2015-03-26 17:24:57 +01:00

1637 lines
48 KiB
C

/*
* Copyright (c) by Francisco Moraes <fmoraes@nc.rr.com>
* Driver EMU10K1X chips
*
* Parts of this code were adapted from audigyls.c driver which is
* Copyright (c) by James Courtier-Dutton <James@superbug.demon.co.uk>
*
* BUGS:
* --
*
* TODO:
*
* Chips (SB0200 model):
* - EMU10K1X-DBQ
* - STAC 9708T
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/ac97_codec.h>
#include <sound/info.h>
#include <sound/rawmidi.h>
MODULE_AUTHOR("Francisco Moraes <fmoraes@nc.rr.com>");
MODULE_DESCRIPTION("EMU10K1X");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Dell Creative Labs,SB Live!}");
// module parameters (see "Module Parameters")
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the EMU10K1X soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the EMU10K1X soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable the EMU10K1X soundcard.");
// some definitions were borrowed from emu10k1 driver as they seem to be the same
/************************************************************************************************/
/* PCI function 0 registers, address = <val> + PCIBASE0 */
/************************************************************************************************/
#define PTR 0x00 /* Indexed register set pointer register */
/* NOTE: The CHANNELNUM and ADDRESS words can */
/* be modified independently of each other. */
#define DATA 0x04 /* Indexed register set data register */
#define IPR 0x08 /* Global interrupt pending register */
/* Clear pending interrupts by writing a 1 to */
/* the relevant bits and zero to the other bits */
#define IPR_MIDITRANSBUFEMPTY 0x00000001 /* MIDI UART transmit buffer empty */
#define IPR_MIDIRECVBUFEMPTY 0x00000002 /* MIDI UART receive buffer empty */
#define IPR_CH_0_LOOP 0x00000800 /* Channel 0 loop */
#define IPR_CH_0_HALF_LOOP 0x00000100 /* Channel 0 half loop */
#define IPR_CAP_0_LOOP 0x00080000 /* Channel capture loop */
#define IPR_CAP_0_HALF_LOOP 0x00010000 /* Channel capture half loop */
#define INTE 0x0c /* Interrupt enable register */
#define INTE_MIDITXENABLE 0x00000001 /* Enable MIDI transmit-buffer-empty interrupts */
#define INTE_MIDIRXENABLE 0x00000002 /* Enable MIDI receive-buffer-empty interrupts */
#define INTE_CH_0_LOOP 0x00000800 /* Channel 0 loop */
#define INTE_CH_0_HALF_LOOP 0x00000100 /* Channel 0 half loop */
#define INTE_CAP_0_LOOP 0x00080000 /* Channel capture loop */
#define INTE_CAP_0_HALF_LOOP 0x00010000 /* Channel capture half loop */
#define HCFG 0x14 /* Hardware config register */
#define HCFG_LOCKSOUNDCACHE 0x00000008 /* 1 = Cancel bustmaster accesses to soundcache */
/* NOTE: This should generally never be used. */
#define HCFG_AUDIOENABLE 0x00000001 /* 0 = CODECs transmit zero-valued samples */
/* Should be set to 1 when the EMU10K1 is */
/* completely initialized. */
#define GPIO 0x18 /* Defaults: 00001080-Analog, 00001000-SPDIF. */
#define AC97DATA 0x1c /* AC97 register set data register (16 bit) */
#define AC97ADDRESS 0x1e /* AC97 register set address register (8 bit) */
/********************************************************************************************************/
/* Emu10k1x pointer-offset register set, accessed through the PTR and DATA registers */
/********************************************************************************************************/
#define PLAYBACK_LIST_ADDR 0x00 /* Base DMA address of a list of pointers to each period/size */
/* One list entry: 4 bytes for DMA address,
* 4 bytes for period_size << 16.
* One list entry is 8 bytes long.
* One list entry for each period in the buffer.
*/
#define PLAYBACK_LIST_SIZE 0x01 /* Size of list in bytes << 16. E.g. 8 periods -> 0x00380000 */
#define PLAYBACK_LIST_PTR 0x02 /* Pointer to the current period being played */
#define PLAYBACK_DMA_ADDR 0x04 /* Playback DMA addresss */
#define PLAYBACK_PERIOD_SIZE 0x05 /* Playback period size */
#define PLAYBACK_POINTER 0x06 /* Playback period pointer. Sample currently in DAC */
#define PLAYBACK_UNKNOWN1 0x07
#define PLAYBACK_UNKNOWN2 0x08
/* Only one capture channel supported */
#define CAPTURE_DMA_ADDR 0x10 /* Capture DMA address */
#define CAPTURE_BUFFER_SIZE 0x11 /* Capture buffer size */
#define CAPTURE_POINTER 0x12 /* Capture buffer pointer. Sample currently in ADC */
#define CAPTURE_UNKNOWN 0x13
/* From 0x20 - 0x3f, last samples played on each channel */
#define TRIGGER_CHANNEL 0x40 /* Trigger channel playback */
#define TRIGGER_CHANNEL_0 0x00000001 /* Trigger channel 0 */
#define TRIGGER_CHANNEL_1 0x00000002 /* Trigger channel 1 */
#define TRIGGER_CHANNEL_2 0x00000004 /* Trigger channel 2 */
#define TRIGGER_CAPTURE 0x00000100 /* Trigger capture channel */
#define ROUTING 0x41 /* Setup sound routing ? */
#define ROUTING_FRONT_LEFT 0x00000001
#define ROUTING_FRONT_RIGHT 0x00000002
#define ROUTING_REAR_LEFT 0x00000004
#define ROUTING_REAR_RIGHT 0x00000008
#define ROUTING_CENTER_LFE 0x00010000
#define SPCS0 0x42 /* SPDIF output Channel Status 0 register */
#define SPCS1 0x43 /* SPDIF output Channel Status 1 register */
#define SPCS2 0x44 /* SPDIF output Channel Status 2 register */
#define SPCS_CLKACCYMASK 0x30000000 /* Clock accuracy */
#define SPCS_CLKACCY_1000PPM 0x00000000 /* 1000 parts per million */
#define SPCS_CLKACCY_50PPM 0x10000000 /* 50 parts per million */
#define SPCS_CLKACCY_VARIABLE 0x20000000 /* Variable accuracy */
#define SPCS_SAMPLERATEMASK 0x0f000000 /* Sample rate */
#define SPCS_SAMPLERATE_44 0x00000000 /* 44.1kHz sample rate */
#define SPCS_SAMPLERATE_48 0x02000000 /* 48kHz sample rate */
#define SPCS_SAMPLERATE_32 0x03000000 /* 32kHz sample rate */
#define SPCS_CHANNELNUMMASK 0x00f00000 /* Channel number */
#define SPCS_CHANNELNUM_UNSPEC 0x00000000 /* Unspecified channel number */
#define SPCS_CHANNELNUM_LEFT 0x00100000 /* Left channel */
#define SPCS_CHANNELNUM_RIGHT 0x00200000 /* Right channel */
#define SPCS_SOURCENUMMASK 0x000f0000 /* Source number */
#define SPCS_SOURCENUM_UNSPEC 0x00000000 /* Unspecified source number */
#define SPCS_GENERATIONSTATUS 0x00008000 /* Originality flag (see IEC-958 spec) */
#define SPCS_CATEGORYCODEMASK 0x00007f00 /* Category code (see IEC-958 spec) */
#define SPCS_MODEMASK 0x000000c0 /* Mode (see IEC-958 spec) */
#define SPCS_EMPHASISMASK 0x00000038 /* Emphasis */
#define SPCS_EMPHASIS_NONE 0x00000000 /* No emphasis */
#define SPCS_EMPHASIS_50_15 0x00000008 /* 50/15 usec 2 channel */
#define SPCS_COPYRIGHT 0x00000004 /* Copyright asserted flag -- do not modify */
#define SPCS_NOTAUDIODATA 0x00000002 /* 0 = Digital audio, 1 = not audio */
#define SPCS_PROFESSIONAL 0x00000001 /* 0 = Consumer (IEC-958), 1 = pro (AES3-1992) */
#define SPDIF_SELECT 0x45 /* Enables SPDIF or Analogue outputs 0-Analogue, 0x700-SPDIF */
/* This is the MPU port on the card */
#define MUDATA 0x47
#define MUCMD 0x48
#define MUSTAT MUCMD
/* From 0x50 - 0x5f, last samples captured */
/**
* The hardware has 3 channels for playback and 1 for capture.
* - channel 0 is the front channel
* - channel 1 is the rear channel
* - channel 2 is the center/lfe chanel
* Volume is controlled by the AC97 for the front and rear channels by
* the PCM Playback Volume, Sigmatel Surround Playback Volume and
* Surround Playback Volume. The Sigmatel 4-Speaker Stereo switch affects
* the front/rear channel mixing in the REAR OUT jack. When using the
* 4-Speaker Stereo, both front and rear channels will be mixed in the
* REAR OUT.
* The center/lfe channel has no volume control and cannot be muted during
* playback.
*/
struct emu10k1x_voice {
struct emu10k1x *emu;
int number;
int use;
struct emu10k1x_pcm *epcm;
};
struct emu10k1x_pcm {
struct emu10k1x *emu;
struct snd_pcm_substream *substream;
struct emu10k1x_voice *voice;
unsigned short running;
};
struct emu10k1x_midi {
struct emu10k1x *emu;
struct snd_rawmidi *rmidi;
struct snd_rawmidi_substream *substream_input;
struct snd_rawmidi_substream *substream_output;
unsigned int midi_mode;
spinlock_t input_lock;
spinlock_t output_lock;
spinlock_t open_lock;
int tx_enable, rx_enable;
int port;
int ipr_tx, ipr_rx;
void (*interrupt)(struct emu10k1x *emu, unsigned int status);
};
// definition of the chip-specific record
struct emu10k1x {
struct snd_card *card;
struct pci_dev *pci;
unsigned long port;
struct resource *res_port;
int irq;
unsigned char revision; /* chip revision */
unsigned int serial; /* serial number */
unsigned short model; /* subsystem id */
spinlock_t emu_lock;
spinlock_t voice_lock;
struct snd_ac97 *ac97;
struct snd_pcm *pcm;
struct emu10k1x_voice voices[3];
struct emu10k1x_voice capture_voice;
u32 spdif_bits[3]; // SPDIF out setup
struct snd_dma_buffer dma_buffer;
struct emu10k1x_midi midi;
};
/* hardware definition */
static struct snd_pcm_hardware snd_emu10k1x_playback_hw = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (32*1024),
.period_bytes_min = 64,
.period_bytes_max = (16*1024),
.periods_min = 2,
.periods_max = 8,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_emu10k1x_capture_hw = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (32*1024),
.period_bytes_min = 64,
.period_bytes_max = (16*1024),
.periods_min = 2,
.periods_max = 2,
.fifo_size = 0,
};
static unsigned int snd_emu10k1x_ptr_read(struct emu10k1x * emu,
unsigned int reg,
unsigned int chn)
{
unsigned long flags;
unsigned int regptr, val;
regptr = (reg << 16) | chn;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
val = inl(emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return val;
}
static void snd_emu10k1x_ptr_write(struct emu10k1x *emu,
unsigned int reg,
unsigned int chn,
unsigned int data)
{
unsigned int regptr;
unsigned long flags;
regptr = (reg << 16) | chn;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
outl(data, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
static void snd_emu10k1x_intr_enable(struct emu10k1x *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int intr_enable;
spin_lock_irqsave(&emu->emu_lock, flags);
intr_enable = inl(emu->port + INTE) | intrenb;
outl(intr_enable, emu->port + INTE);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
static void snd_emu10k1x_intr_disable(struct emu10k1x *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int intr_enable;
spin_lock_irqsave(&emu->emu_lock, flags);
intr_enable = inl(emu->port + INTE) & ~intrenb;
outl(intr_enable, emu->port + INTE);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
static void snd_emu10k1x_gpio_write(struct emu10k1x *emu, unsigned int value)
{
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(value, emu->port + GPIO);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
static void snd_emu10k1x_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
kfree(runtime->private_data);
}
static void snd_emu10k1x_pcm_interrupt(struct emu10k1x *emu, struct emu10k1x_voice *voice)
{
struct emu10k1x_pcm *epcm;
if ((epcm = voice->epcm) == NULL)
return;
if (epcm->substream == NULL)
return;
#if 0
snd_printk(KERN_INFO "IRQ: position = 0x%x, period = 0x%x, size = 0x%x\n",
epcm->substream->ops->pointer(epcm->substream),
snd_pcm_lib_period_bytes(epcm->substream),
snd_pcm_lib_buffer_bytes(epcm->substream));
#endif
snd_pcm_period_elapsed(epcm->substream);
}
/* open callback */
static int snd_emu10k1x_playback_open(struct snd_pcm_substream *substream)
{
struct emu10k1x *chip = snd_pcm_substream_chip(substream);
struct emu10k1x_pcm *epcm;
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) {
return err;
}
if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0)
return err;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
if (epcm == NULL)
return -ENOMEM;
epcm->emu = chip;
epcm->substream = substream;
runtime->private_data = epcm;
runtime->private_free = snd_emu10k1x_pcm_free_substream;
runtime->hw = snd_emu10k1x_playback_hw;
return 0;
}
/* close callback */
static int snd_emu10k1x_playback_close(struct snd_pcm_substream *substream)
{
return 0;
}
/* hw_params callback */
static int snd_emu10k1x_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct emu10k1x_pcm *epcm = runtime->private_data;
if (! epcm->voice) {
epcm->voice = &epcm->emu->voices[substream->pcm->device];
epcm->voice->use = 1;
epcm->voice->epcm = epcm;
}
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
/* hw_free callback */
static int snd_emu10k1x_pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct emu10k1x_pcm *epcm;
if (runtime->private_data == NULL)
return 0;
epcm = runtime->private_data;
if (epcm->voice) {
epcm->voice->use = 0;
epcm->voice->epcm = NULL;
epcm->voice = NULL;
}
return snd_pcm_lib_free_pages(substream);
}
/* prepare callback */
static int snd_emu10k1x_pcm_prepare(struct snd_pcm_substream *substream)
{
struct emu10k1x *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct emu10k1x_pcm *epcm = runtime->private_data;
int voice = epcm->voice->number;
u32 *table_base = (u32 *)(emu->dma_buffer.area+1024*voice);
u32 period_size_bytes = frames_to_bytes(runtime, runtime->period_size);
int i;
for(i = 0; i < runtime->periods; i++) {
*table_base++=runtime->dma_addr+(i*period_size_bytes);
*table_base++=period_size_bytes<<16;
}
snd_emu10k1x_ptr_write(emu, PLAYBACK_LIST_ADDR, voice, emu->dma_buffer.addr+1024*voice);
snd_emu10k1x_ptr_write(emu, PLAYBACK_LIST_SIZE, voice, (runtime->periods - 1) << 19);
snd_emu10k1x_ptr_write(emu, PLAYBACK_LIST_PTR, voice, 0);
snd_emu10k1x_ptr_write(emu, PLAYBACK_POINTER, voice, 0);
snd_emu10k1x_ptr_write(emu, PLAYBACK_UNKNOWN1, voice, 0);
snd_emu10k1x_ptr_write(emu, PLAYBACK_UNKNOWN2, voice, 0);
snd_emu10k1x_ptr_write(emu, PLAYBACK_DMA_ADDR, voice, runtime->dma_addr);
snd_emu10k1x_ptr_write(emu, PLAYBACK_PERIOD_SIZE, voice, frames_to_bytes(runtime, runtime->period_size)<<16);
return 0;
}
/* trigger callback */
static int snd_emu10k1x_pcm_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct emu10k1x *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct emu10k1x_pcm *epcm = runtime->private_data;
int channel = epcm->voice->number;
int result = 0;
// snd_printk(KERN_INFO "trigger - emu10k1x = 0x%x, cmd = %i, pointer = %d\n", (int)emu, cmd, (int)substream->ops->pointer(substream));
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if(runtime->periods == 2)
snd_emu10k1x_intr_enable(emu, (INTE_CH_0_LOOP | INTE_CH_0_HALF_LOOP) << channel);
else
snd_emu10k1x_intr_enable(emu, INTE_CH_0_LOOP << channel);
epcm->running = 1;
snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0)|(TRIGGER_CHANNEL_0<<channel));
break;
case SNDRV_PCM_TRIGGER_STOP:
epcm->running = 0;
snd_emu10k1x_intr_disable(emu, (INTE_CH_0_LOOP | INTE_CH_0_HALF_LOOP) << channel);
snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0) & ~(TRIGGER_CHANNEL_0<<channel));
break;
default:
result = -EINVAL;
break;
}
return result;
}
/* pointer callback */
static snd_pcm_uframes_t
snd_emu10k1x_pcm_pointer(struct snd_pcm_substream *substream)
{
struct emu10k1x *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct emu10k1x_pcm *epcm = runtime->private_data;
int channel = epcm->voice->number;
snd_pcm_uframes_t ptr = 0, ptr1 = 0, ptr2= 0,ptr3 = 0,ptr4 = 0;
if (!epcm->running)
return 0;
ptr3 = snd_emu10k1x_ptr_read(emu, PLAYBACK_LIST_PTR, channel);
ptr1 = snd_emu10k1x_ptr_read(emu, PLAYBACK_POINTER, channel);
ptr4 = snd_emu10k1x_ptr_read(emu, PLAYBACK_LIST_PTR, channel);
if(ptr4 == 0 && ptr1 == frames_to_bytes(runtime, runtime->buffer_size))
return 0;
if (ptr3 != ptr4)
ptr1 = snd_emu10k1x_ptr_read(emu, PLAYBACK_POINTER, channel);
ptr2 = bytes_to_frames(runtime, ptr1);
ptr2 += (ptr4 >> 3) * runtime->period_size;
ptr = ptr2;
if (ptr >= runtime->buffer_size)
ptr -= runtime->buffer_size;
return ptr;
}
/* operators */
static struct snd_pcm_ops snd_emu10k1x_playback_ops = {
.open = snd_emu10k1x_playback_open,
.close = snd_emu10k1x_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_emu10k1x_pcm_hw_params,
.hw_free = snd_emu10k1x_pcm_hw_free,
.prepare = snd_emu10k1x_pcm_prepare,
.trigger = snd_emu10k1x_pcm_trigger,
.pointer = snd_emu10k1x_pcm_pointer,
};
/* open_capture callback */
static int snd_emu10k1x_pcm_open_capture(struct snd_pcm_substream *substream)
{
struct emu10k1x *chip = snd_pcm_substream_chip(substream);
struct emu10k1x_pcm *epcm;
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0)
return err;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
if (epcm == NULL)
return -ENOMEM;
epcm->emu = chip;
epcm->substream = substream;
runtime->private_data = epcm;
runtime->private_free = snd_emu10k1x_pcm_free_substream;
runtime->hw = snd_emu10k1x_capture_hw;
return 0;
}
/* close callback */
static int snd_emu10k1x_pcm_close_capture(struct snd_pcm_substream *substream)
{
return 0;
}
/* hw_params callback */
static int snd_emu10k1x_pcm_hw_params_capture(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct emu10k1x_pcm *epcm = runtime->private_data;
if (! epcm->voice) {
if (epcm->emu->capture_voice.use)
return -EBUSY;
epcm->voice = &epcm->emu->capture_voice;
epcm->voice->epcm = epcm;
epcm->voice->use = 1;
}
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
/* hw_free callback */
static int snd_emu10k1x_pcm_hw_free_capture(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct emu10k1x_pcm *epcm;
if (runtime->private_data == NULL)
return 0;
epcm = runtime->private_data;
if (epcm->voice) {
epcm->voice->use = 0;
epcm->voice->epcm = NULL;
epcm->voice = NULL;
}
return snd_pcm_lib_free_pages(substream);
}
/* prepare capture callback */
static int snd_emu10k1x_pcm_prepare_capture(struct snd_pcm_substream *substream)
{
struct emu10k1x *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
snd_emu10k1x_ptr_write(emu, CAPTURE_DMA_ADDR, 0, runtime->dma_addr);
snd_emu10k1x_ptr_write(emu, CAPTURE_BUFFER_SIZE, 0, frames_to_bytes(runtime, runtime->buffer_size)<<16); // buffer size in bytes
snd_emu10k1x_ptr_write(emu, CAPTURE_POINTER, 0, 0);
snd_emu10k1x_ptr_write(emu, CAPTURE_UNKNOWN, 0, 0);
return 0;
}
/* trigger_capture callback */
static int snd_emu10k1x_pcm_trigger_capture(struct snd_pcm_substream *substream,
int cmd)
{
struct emu10k1x *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct emu10k1x_pcm *epcm = runtime->private_data;
int result = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_emu10k1x_intr_enable(emu, INTE_CAP_0_LOOP |
INTE_CAP_0_HALF_LOOP);
snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0)|TRIGGER_CAPTURE);
epcm->running = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
epcm->running = 0;
snd_emu10k1x_intr_disable(emu, INTE_CAP_0_LOOP |
INTE_CAP_0_HALF_LOOP);
snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0) & ~(TRIGGER_CAPTURE));
break;
default:
result = -EINVAL;
break;
}
return result;
}
/* pointer_capture callback */
static snd_pcm_uframes_t
snd_emu10k1x_pcm_pointer_capture(struct snd_pcm_substream *substream)
{
struct emu10k1x *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct emu10k1x_pcm *epcm = runtime->private_data;
snd_pcm_uframes_t ptr;
if (!epcm->running)
return 0;
ptr = bytes_to_frames(runtime, snd_emu10k1x_ptr_read(emu, CAPTURE_POINTER, 0));
if (ptr >= runtime->buffer_size)
ptr -= runtime->buffer_size;
return ptr;
}
static struct snd_pcm_ops snd_emu10k1x_capture_ops = {
.open = snd_emu10k1x_pcm_open_capture,
.close = snd_emu10k1x_pcm_close_capture,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_emu10k1x_pcm_hw_params_capture,
.hw_free = snd_emu10k1x_pcm_hw_free_capture,
.prepare = snd_emu10k1x_pcm_prepare_capture,
.trigger = snd_emu10k1x_pcm_trigger_capture,
.pointer = snd_emu10k1x_pcm_pointer_capture,
};
static unsigned short snd_emu10k1x_ac97_read(struct snd_ac97 *ac97,
unsigned short reg)
{
struct emu10k1x *emu = ac97->private_data;
unsigned long flags;
unsigned short val;
spin_lock_irqsave(&emu->emu_lock, flags);
outb(reg, emu->port + AC97ADDRESS);
val = inw(emu->port + AC97DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return val;
}
static void snd_emu10k1x_ac97_write(struct snd_ac97 *ac97,
unsigned short reg, unsigned short val)
{
struct emu10k1x *emu = ac97->private_data;
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
outb(reg, emu->port + AC97ADDRESS);
outw(val, emu->port + AC97DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
static int snd_emu10k1x_ac97(struct emu10k1x *chip)
{
struct snd_ac97_bus *pbus;
struct snd_ac97_template ac97;
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_emu10k1x_ac97_write,
.read = snd_emu10k1x_ac97_read,
};
if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0)
return err;
pbus->no_vra = 1; /* we don't need VRA */
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
ac97.scaps = AC97_SCAP_NO_SPDIF;
return snd_ac97_mixer(pbus, &ac97, &chip->ac97);
}
static int snd_emu10k1x_free(struct emu10k1x *chip)
{
snd_emu10k1x_ptr_write(chip, TRIGGER_CHANNEL, 0, 0);
// disable interrupts
outl(0, chip->port + INTE);
// disable audio
outl(HCFG_LOCKSOUNDCACHE, chip->port + HCFG);
/* release the irq */
if (chip->irq >= 0)
free_irq(chip->irq, chip);
// release the i/o port
release_and_free_resource(chip->res_port);
// release the DMA
if (chip->dma_buffer.area) {
snd_dma_free_pages(&chip->dma_buffer);
}
pci_disable_device(chip->pci);
// release the data
kfree(chip);
return 0;
}
static int snd_emu10k1x_dev_free(struct snd_device *device)
{
struct emu10k1x *chip = device->device_data;
return snd_emu10k1x_free(chip);
}
static irqreturn_t snd_emu10k1x_interrupt(int irq, void *dev_id)
{
unsigned int status;
struct emu10k1x *chip = dev_id;
struct emu10k1x_voice *pvoice = chip->voices;
int i;
int mask;
status = inl(chip->port + IPR);
if (! status)
return IRQ_NONE;
// capture interrupt
if (status & (IPR_CAP_0_LOOP | IPR_CAP_0_HALF_LOOP)) {
struct emu10k1x_voice *cap_voice = &chip->capture_voice;
if (cap_voice->use)
snd_emu10k1x_pcm_interrupt(chip, cap_voice);
else
snd_emu10k1x_intr_disable(chip,
INTE_CAP_0_LOOP |
INTE_CAP_0_HALF_LOOP);
}
mask = IPR_CH_0_LOOP|IPR_CH_0_HALF_LOOP;
for (i = 0; i < 3; i++) {
if (status & mask) {
if (pvoice->use)
snd_emu10k1x_pcm_interrupt(chip, pvoice);
else
snd_emu10k1x_intr_disable(chip, mask);
}
pvoice++;
mask <<= 1;
}
if (status & (IPR_MIDITRANSBUFEMPTY|IPR_MIDIRECVBUFEMPTY)) {
if (chip->midi.interrupt)
chip->midi.interrupt(chip, status);
else
snd_emu10k1x_intr_disable(chip, INTE_MIDITXENABLE|INTE_MIDIRXENABLE);
}
// acknowledge the interrupt if necessary
outl(status, chip->port + IPR);
// snd_printk(KERN_INFO "interrupt %08x\n", status);
return IRQ_HANDLED;
}
static int __devinit snd_emu10k1x_pcm(struct emu10k1x *emu, int device, struct snd_pcm **rpcm)
{
struct snd_pcm *pcm;
int err;
int capture = 0;
if (rpcm)
*rpcm = NULL;
if (device == 0)
capture = 1;
if ((err = snd_pcm_new(emu->card, "emu10k1x", device, 1, capture, &pcm)) < 0)
return err;
pcm->private_data = emu;
switch(device) {
case 0:
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1x_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1x_capture_ops);
break;
case 1:
case 2:
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1x_playback_ops);
break;
}
pcm->info_flags = 0;
switch(device) {
case 0:
strcpy(pcm->name, "EMU10K1X Front");
break;
case 1:
strcpy(pcm->name, "EMU10K1X Rear");
break;
case 2:
strcpy(pcm->name, "EMU10K1X Center/LFE");
break;
}
emu->pcm = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(emu->pci),
32*1024, 32*1024);
if (rpcm)
*rpcm = pcm;
return 0;
}
static int __devinit snd_emu10k1x_create(struct snd_card *card,
struct pci_dev *pci,
struct emu10k1x **rchip)
{
struct emu10k1x *chip;
int err;
int ch;
static struct snd_device_ops ops = {
.dev_free = snd_emu10k1x_dev_free,
};
*rchip = NULL;
if ((err = pci_enable_device(pci)) < 0)
return err;
if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
snd_printk(KERN_ERR "error to set 28bit mask DMA\n");
pci_disable_device(pci);
return -ENXIO;
}
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
chip->card = card;
chip->pci = pci;
chip->irq = -1;
spin_lock_init(&chip->emu_lock);
spin_lock_init(&chip->voice_lock);
chip->port = pci_resource_start(pci, 0);
if ((chip->res_port = request_region(chip->port, 8,
"EMU10K1X")) == NULL) {
snd_printk(KERN_ERR "emu10k1x: cannot allocate the port 0x%lx\n", chip->port);
snd_emu10k1x_free(chip);
return -EBUSY;
}
if (request_irq(pci->irq, snd_emu10k1x_interrupt,
IRQF_SHARED, "EMU10K1X", chip)) {
snd_printk(KERN_ERR "emu10k1x: cannot grab irq %d\n", pci->irq);
snd_emu10k1x_free(chip);
return -EBUSY;
}
chip->irq = pci->irq;
if(snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
4 * 1024, &chip->dma_buffer) < 0) {
snd_emu10k1x_free(chip);
return -ENOMEM;
}
pci_set_master(pci);
/* read revision & serial */
chip->revision = pci->revision;
pci_read_config_dword(pci, PCI_SUBSYSTEM_VENDOR_ID, &chip->serial);
pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &chip->model);
snd_printk(KERN_INFO "Model %04x Rev %08x Serial %08x\n", chip->model,
chip->revision, chip->serial);
outl(0, chip->port + INTE);
for(ch = 0; ch < 3; ch++) {
chip->voices[ch].emu = chip;
chip->voices[ch].number = ch;
}
/*
* Init to 0x02109204 :
* Clock accuracy = 0 (1000ppm)
* Sample Rate = 2 (48kHz)
* Audio Channel = 1 (Left of 2)
* Source Number = 0 (Unspecified)
* Generation Status = 1 (Original for Cat Code 12)
* Cat Code = 12 (Digital Signal Mixer)
* Mode = 0 (Mode 0)
* Emphasis = 0 (None)
* CP = 1 (Copyright unasserted)
* AN = 0 (Audio data)
* P = 0 (Consumer)
*/
snd_emu10k1x_ptr_write(chip, SPCS0, 0,
chip->spdif_bits[0] =
SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
SPCS_GENERATIONSTATUS | 0x00001200 |
0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);
snd_emu10k1x_ptr_write(chip, SPCS1, 0,
chip->spdif_bits[1] =
SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
SPCS_GENERATIONSTATUS | 0x00001200 |
0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);
snd_emu10k1x_ptr_write(chip, SPCS2, 0,
chip->spdif_bits[2] =
SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
SPCS_GENERATIONSTATUS | 0x00001200 |
0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);
snd_emu10k1x_ptr_write(chip, SPDIF_SELECT, 0, 0x700); // disable SPDIF
snd_emu10k1x_ptr_write(chip, ROUTING, 0, 0x1003F); // routing
snd_emu10k1x_gpio_write(chip, 0x1080); // analog mode
outl(HCFG_LOCKSOUNDCACHE|HCFG_AUDIOENABLE, chip->port+HCFG);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
chip, &ops)) < 0) {
snd_emu10k1x_free(chip);
return err;
}
*rchip = chip;
return 0;
}
static void snd_emu10k1x_proc_reg_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct emu10k1x *emu = entry->private_data;
unsigned long value,value1,value2;
unsigned long flags;
int i;
snd_iprintf(buffer, "Registers:\n\n");
for(i = 0; i < 0x20; i+=4) {
spin_lock_irqsave(&emu->emu_lock, flags);
value = inl(emu->port + i);
spin_unlock_irqrestore(&emu->emu_lock, flags);
snd_iprintf(buffer, "Register %02X: %08lX\n", i, value);
}
snd_iprintf(buffer, "\nRegisters\n\n");
for(i = 0; i <= 0x48; i++) {
value = snd_emu10k1x_ptr_read(emu, i, 0);
if(i < 0x10 || (i >= 0x20 && i < 0x40)) {
value1 = snd_emu10k1x_ptr_read(emu, i, 1);
value2 = snd_emu10k1x_ptr_read(emu, i, 2);
snd_iprintf(buffer, "%02X: %08lX %08lX %08lX\n", i, value, value1, value2);
} else {
snd_iprintf(buffer, "%02X: %08lX\n", i, value);
}
}
}
static void snd_emu10k1x_proc_reg_write(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct emu10k1x *emu = entry->private_data;
char line[64];
unsigned int reg, channel_id , val;
while (!snd_info_get_line(buffer, line, sizeof(line))) {
if (sscanf(line, "%x %x %x", &reg, &channel_id, &val) != 3)
continue;
if ((reg < 0x49) && (reg >= 0) && (val <= 0xffffffff)
&& (channel_id >= 0) && (channel_id <= 2) )
snd_emu10k1x_ptr_write(emu, reg, channel_id, val);
}
}
static int __devinit snd_emu10k1x_proc_init(struct emu10k1x * emu)
{
struct snd_info_entry *entry;
if(! snd_card_proc_new(emu->card, "emu10k1x_regs", &entry)) {
snd_info_set_text_ops(entry, emu, snd_emu10k1x_proc_reg_read);
entry->c.text.write = snd_emu10k1x_proc_reg_write;
entry->mode |= S_IWUSR;
entry->private_data = emu;
}
return 0;
}
#define snd_emu10k1x_shared_spdif_info snd_ctl_boolean_mono_info
static int snd_emu10k1x_shared_spdif_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct emu10k1x *emu = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = (snd_emu10k1x_ptr_read(emu, SPDIF_SELECT, 0) == 0x700) ? 0 : 1;
return 0;
}
static int snd_emu10k1x_shared_spdif_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct emu10k1x *emu = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change = 0;
val = ucontrol->value.integer.value[0] ;
if (val) {
// enable spdif output
snd_emu10k1x_ptr_write(emu, SPDIF_SELECT, 0, 0x000);
snd_emu10k1x_ptr_write(emu, ROUTING, 0, 0x700);
snd_emu10k1x_gpio_write(emu, 0x1000);
} else {
// disable spdif output
snd_emu10k1x_ptr_write(emu, SPDIF_SELECT, 0, 0x700);
snd_emu10k1x_ptr_write(emu, ROUTING, 0, 0x1003F);
snd_emu10k1x_gpio_write(emu, 0x1080);
}
return change;
}
static struct snd_kcontrol_new snd_emu10k1x_shared_spdif __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog/Digital Output Jack",
.info = snd_emu10k1x_shared_spdif_info,
.get = snd_emu10k1x_shared_spdif_get,
.put = snd_emu10k1x_shared_spdif_put
};
static int snd_emu10k1x_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_emu10k1x_spdif_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct emu10k1x *emu = snd_kcontrol_chip(kcontrol);
unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
ucontrol->value.iec958.status[0] = (emu->spdif_bits[idx] >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (emu->spdif_bits[idx] >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (emu->spdif_bits[idx] >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (emu->spdif_bits[idx] >> 24) & 0xff;
return 0;
}
static int snd_emu10k1x_spdif_get_mask(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = 0xff;
return 0;
}
static int snd_emu10k1x_spdif_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct emu10k1x *emu = snd_kcontrol_chip(kcontrol);
unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
int change;
unsigned int val;
val = (ucontrol->value.iec958.status[0] << 0) |
(ucontrol->value.iec958.status[1] << 8) |
(ucontrol->value.iec958.status[2] << 16) |
(ucontrol->value.iec958.status[3] << 24);
change = val != emu->spdif_bits[idx];
if (change) {
snd_emu10k1x_ptr_write(emu, SPCS0 + idx, 0, val);
emu->spdif_bits[idx] = val;
}
return change;
}
static struct snd_kcontrol_new snd_emu10k1x_spdif_mask_control =
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
.count = 3,
.info = snd_emu10k1x_spdif_info,
.get = snd_emu10k1x_spdif_get_mask
};
static struct snd_kcontrol_new snd_emu10k1x_spdif_control =
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.count = 3,
.info = snd_emu10k1x_spdif_info,
.get = snd_emu10k1x_spdif_get,
.put = snd_emu10k1x_spdif_put
};
static int __devinit snd_emu10k1x_mixer(struct emu10k1x *emu)
{
int err;
struct snd_kcontrol *kctl;
struct snd_card *card = emu->card;
if ((kctl = snd_ctl_new1(&snd_emu10k1x_spdif_mask_control, emu)) == NULL)
return -ENOMEM;
if ((err = snd_ctl_add(card, kctl)))
return err;
if ((kctl = snd_ctl_new1(&snd_emu10k1x_shared_spdif, emu)) == NULL)
return -ENOMEM;
if ((err = snd_ctl_add(card, kctl)))
return err;
if ((kctl = snd_ctl_new1(&snd_emu10k1x_spdif_control, emu)) == NULL)
return -ENOMEM;
if ((err = snd_ctl_add(card, kctl)))
return err;
return 0;
}
#define EMU10K1X_MIDI_MODE_INPUT (1<<0)
#define EMU10K1X_MIDI_MODE_OUTPUT (1<<1)
static inline unsigned char mpu401_read(struct emu10k1x *emu, struct emu10k1x_midi *mpu, int idx)
{
return (unsigned char)snd_emu10k1x_ptr_read(emu, mpu->port + idx, 0);
}
static inline void mpu401_write(struct emu10k1x *emu, struct emu10k1x_midi *mpu, int data, int idx)
{
snd_emu10k1x_ptr_write(emu, mpu->port + idx, 0, data);
}
#define mpu401_write_data(emu, mpu, data) mpu401_write(emu, mpu, data, 0)
#define mpu401_write_cmd(emu, mpu, data) mpu401_write(emu, mpu, data, 1)
#define mpu401_read_data(emu, mpu) mpu401_read(emu, mpu, 0)
#define mpu401_read_stat(emu, mpu) mpu401_read(emu, mpu, 1)
#define mpu401_input_avail(emu,mpu) (!(mpu401_read_stat(emu,mpu) & 0x80))
#define mpu401_output_ready(emu,mpu) (!(mpu401_read_stat(emu,mpu) & 0x40))
#define MPU401_RESET 0xff
#define MPU401_ENTER_UART 0x3f
#define MPU401_ACK 0xfe
static void mpu401_clear_rx(struct emu10k1x *emu, struct emu10k1x_midi *mpu)
{
int timeout = 100000;
for (; timeout > 0 && mpu401_input_avail(emu, mpu); timeout--)
mpu401_read_data(emu, mpu);
#ifdef CONFIG_SND_DEBUG
if (timeout <= 0)
snd_printk(KERN_ERR "cmd: clear rx timeout (status = 0x%x)\n", mpu401_read_stat(emu, mpu));
#endif
}
/*
*/
static void do_emu10k1x_midi_interrupt(struct emu10k1x *emu,
struct emu10k1x_midi *midi, unsigned int status)
{
unsigned char byte;
if (midi->rmidi == NULL) {
snd_emu10k1x_intr_disable(emu, midi->tx_enable | midi->rx_enable);
return;
}
spin_lock(&midi->input_lock);
if ((status & midi->ipr_rx) && mpu401_input_avail(emu, midi)) {
if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_INPUT)) {
mpu401_clear_rx(emu, midi);
} else {
byte = mpu401_read_data(emu, midi);
if (midi->substream_input)
snd_rawmidi_receive(midi->substream_input, &byte, 1);
}
}
spin_unlock(&midi->input_lock);
spin_lock(&midi->output_lock);
if ((status & midi->ipr_tx) && mpu401_output_ready(emu, midi)) {
if (midi->substream_output &&
snd_rawmidi_transmit(midi->substream_output, &byte, 1) == 1) {
mpu401_write_data(emu, midi, byte);
} else {
snd_emu10k1x_intr_disable(emu, midi->tx_enable);
}
}
spin_unlock(&midi->output_lock);
}
static void snd_emu10k1x_midi_interrupt(struct emu10k1x *emu, unsigned int status)
{
do_emu10k1x_midi_interrupt(emu, &emu->midi, status);
}
static int snd_emu10k1x_midi_cmd(struct emu10k1x * emu,
struct emu10k1x_midi *midi, unsigned char cmd, int ack)
{
unsigned long flags;
int timeout, ok;
spin_lock_irqsave(&midi->input_lock, flags);
mpu401_write_data(emu, midi, 0x00);
/* mpu401_clear_rx(emu, midi); */
mpu401_write_cmd(emu, midi, cmd);
if (ack) {
ok = 0;
timeout = 10000;
while (!ok && timeout-- > 0) {
if (mpu401_input_avail(emu, midi)) {
if (mpu401_read_data(emu, midi) == MPU401_ACK)
ok = 1;
}
}
if (!ok && mpu401_read_data(emu, midi) == MPU401_ACK)
ok = 1;
} else {
ok = 1;
}
spin_unlock_irqrestore(&midi->input_lock, flags);
if (!ok) {
snd_printk(KERN_ERR "midi_cmd: 0x%x failed at 0x%lx (status = 0x%x, data = 0x%x)!!!\n",
cmd, emu->port,
mpu401_read_stat(emu, midi),
mpu401_read_data(emu, midi));
return 1;
}
return 0;
}
static int snd_emu10k1x_midi_input_open(struct snd_rawmidi_substream *substream)
{
struct emu10k1x *emu;
struct emu10k1x_midi *midi = substream->rmidi->private_data;
unsigned long flags;
emu = midi->emu;
if (snd_BUG_ON(!emu))
return -ENXIO;
spin_lock_irqsave(&midi->open_lock, flags);
midi->midi_mode |= EMU10K1X_MIDI_MODE_INPUT;
midi->substream_input = substream;
if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_OUTPUT)) {
spin_unlock_irqrestore(&midi->open_lock, flags);
if (snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 1))
goto error_out;
if (snd_emu10k1x_midi_cmd(emu, midi, MPU401_ENTER_UART, 1))
goto error_out;
} else {
spin_unlock_irqrestore(&midi->open_lock, flags);
}
return 0;
error_out:
return -EIO;
}
static int snd_emu10k1x_midi_output_open(struct snd_rawmidi_substream *substream)
{
struct emu10k1x *emu;
struct emu10k1x_midi *midi = substream->rmidi->private_data;
unsigned long flags;
emu = midi->emu;
if (snd_BUG_ON(!emu))
return -ENXIO;
spin_lock_irqsave(&midi->open_lock, flags);
midi->midi_mode |= EMU10K1X_MIDI_MODE_OUTPUT;
midi->substream_output = substream;
if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_INPUT)) {
spin_unlock_irqrestore(&midi->open_lock, flags);
if (snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 1))
goto error_out;
if (snd_emu10k1x_midi_cmd(emu, midi, MPU401_ENTER_UART, 1))
goto error_out;
} else {
spin_unlock_irqrestore(&midi->open_lock, flags);
}
return 0;
error_out:
return -EIO;
}
static int snd_emu10k1x_midi_input_close(struct snd_rawmidi_substream *substream)
{
struct emu10k1x *emu;
struct emu10k1x_midi *midi = substream->rmidi->private_data;
unsigned long flags;
int err = 0;
emu = midi->emu;
if (snd_BUG_ON(!emu))
return -ENXIO;
spin_lock_irqsave(&midi->open_lock, flags);
snd_emu10k1x_intr_disable(emu, midi->rx_enable);
midi->midi_mode &= ~EMU10K1X_MIDI_MODE_INPUT;
midi->substream_input = NULL;
if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_OUTPUT)) {
spin_unlock_irqrestore(&midi->open_lock, flags);
err = snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 0);
} else {
spin_unlock_irqrestore(&midi->open_lock, flags);
}
return err;
}
static int snd_emu10k1x_midi_output_close(struct snd_rawmidi_substream *substream)
{
struct emu10k1x *emu;
struct emu10k1x_midi *midi = substream->rmidi->private_data;
unsigned long flags;
int err = 0;
emu = midi->emu;
if (snd_BUG_ON(!emu))
return -ENXIO;
spin_lock_irqsave(&midi->open_lock, flags);
snd_emu10k1x_intr_disable(emu, midi->tx_enable);
midi->midi_mode &= ~EMU10K1X_MIDI_MODE_OUTPUT;
midi->substream_output = NULL;
if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_INPUT)) {
spin_unlock_irqrestore(&midi->open_lock, flags);
err = snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 0);
} else {
spin_unlock_irqrestore(&midi->open_lock, flags);
}
return err;
}
static void snd_emu10k1x_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct emu10k1x *emu;
struct emu10k1x_midi *midi = substream->rmidi->private_data;
emu = midi->emu;
if (snd_BUG_ON(!emu))
return;
if (up)
snd_emu10k1x_intr_enable(emu, midi->rx_enable);
else
snd_emu10k1x_intr_disable(emu, midi->rx_enable);
}
static void snd_emu10k1x_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct emu10k1x *emu;
struct emu10k1x_midi *midi = substream->rmidi->private_data;
unsigned long flags;
emu = midi->emu;
if (snd_BUG_ON(!emu))
return;
if (up) {
int max = 4;
unsigned char byte;
/* try to send some amount of bytes here before interrupts */
spin_lock_irqsave(&midi->output_lock, flags);
while (max > 0) {
if (mpu401_output_ready(emu, midi)) {
if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_OUTPUT) ||
snd_rawmidi_transmit(substream, &byte, 1) != 1) {
/* no more data */
spin_unlock_irqrestore(&midi->output_lock, flags);
return;
}
mpu401_write_data(emu, midi, byte);
max--;
} else {
break;
}
}
spin_unlock_irqrestore(&midi->output_lock, flags);
snd_emu10k1x_intr_enable(emu, midi->tx_enable);
} else {
snd_emu10k1x_intr_disable(emu, midi->tx_enable);
}
}
/*
*/
static struct snd_rawmidi_ops snd_emu10k1x_midi_output =
{
.open = snd_emu10k1x_midi_output_open,
.close = snd_emu10k1x_midi_output_close,
.trigger = snd_emu10k1x_midi_output_trigger,
};
static struct snd_rawmidi_ops snd_emu10k1x_midi_input =
{
.open = snd_emu10k1x_midi_input_open,
.close = snd_emu10k1x_midi_input_close,
.trigger = snd_emu10k1x_midi_input_trigger,
};
static void snd_emu10k1x_midi_free(struct snd_rawmidi *rmidi)
{
struct emu10k1x_midi *midi = rmidi->private_data;
midi->interrupt = NULL;
midi->rmidi = NULL;
}
static int __devinit emu10k1x_midi_init(struct emu10k1x *emu,
struct emu10k1x_midi *midi, int device, char *name)
{
struct snd_rawmidi *rmidi;
int err;
if ((err = snd_rawmidi_new(emu->card, name, device, 1, 1, &rmidi)) < 0)
return err;
midi->emu = emu;
spin_lock_init(&midi->open_lock);
spin_lock_init(&midi->input_lock);
spin_lock_init(&midi->output_lock);
strcpy(rmidi->name, name);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_emu10k1x_midi_output);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_emu10k1x_midi_input);
rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->private_data = midi;
rmidi->private_free = snd_emu10k1x_midi_free;
midi->rmidi = rmidi;
return 0;
}
static int __devinit snd_emu10k1x_midi(struct emu10k1x *emu)
{
struct emu10k1x_midi *midi = &emu->midi;
int err;
if ((err = emu10k1x_midi_init(emu, midi, 0, "EMU10K1X MPU-401 (UART)")) < 0)
return err;
midi->tx_enable = INTE_MIDITXENABLE;
midi->rx_enable = INTE_MIDIRXENABLE;
midi->port = MUDATA;
midi->ipr_tx = IPR_MIDITRANSBUFEMPTY;
midi->ipr_rx = IPR_MIDIRECVBUFEMPTY;
midi->interrupt = snd_emu10k1x_midi_interrupt;
return 0;
}
static int __devinit snd_emu10k1x_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct emu10k1x *chip;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
if (err < 0)
return err;
if ((err = snd_emu10k1x_create(card, pci, &chip)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_emu10k1x_pcm(chip, 0, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_emu10k1x_pcm(chip, 1, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_emu10k1x_pcm(chip, 2, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_emu10k1x_ac97(chip)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_emu10k1x_mixer(chip)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_emu10k1x_midi(chip)) < 0) {
snd_card_free(card);
return err;
}
snd_emu10k1x_proc_init(chip);
strcpy(card->driver, "EMU10K1X");
strcpy(card->shortname, "Dell Sound Blaster Live!");
sprintf(card->longname, "%s at 0x%lx irq %i",
card->shortname, chip->port, chip->irq);
snd_card_set_dev(card, &pci->dev);
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void __devexit snd_emu10k1x_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
pci_set_drvdata(pci, NULL);
}
// PCI IDs
static struct pci_device_id snd_emu10k1x_ids[] = {
{ PCI_VDEVICE(CREATIVE, 0x0006), 0 }, /* Dell OEM version (EMU10K1) */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_emu10k1x_ids);
// pci_driver definition
static struct pci_driver driver = {
.name = "EMU10K1X",
.id_table = snd_emu10k1x_ids,
.probe = snd_emu10k1x_probe,
.remove = __devexit_p(snd_emu10k1x_remove),
};
// initialization of the module
static int __init alsa_card_emu10k1x_init(void)
{
return pci_register_driver(&driver);
}
// clean up the module
static void __exit alsa_card_emu10k1x_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_emu10k1x_init)
module_exit(alsa_card_emu10k1x_exit)