s: Remove Received, Reopen Adapter\n",
dev->name);
/* Adapter is closed, but initialized */
if(tp->ssb.Parm[0] & AUTO_REMOVAL_ERROR)
printk(KERN_INFO "%s: Auto Removal Error, Reopen Adapter\n",
dev->name);
if(tp->ssb.Parm[0] & HARD_ERROR)
printk(KERN_INFO "%s: Hard Error\n", dev->name);
if(tp->ssb.Parm[0] & SOFT_ERROR)
printk(KERN_INFO "%s: Soft Error\n", dev->name);
if(tp->ssb.Parm[0] & TRANSMIT_BEACON)
printk(KERN_INFO "%s: Transmit Beacon\n", dev->name);
if(tp->ssb.Parm[0] & SINGLE_STATION)
printk(KERN_INFO "%s: Single Station\n", dev->name);
/* Check if adapter has been closed */
if(tp->ssb.Parm[0] & ADAPTER_CLOSED)
{
printk(KERN_INFO "%s: Adapter closed (Reopening),"
"CurrentRingStat %x\n",
dev->name, tp->CurrentRingStatus);
tp->AdapterOpenFlag = 0;
tms380tr_open_adapter(dev);
}
return;
}
/*
* Issued if adapter has encountered an unrecoverable hardware
* or software error.
*/
static void tms380tr_chk_irq(struct net_device *dev)
{
int i;
unsigned short AdapterCheckBlock[4];
struct net_local *tp = netdev_priv(dev);
tp->AdapterOpenFlag = 0; /* Adapter closed now */
/* Page number of adapter memory */
SIFWRITEW(0x0001, SIFADX);
/* Address offset */
SIFWRITEW(CHECKADDR, SIFADR);
/* Reading 8 byte adapter check block. */
for(i = 0; i < 4; i++)
AdapterCheckBlock[i] = SIFREADW(SIFINC);
if(tms380tr_debug > 3)
{
printk(KERN_DEBUG "%s: AdapterCheckBlock: ", dev->name);
for (i = 0; i < 4; i++)
printk("%04X", AdapterCheckBlock[i]);
printk("\n");
}
switch(AdapterCheckBlock[0])
{
case DIO_PARITY:
printk(KERN_INFO "%s: DIO parity error\n", dev->name);
break;
case DMA_READ_ABORT:
printk(KERN_INFO "%s DMA read operation aborted:\n",
dev->name);
switch (AdapterCheckBlock[1])
{
case 0:
printk(KERN_INFO "Timeout\n");
printk(KERN_INFO "Address: %04X %04X\n",
AdapterCheckBlock[2],
AdapterCheckBlock[3]);
break;
case 1:
printk(KERN_INFO "Parity error\n");
printk(KERN_INFO "Address: %04X %04X\n",
AdapterCheckBlock[2],
AdapterCheckBlock[3]);
break;
case 2:
printk(KERN_INFO "Bus error\n");
printk(KERN_INFO "Address: %04X %04X\n",
AdapterCheckBlock[2],
AdapterCheckBlock[3]);
break;
default:
printk(KERN_INFO "Unknown error.\n");
break;
}
break;
case DMA_WRITE_ABORT:
printk(KERN_INFO "%s: DMA write operation aborted: \n",
dev->name);
switch (AdapterCheckBlock[1])
{
case 0:
printk(KERN_INFO "Timeout\n");
printk(KERN_INFO "Address: %04X %04X\n",
AdapterCheckBlock[2],
AdapterCheckBlock[3]);
break;
case 1:
printk(KERN_INFO "Parity error\n");
printk(KERN_INFO "Address: %04X %04X\n",
AdapterCheckBlock[2],
AdapterCheckBlock[3]);
break;
case 2:
printk(KERN_INFO "Bus error\n");
printk(KERN_INFO "Address: %04X %04X\n",
AdapterCheckBlock[2],
AdapterCheckBlock[3]);
break;
default:
printk(KERN_INFO "Unknown error.\n");
break;
}
break;
case ILLEGAL_OP_CODE:
printk(KERN_INFO "%s: Illegal operation code in firmware\n",
dev->name);
/* Parm[0-3]: adapter internal register R13-R15 */
break;
case PARITY_ERRORS:
printk(KERN_INFO "%s: Adapter internal bus parity error\n",
dev->name);
/* Parm[0-3]: adapter internal register R13-R15 */
break;
case RAM_DATA_ERROR:
printk(KERN_INFO "%s: RAM data error\n", dev->name);
/* Parm[0-1]: MSW/LSW address of RAM location. */
break;
case RAM_PARITY_ERROR:
printk(KERN_INFO "%s: RAM parity error\n", dev->name);
/* Parm[0-1]: MSW/LSW address of RAM location. */
break;
case RING_UNDERRUN:
printk(KERN_INFO "%s: Internal DMA underrun detected\n",
dev->name);
break;
case INVALID_IRQ:
printk(KERN_INFO "%s: Unrecognized interrupt detected\n",
dev->name);
/* Parm[0-3]: adapter internal register R13-R15 */
break;
case INVALID_ERROR_IRQ:
printk(KERN_INFO "%s: Unrecognized error interrupt detected\n",
dev->name);
/* Parm[0-3]: adapter internal register R13-R15 */
break;
case INVALID_XOP:
printk(KERN_INFO "%s: Unrecognized XOP request detected\n",
dev->name);
/* Parm[0-3]: adapter internal register R13-R15 */
break;
default:
printk(KERN_INFO "%s: Unknown status", dev->name);
break;
}
if(tms380tr_chipset_init(dev) == 1)
{
/* Restart of firmware successful */
tp->AdapterOpenFlag = 1;
}
return;
}
/*
* Internal adapter pointer to RAM data are copied from adapter into
* host system.
*/
static int tms380tr_read_ptr(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned short adapterram;
tms380tr_read_ram(dev, (unsigned char *)&tp->intptrs.BurnedInAddrPtr,
ADAPTER_INT_PTRS, 16);
tms380tr_read_ram(dev, (unsigned char *)&adapterram,
cpu_to_be16((unsigned short)tp->intptrs.AdapterRAMPtr), 2);
return be16_to_cpu(adapterram);
}
/*
* Reads a number of bytes from adapter to system memory.
*/
static void tms380tr_read_ram(struct net_device *dev, unsigned char *Data,
unsigned short Address, int Length)
{
int i;
unsigned short old_sifadx, old_sifadr, InWord;
/* Save the current values */
old_sifadx = SIFREADW(SIFADX);
old_sifadr = SIFREADW(SIFADR);
/* Page number of adapter memory */
SIFWRITEW(0x0001, SIFADX);
/* Address offset in adapter RAM */
SIFWRITEW(Address, SIFADR);
/* Copy len byte from adapter memory to system data area. */
i = 0;
for(;;)
{
InWord = SIFREADW(SIFINC);
*(Data + i) = HIBYTE(InWord); /* Write first byte */
if(++i == Length) /* All is done break */
break;
*(Data + i) = LOBYTE(InWord); /* Write second byte */
if (++i == Length) /* All is done break */
break;
}
/* Restore original values */
SIFWRITEW(old_sifadx, SIFADX);
SIFWRITEW(old_sifadr, SIFADR);
return;
}
/*
* Cancel all queued packets in the transmission queue.
*/
static void tms380tr_cancel_tx_queue(struct net_local* tp)
{
TPL *tpl;
/*
* NOTE: There must not be an active TRANSMIT command pending, when
* this function is called.
*/
if(tp->TransmitCommandActive)
return;
for(;;)
{
tpl = tp->TplBusy;
if(!tpl->BusyFlag)
break;
/* "Remove" TPL from busy list. */
tp->TplBusy = tpl->NextTPLPtr;
tms380tr_write_tpl_status(tpl, 0); /* Clear VALID bit */
tpl->BusyFlag = 0; /* "free" TPL */
printk(KERN_INFO "Cancel tx (%08lXh).\n", (unsigned long)tpl);
if (tpl->DMABuff)
dma_unmap_single(tp->pdev, tpl->DMABuff, tpl->Skb->len, DMA_TO_DEVICE);
dev_kfree_skb_any(tpl->Skb);
}
return;
}
/*
* This function is called whenever a transmit interrupt is generated by the
* adapter. For a command complete interrupt, it is checked if we have to
* issue a new transmit command or not.
*/
static void tms380tr_tx_status_irq(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned char HighByte, HighAc, LowAc;
TPL *tpl;
/* NOTE: At this point the SSB from TRANSMIT STATUS is no longer
* available, because the CLEAR SSB command has already been issued.
*
* Process all complete transmissions.
*/
for(;;)
{
tpl = tp->TplBusy;
if(!tpl->BusyFlag || (tpl->Status
& (TX_VALID | TX_FRAME_COMPLETE))
!= TX_FRAME_COMPLETE)
{
break;
}
/* "Remove" TPL from busy list. */
tp->TplBusy = tpl->NextTPLPtr ;
/* Check the transmit status field only for directed frames*/
if(DIRECTED_FRAME(tpl) && (tpl->Status & TX_ERROR) == 0)
{
HighByte = GET_TRANSMIT_STATUS_HIGH_BYTE(tpl->Status);
HighAc = GET_FRAME_STATUS_HIGH_AC(HighByte);
LowAc = GET_FRAME_STATUS_LOW_AC(HighByte);
if((HighAc != LowAc) || (HighAc == AC_NOT_RECOGNIZED))
{
printk(KERN_DEBUG "%s: (DA=%08lX not recognized)\n",
dev->name,
*(unsigned long *)&tpl->MData[2+2]);
}
else
{
if(tms380tr_debug > 3)
printk(KERN_DEBUG "%s: Directed frame tx'd\n",
dev->name);
}
}
else
{
if(!DIRECTED_FRAME(tpl))
{
if(tms380tr_debug > 3)
printk(KERN_DEBUG "%s: Broadcast frame tx'd\n",
dev->name);
}
}
tp->MacStat.tx_packets++;
if (tpl->DMABuff)
dma_unmap_single(tp->pdev, tpl->DMABuff, tpl->Skb->len, DMA_TO_DEVICE);
dev_kfree_skb_irq(tpl->Skb);
tpl->BusyFlag = 0; /* "free" TPL */
}
if(!tp->TplFree->NextTPLPtr->BusyFlag)
netif_wake_queue(dev);
return;
}
/*
* Called if a frame receive interrupt is generated by the adapter.
* Check if the frame is valid and indicate it to system.
*/
static void tms380tr_rcv_status_irq(struct net_device *dev)
{
struct net_local *tp = netdev_priv(dev);
unsigned char *ReceiveDataPtr;
struct sk_buff *skb;
unsigned int Length, Length2;
RPL *rpl;
RPL *SaveHead;
dma_addr_t dmabuf;
/* NOTE: At this point the SSB from RECEIVE STATUS is no longer
* available, because the CLEAR SSB command has already been issued.
*
* Process all complete receives.
*/
for(;;)
{
rpl = tp->RplHead;
if(rpl->Status & RX_VALID)
break; /* RPL still in use by adapter */
/* Forward RPLHead pointer to next list. */
SaveHead = tp->RplHead;
tp->RplHead = rpl->NextRPLPtr;
/* Get the frame size (Byte swap for Intel).
* Do this early (see workaround comment below)
*/
Length = be16_to_cpu(rpl->FrameSize);
/* Check if the Frame_Start, Frame_End and
* Frame_Complete bits are set.
*/
if((rpl->Status & VALID_SINGLE_BUFFER_FRAME)
== VALID_SINGLE_BUFFER_FRAME)
{
ReceiveDataPtr = rpl->MData;
/* Workaround for delayed write of FrameSize on ISA
* (FrameSize is false but valid-bit is reset)
* Frame size is set to zero when the RPL is freed.
* Length2 is there because there have also been
* cases where the FrameSize was partially written
*/
Length2 = be16_to_cpu(rpl->FrameSize);
if(Length == 0 || Length != Length2)
{
tp->RplHead = SaveHead;
break; /* Return to tms380tr_interrupt */
}
tms380tr_update_rcv_stats(tp,ReceiveDataPtr,Length);
if(tms380tr_debug > 3)
printk(KERN_DEBUG "%s: Packet Length %04X (%d)\n",
dev->name, Length, Length);
/* Indicate the received frame to system the
* adapter does the Source-Routing padding for
* us. See: OpenOptions in tms380tr_init_opb()
*/
skb = rpl->Skb;
if(rpl->SkbStat == SKB_UNAVAILABLE)
{
/* Try again to allocate skb */
skb = dev_alloc_skb(tp->MaxPacketSize);
if(skb == NULL)
{
/* Update Stats ?? */
}
else
{
skb_put(skb, tp->MaxPacketSize);
rpl->SkbStat = SKB_DATA_COPY;
ReceiveDataPtr = rpl->MData;
}
}
if(skb && (rpl->SkbStat == SKB_DATA_COPY
|| rpl->SkbStat == SKB_DMA_DIRECT))
{
if(rpl->SkbStat == SKB_DATA_COPY)
skb_copy_to_linear_data(skb, ReceiveDataPtr,
Length);
/* Deliver frame to system */
rpl->Skb = NULL;
skb_trim(skb,Length);
skb->protocol = tr_type_trans(skb,dev);
netif_rx(skb);
}
}
else /* Invalid frame */
{
if(rpl->Skb != NULL)
dev_kfree_skb_irq(rpl->Skb);
/* Skip list. */
if(rpl->Status & RX_START_FRAME)
/* Frame start bit is set -> overflow. */
tp->MacStat.rx_errors++;
}
if (rpl->DMABuff)
dma_unmap_single(tp->pdev, rpl->DMABuff, tp->MaxPacketSize, DMA_TO_DEVICE);
rpl->DMABuff = 0;
/* Allocate new skb for rpl */
rpl->Skb = dev_alloc_skb(tp->MaxPacketSize);
/* skb == NULL ? then use local buffer */
if(rpl->Skb == NULL)
{
rpl->SkbStat = SKB_UNAVAILABLE;
rpl->FragList[0].DataAddr = htonl(((char *)tp->LocalRxBuffers[rpl->RPLIndex] - (char *)tp) + tp->dmabuffer);
rpl->MData = tp->LocalRxBuffers[rpl->RPLIndex];
}
else /* skb != NULL */
{
rpl->Skb->dev = dev;
skb_put(rpl->Skb, tp->MaxPacketSize);
/* Data unreachable for DMA ? then use local buffer */
dmabuf = dma_map_single(tp->pdev, rpl->Skb->data, tp->MaxPacketSize, DMA_FROM_DEVICE);
if(tp->dmalimit && (dmabuf + tp->MaxPacketSize > tp->dmalimit))
{
rpl->SkbStat = SKB_DATA_COPY;
rpl->FragList[0].DataAddr = htonl(((char *)tp->LocalRxBuffers[rpl->RPLIndex] - (char *)tp) + tp->dmabuffer);
rpl->MData = tp->LocalRxBuffers[rpl->RPLIndex];
}
else
{
/* DMA directly in skb->data */
rpl->SkbStat = SKB_DMA_DIRECT;
rpl->FragList[0].DataAddr = htonl(dmabuf);
rpl->MData = rpl->Skb->data;
rpl->DMABuff = dmabuf;
}
}
rpl->FragList[0].DataCount = cpu_to_be16((unsigned short)tp->MaxPacketSize);
rpl->FrameSize = 0;
/* Pass the last RPL back to the adapter */
tp->RplTail->FrameSize = 0;
/* Reset the CSTAT field in the list. */
tms380tr_write_rpl_status(tp->RplTail, RX_VALID | RX_FRAME_IRQ);
/* Current RPL becomes last one in list. */
tp->RplTail = tp->RplTail->NextRPLPtr;
/* Inform adapter about RPL valid. */
tms380tr_exec_sifcmd(dev, CMD_RX_VALID);
}
return;
}
/*
* This function should be used whenever the status of any RPL must be
* modified by the driver, because the compiler may otherwise change the
* order of instructions such that writing the RPL status may be executed
* at an undesireable time. When this function is used, the status is
* always written when the function is called.
*/
static void tms380tr_write_rpl_status(RPL *rpl, unsigned int Status)
{
rpl->Status = Status;
return;
}
/*
* The function updates the statistic counters in mac->MacStat.
* It differtiates between directed and broadcast/multicast ( ==functional)
* frames.
*/
static void tms380tr_update_rcv_stats(struct net_local *tp, unsigned char DataPtr[],
unsigned int Length)
{
tp->MacStat.rx_packets++;
tp->MacStat.rx_bytes += Length;
/* Test functional bit */
if(DataPtr[2] & GROUP_BIT)
tp->MacStat.multicast++;
return;
}
static int tms380tr_set_mac_address(struct net_device *dev, void *addr)
{
struct net_local *tp = netdev_priv(dev);
struct sockaddr *saddr = addr;
if (tp->AdapterOpenFlag || tp->AdapterVirtOpenFlag) {
printk(KERN_WARNING "%s: Cannot set MAC/LAA address while card is open\n", dev->name);
return -EIO;
}
memcpy(dev->dev_addr, saddr->sa_data, dev->addr_len);
return 0;
}
#if TMS380TR_DEBUG > 0
/*
* Dump Packet (data)
*/
static void tms380tr_dump(unsigned char *Data, int length)
{
int i, j;
for (i = 0, j = 0; i < length / 8; i++, j += 8)
{
printk(KERN_DEBUG "%02x %02x %02x %02x %02x %02x %02x %02x\n",
Data[j+0],Data[j+1],Data[j+2],Data[j+3],
Data[j+4],Data[j+5],Data[j+6],Data[j+7]);
}
return;
}
#endif
void tmsdev_term(struct net_device *dev)
{
struct net_local *tp;
tp = netdev_priv(dev);
dma_unmap_single(tp->pdev, tp->dmabuffer, sizeof(struct net_local),
DMA_BIDIRECTIONAL);
}
const struct net_device_ops tms380tr_netdev_ops = {
.ndo_open = tms380tr_open,
.ndo_stop = tms380tr_close,
.ndo_start_xmit = tms380tr_send_packet,
.ndo_tx_timeout = tms380tr_timeout,
.ndo_get_stats = tms380tr_get_stats,
.ndo_set_multicast_list = tms380tr_set_multicast_list,
.ndo_set_mac_address = tms380tr_set_mac_address,
};
EXPORT_SYMBOL(tms380tr_netdev_ops);
int tmsdev_init(struct net_device *dev, struct device *pdev)
{
struct net_local *tms_local;
memset(netdev_priv(dev), 0, sizeof(struct net_local));
tms_local = netdev_priv(dev);
init_waitqueue_head(&tms_local->wait_for_tok_int);
if (pdev->dma_mask)
tms_local->dmalimit = *pdev->dma_mask;
else
return -ENOMEM;
tms_local->pdev = pdev;
tms_local->dmabuffer = dma_map_single(pdev, (void *)tms_local,
sizeof(struct net_local), DMA_BIDIRECTIONAL);
if (tms_local->dmabuffer + sizeof(struct net_local) >
tms_local->dmalimit)
{
printk(KERN_INFO "%s: Memory not accessible for DMA\n",
dev->name);
tmsdev_term(dev);
return -ENOMEM;
}
dev->netdev_ops = &tms380tr_netdev_ops;
dev->watchdog_timeo = HZ;
return 0;
}
EXPORT_SYMBOL(tms380tr_open);
EXPORT_SYMBOL(tms380tr_close);
EXPORT_SYMBOL(tms380tr_interrupt);
EXPORT_SYMBOL(tmsdev_init);
EXPORT_SYMBOL(tmsdev_term);
EXPORT_SYMBOL(tms380tr_wait);
#ifdef MODULE
static struct module *TMS380_module = NULL;
int init_module(void)
{
printk(KERN_DEBUG "%s", version);
TMS380_module = &__this_module;
return 0;
}
void cleanup_module(void)
{
TMS380_module = NULL;
}
#endif
MODULE_LICENSE("GPL");