satip-axe/kernel/drivers/scsi/aic94xx/aic94xx_hwi.h
2015-03-26 17:24:57 +01:00

399 lines
10 KiB
C

/*
* Aic94xx SAS/SATA driver hardware interface header file.
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*
* This file is licensed under GPLv2.
*
* This file is part of the aic94xx driver.
*
* The aic94xx driver is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of the
* License.
*
* The aic94xx driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the aic94xx driver; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef _AIC94XX_HWI_H_
#define _AIC94XX_HWI_H_
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <scsi/libsas.h>
#include "aic94xx.h"
#include "aic94xx_sas.h"
/* Define ASD_MAX_PHYS to the maximum phys ever. Currently 8. */
#define ASD_MAX_PHYS 8
#define ASD_PCBA_SN_SIZE 12
struct asd_ha_addrspace {
void __iomem *addr;
unsigned long start; /* pci resource start */
unsigned long len; /* pci resource len */
unsigned long flags; /* pci resource flags */
/* addresses internal to the host adapter */
u32 swa_base; /* mmspace 1 (MBAR1) uses this only */
u32 swb_base;
u32 swc_base;
};
struct bios_struct {
int present;
u8 maj;
u8 min;
u32 bld;
};
struct unit_element_struct {
u16 num;
u16 size;
void *area;
};
struct flash_struct {
u32 bar;
int present;
int wide;
u8 manuf;
u8 dev_id;
u8 sec_prot;
u8 method;
u32 dir_offs;
};
struct asd_phy_desc {
/* From CTRL-A settings, then set to what is appropriate */
u8 sas_addr[SAS_ADDR_SIZE];
u8 max_sas_lrate;
u8 min_sas_lrate;
u8 max_sata_lrate;
u8 min_sata_lrate;
u8 flags;
#define ASD_CRC_DIS 1
#define ASD_SATA_SPINUP_HOLD 2
u8 phy_control_0; /* mode 5 reg 0x160 */
u8 phy_control_1; /* mode 5 reg 0x161 */
u8 phy_control_2; /* mode 5 reg 0x162 */
u8 phy_control_3; /* mode 5 reg 0x163 */
};
struct asd_dma_tok {
void *vaddr;
dma_addr_t dma_handle;
size_t size;
};
struct hw_profile {
struct bios_struct bios;
struct unit_element_struct ue;
struct flash_struct flash;
u8 sas_addr[SAS_ADDR_SIZE];
char pcba_sn[ASD_PCBA_SN_SIZE+1];
u8 enabled_phys; /* mask of enabled phys */
struct asd_phy_desc phy_desc[ASD_MAX_PHYS];
u32 max_scbs; /* absolute sequencer scb queue size */
struct asd_dma_tok *scb_ext;
u32 max_ddbs;
struct asd_dma_tok *ddb_ext;
spinlock_t ddb_lock;
void *ddb_bitmap;
int num_phys; /* ENABLEABLE */
int max_phys; /* REPORTED + ENABLEABLE */
unsigned addr_range; /* max # of addrs; max # of possible ports */
unsigned port_name_base;
unsigned dev_name_base;
unsigned sata_name_base;
};
struct asd_ascb {
struct list_head list;
struct asd_ha_struct *ha;
struct scb *scb; /* equals dma_scb->vaddr */
struct asd_dma_tok dma_scb;
struct asd_dma_tok *sg_arr;
void (*tasklet_complete)(struct asd_ascb *, struct done_list_struct *);
u8 uldd_timer:1;
/* internally generated command */
struct timer_list timer;
struct completion *completion;
u8 tag_valid:1;
__be16 tag; /* error recovery only */
/* If this is an Empty SCB, index of first edb in seq->edb_arr. */
int edb_index;
/* Used by the timer timeout function. */
int tc_index;
void *uldd_task;
};
#define ASD_DL_SIZE_BITS 0x8
#define ASD_DL_SIZE (1<<(2+ASD_DL_SIZE_BITS))
#define ASD_DEF_DL_TOGGLE 0x01
struct asd_seq_data {
spinlock_t pend_q_lock;
u16 scbpro;
int pending;
struct list_head pend_q;
int can_queue; /* per adapter */
struct asd_dma_tok next_scb; /* next scb to be delivered to CSEQ */
spinlock_t tc_index_lock;
void **tc_index_array;
void *tc_index_bitmap;
int tc_index_bitmap_bits;
struct tasklet_struct dl_tasklet;
struct done_list_struct *dl; /* array of done list entries, equals */
struct asd_dma_tok *actual_dl; /* actual_dl->vaddr */
int dl_toggle;
int dl_next;
int num_edbs;
struct asd_dma_tok **edb_arr;
int num_escbs;
struct asd_ascb **escb_arr; /* array of pointers to escbs */
};
/* This is an internal port structure. These are used to get accurate
* phy_mask for updating DDB 0.
*/
struct asd_port {
u8 sas_addr[SAS_ADDR_SIZE];
u8 attached_sas_addr[SAS_ADDR_SIZE];
u32 phy_mask;
int num_phys;
};
/* This is the Host Adapter structure. It describes the hardware
* SAS adapter.
*/
struct asd_ha_struct {
struct pci_dev *pcidev;
const char *name;
struct sas_ha_struct sas_ha;
u8 revision_id;
int iospace;
spinlock_t iolock;
struct asd_ha_addrspace io_handle[2];
struct hw_profile hw_prof;
struct asd_phy phys[ASD_MAX_PHYS];
spinlock_t asd_ports_lock;
struct asd_port asd_ports[ASD_MAX_PHYS];
struct asd_sas_port ports[ASD_MAX_PHYS];
struct dma_pool *scb_pool;
struct asd_seq_data seq; /* sequencer related */
u32 bios_status;
const struct firmware *bios_image;
};
/* ---------- Common macros ---------- */
#define ASD_BUSADDR_LO(__dma_handle) ((u32)(__dma_handle))
#define ASD_BUSADDR_HI(__dma_handle) (((sizeof(dma_addr_t))==8) \
? ((u32)((__dma_handle) >> 32)) \
: ((u32)0))
#define dev_to_asd_ha(__dev) pci_get_drvdata(to_pci_dev(__dev))
#define SCB_SITE_VALID(__site_no) (((__site_no) & 0xF0FF) != 0x00FF \
&& ((__site_no) & 0xF0FF) > 0x001F)
/* For each bit set in __lseq_mask, set __lseq to equal the bit
* position of the set bit and execute the statement following.
* __mc is the temporary mask, used as a mask "counter".
*/
#define for_each_sequencer(__lseq_mask, __mc, __lseq) \
for ((__mc)=(__lseq_mask),(__lseq)=0;(__mc)!=0;(__lseq++),(__mc)>>=1)\
if (((__mc) & 1))
#define for_each_phy(__lseq_mask, __mc, __lseq) \
for ((__mc)=(__lseq_mask),(__lseq)=0;(__mc)!=0;(__lseq++),(__mc)>>=1)\
if (((__mc) & 1))
#define PHY_ENABLED(_HA, _I) ((_HA)->hw_prof.enabled_phys & (1<<(_I)))
/* ---------- DMA allocs ---------- */
static inline struct asd_dma_tok *asd_dmatok_alloc(gfp_t flags)
{
return kmem_cache_alloc(asd_dma_token_cache, flags);
}
static inline void asd_dmatok_free(struct asd_dma_tok *token)
{
kmem_cache_free(asd_dma_token_cache, token);
}
static inline struct asd_dma_tok *asd_alloc_coherent(struct asd_ha_struct *
asd_ha, size_t size,
gfp_t flags)
{
struct asd_dma_tok *token = asd_dmatok_alloc(flags);
if (token) {
token->size = size;
token->vaddr = dma_alloc_coherent(&asd_ha->pcidev->dev,
token->size,
&token->dma_handle,
flags);
if (!token->vaddr) {
asd_dmatok_free(token);
token = NULL;
}
}
return token;
}
static inline void asd_free_coherent(struct asd_ha_struct *asd_ha,
struct asd_dma_tok *token)
{
if (token) {
dma_free_coherent(&asd_ha->pcidev->dev, token->size,
token->vaddr, token->dma_handle);
asd_dmatok_free(token);
}
}
static inline void asd_init_ascb(struct asd_ha_struct *asd_ha,
struct asd_ascb *ascb)
{
INIT_LIST_HEAD(&ascb->list);
ascb->scb = ascb->dma_scb.vaddr;
ascb->ha = asd_ha;
ascb->timer.function = NULL;
init_timer(&ascb->timer);
ascb->tc_index = -1;
}
/* Must be called with the tc_index_lock held!
*/
static inline void asd_tc_index_release(struct asd_seq_data *seq, int index)
{
seq->tc_index_array[index] = NULL;
clear_bit(index, seq->tc_index_bitmap);
}
/* Must be called with the tc_index_lock held!
*/
static inline int asd_tc_index_get(struct asd_seq_data *seq, void *ptr)
{
int index;
index = find_first_zero_bit(seq->tc_index_bitmap,
seq->tc_index_bitmap_bits);
if (index == seq->tc_index_bitmap_bits)
return -1;
seq->tc_index_array[index] = ptr;
set_bit(index, seq->tc_index_bitmap);
return index;
}
/* Must be called with the tc_index_lock held!
*/
static inline void *asd_tc_index_find(struct asd_seq_data *seq, int index)
{
return seq->tc_index_array[index];
}
/**
* asd_ascb_free -- free a single aSCB after is has completed
* @ascb: pointer to the aSCB of interest
*
* This frees an aSCB after it has been executed/completed by
* the sequencer.
*/
static inline void asd_ascb_free(struct asd_ascb *ascb)
{
if (ascb) {
struct asd_ha_struct *asd_ha = ascb->ha;
unsigned long flags;
BUG_ON(!list_empty(&ascb->list));
spin_lock_irqsave(&ascb->ha->seq.tc_index_lock, flags);
asd_tc_index_release(&ascb->ha->seq, ascb->tc_index);
spin_unlock_irqrestore(&ascb->ha->seq.tc_index_lock, flags);
dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
ascb->dma_scb.dma_handle);
kmem_cache_free(asd_ascb_cache, ascb);
}
}
/**
* asd_ascb_list_free -- free a list of ascbs
* @ascb_list: a list of ascbs
*
* This function will free a list of ascbs allocated by asd_ascb_alloc_list.
* It is used when say the scb queueing function returned QUEUE_FULL,
* and we do not need the ascbs any more.
*/
static inline void asd_ascb_free_list(struct asd_ascb *ascb_list)
{
LIST_HEAD(list);
struct list_head *n, *pos;
__list_add(&list, ascb_list->list.prev, &ascb_list->list);
list_for_each_safe(pos, n, &list) {
list_del_init(pos);
asd_ascb_free(list_entry(pos, struct asd_ascb, list));
}
}
/* ---------- Function declarations ---------- */
int asd_init_hw(struct asd_ha_struct *asd_ha);
irqreturn_t asd_hw_isr(int irq, void *dev_id);
struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
*asd_ha, int *num,
gfp_t gfp_mask);
int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
int num);
int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
int num);
int asd_init_post_escbs(struct asd_ha_struct *asd_ha);
void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc);
void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op);
void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op);
int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask);
void asd_ascb_timedout(unsigned long data);
int asd_chip_hardrst(struct asd_ha_struct *asd_ha);
#endif