657 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			657 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Physical mapping layer for MTD using the Axis partitiontable format
 | 
						|
 *
 | 
						|
 * Copyright (c) 2001-2007 Axis Communications AB
 | 
						|
 *
 | 
						|
 * This file is under the GPL.
 | 
						|
 *
 | 
						|
 * First partition is always sector 0 regardless of if we find a partitiontable
 | 
						|
 * or not. In the start of the next sector, there can be a partitiontable that
 | 
						|
 * tells us what other partitions to define. If there isn't, we use a default
 | 
						|
 * partition split defined below.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <linux/mtd/concat.h>
 | 
						|
#include <linux/mtd/map.h>
 | 
						|
#include <linux/mtd/mtd.h>
 | 
						|
#include <linux/mtd/mtdram.h>
 | 
						|
#include <linux/mtd/partitions.h>
 | 
						|
 | 
						|
#include <linux/cramfs_fs.h>
 | 
						|
 | 
						|
#include <asm/axisflashmap.h>
 | 
						|
#include <asm/mmu.h>
 | 
						|
 | 
						|
#define MEM_CSE0_SIZE (0x04000000)
 | 
						|
#define MEM_CSE1_SIZE (0x04000000)
 | 
						|
 | 
						|
#define FLASH_UNCACHED_ADDR  KSEG_E
 | 
						|
#define FLASH_CACHED_ADDR    KSEG_F
 | 
						|
 | 
						|
#define PAGESIZE (512)
 | 
						|
 | 
						|
#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
 | 
						|
#define flash_data __u8
 | 
						|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
 | 
						|
#define flash_data __u16
 | 
						|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
 | 
						|
#define flash_data __u32
 | 
						|
#endif
 | 
						|
 | 
						|
/* From head.S */
 | 
						|
extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
 | 
						|
extern unsigned long romfs_start, romfs_length;
 | 
						|
extern unsigned long nand_boot; /* 1 when booted from nand flash */
 | 
						|
 | 
						|
struct partition_name {
 | 
						|
	char name[6];
 | 
						|
};
 | 
						|
 | 
						|
/* The master mtd for the entire flash. */
 | 
						|
struct mtd_info* axisflash_mtd = NULL;
 | 
						|
 | 
						|
/* Map driver functions. */
 | 
						|
 | 
						|
static map_word flash_read(struct map_info *map, unsigned long ofs)
 | 
						|
{
 | 
						|
	map_word tmp;
 | 
						|
	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
 | 
						|
	return tmp;
 | 
						|
}
 | 
						|
 | 
						|
static void flash_copy_from(struct map_info *map, void *to,
 | 
						|
			    unsigned long from, ssize_t len)
 | 
						|
{
 | 
						|
	memcpy(to, (void *)(map->map_priv_1 + from), len);
 | 
						|
}
 | 
						|
 | 
						|
static void flash_write(struct map_info *map, map_word d, unsigned long adr)
 | 
						|
{
 | 
						|
	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The map for chip select e0.
 | 
						|
 *
 | 
						|
 * We run into tricky coherence situations if we mix cached with uncached
 | 
						|
 * accesses to we only use the uncached version here.
 | 
						|
 *
 | 
						|
 * The size field is the total size where the flash chips may be mapped on the
 | 
						|
 * chip select. MTD probes should find all devices there and it does not matter
 | 
						|
 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
 | 
						|
 * probes will ignore them.
 | 
						|
 *
 | 
						|
 * The start address in map_priv_1 is in virtual memory so we cannot use
 | 
						|
 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
 | 
						|
 * address of cse0.
 | 
						|
 */
 | 
						|
static struct map_info map_cse0 = {
 | 
						|
	.name = "cse0",
 | 
						|
	.size = MEM_CSE0_SIZE,
 | 
						|
	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
 | 
						|
	.read = flash_read,
 | 
						|
	.copy_from = flash_copy_from,
 | 
						|
	.write = flash_write,
 | 
						|
	.map_priv_1 = FLASH_UNCACHED_ADDR
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * The map for chip select e1.
 | 
						|
 *
 | 
						|
 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
 | 
						|
 * address, but there isn't.
 | 
						|
 */
 | 
						|
static struct map_info map_cse1 = {
 | 
						|
	.name = "cse1",
 | 
						|
	.size = MEM_CSE1_SIZE,
 | 
						|
	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
 | 
						|
	.read = flash_read,
 | 
						|
	.copy_from = flash_copy_from,
 | 
						|
	.write = flash_write,
 | 
						|
	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
 | 
						|
};
 | 
						|
 | 
						|
#define MAX_PARTITIONS			7
 | 
						|
#ifdef CONFIG_ETRAX_NANDBOOT
 | 
						|
#define NUM_DEFAULT_PARTITIONS		4
 | 
						|
#define DEFAULT_ROOTFS_PARTITION_NO	2
 | 
						|
#define DEFAULT_MEDIA_SIZE              0x2000000 /* 32 megs */
 | 
						|
#else
 | 
						|
#define NUM_DEFAULT_PARTITIONS		3
 | 
						|
#define DEFAULT_ROOTFS_PARTITION_NO	(-1)
 | 
						|
#define DEFAULT_MEDIA_SIZE              0x800000 /* 8 megs */
 | 
						|
#endif
 | 
						|
 | 
						|
#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
 | 
						|
#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
 | 
						|
#endif
 | 
						|
 | 
						|
/* Initialize the ones normally used. */
 | 
						|
static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
 | 
						|
	{
 | 
						|
		.name = "part0",
 | 
						|
		.size = CONFIG_ETRAX_PTABLE_SECTOR,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part1",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part2",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part3",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part4",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part5",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "part6",
 | 
						|
		.size = 0,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* If no partition-table was found, we use this default-set.
 | 
						|
 * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
 | 
						|
 * likely the size of one flash block and "filesystem"-partition needs
 | 
						|
 * to be >=5 blocks to be able to use JFFS.
 | 
						|
 */
 | 
						|
static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
 | 
						|
	{
 | 
						|
		.name = "boot firmware",
 | 
						|
		.size = CONFIG_ETRAX_PTABLE_SECTOR,
 | 
						|
		.offset = 0
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "kernel",
 | 
						|
		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
 | 
						|
		.offset = CONFIG_ETRAX_PTABLE_SECTOR
 | 
						|
	},
 | 
						|
#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
 | 
						|
#ifdef CONFIG_ETRAX_NANDBOOT
 | 
						|
	{
 | 
						|
		.name = "rootfs",
 | 
						|
		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
 | 
						|
		.offset = FILESYSTEM_SECTOR
 | 
						|
	},
 | 
						|
#undef FILESYSTEM_SECTOR
 | 
						|
#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
 | 
						|
#endif
 | 
						|
	{
 | 
						|
		.name = "rwfs",
 | 
						|
		.size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
 | 
						|
		.offset = FILESYSTEM_SECTOR
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 | 
						|
/* Main flash device */
 | 
						|
static struct mtd_partition main_partition = {
 | 
						|
	.name = "main",
 | 
						|
	.size = 0,
 | 
						|
	.offset = 0
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
/* Auxilliary partition if we find another flash */
 | 
						|
static struct mtd_partition aux_partition = {
 | 
						|
	.name = "aux",
 | 
						|
	.size = 0,
 | 
						|
	.offset = 0
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
 | 
						|
 * chips in that order (because the amd_flash-driver is faster).
 | 
						|
 */
 | 
						|
static struct mtd_info *probe_cs(struct map_info *map_cs)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd_cs = NULL;
 | 
						|
 | 
						|
	printk(KERN_INFO
 | 
						|
	       "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
 | 
						|
	       map_cs->name, map_cs->size, map_cs->map_priv_1);
 | 
						|
 | 
						|
#ifdef CONFIG_MTD_CFI
 | 
						|
	mtd_cs = do_map_probe("cfi_probe", map_cs);
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_MTD_JEDECPROBE
 | 
						|
	if (!mtd_cs)
 | 
						|
		mtd_cs = do_map_probe("jedec_probe", map_cs);
 | 
						|
#endif
 | 
						|
 | 
						|
	return mtd_cs;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Probe each chip select individually for flash chips. If there are chips on
 | 
						|
 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
 | 
						|
 * so that MTD partitions can cross chip boundries.
 | 
						|
 *
 | 
						|
 * The only known restriction to how you can mount your chips is that each
 | 
						|
 * chip select must hold similar flash chips. But you need external hardware
 | 
						|
 * to do that anyway and you can put totally different chips on cse0 and cse1
 | 
						|
 * so it isn't really much of a restriction.
 | 
						|
 */
 | 
						|
extern struct mtd_info* __init crisv32_nand_flash_probe (void);
 | 
						|
static struct mtd_info *flash_probe(void)
 | 
						|
{
 | 
						|
	struct mtd_info *mtd_cse0;
 | 
						|
	struct mtd_info *mtd_cse1;
 | 
						|
	struct mtd_info *mtd_total;
 | 
						|
	struct mtd_info *mtds[2];
 | 
						|
	int count = 0;
 | 
						|
 | 
						|
	if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
 | 
						|
		mtds[count++] = mtd_cse0;
 | 
						|
	if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
 | 
						|
		mtds[count++] = mtd_cse1;
 | 
						|
 | 
						|
	if (!mtd_cse0 && !mtd_cse1) {
 | 
						|
		/* No chip found. */
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (count > 1) {
 | 
						|
#ifdef CONFIG_MTD_CONCAT
 | 
						|
		/* Since the concatenation layer adds a small overhead we
 | 
						|
		 * could try to figure out if the chips in cse0 and cse1 are
 | 
						|
		 * identical and reprobe the whole cse0+cse1 window. But since
 | 
						|
		 * flash chips are slow, the overhead is relatively small.
 | 
						|
		 * So we use the MTD concatenation layer instead of further
 | 
						|
		 * complicating the probing procedure.
 | 
						|
		 */
 | 
						|
		mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
 | 
						|
#else
 | 
						|
		printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
 | 
						|
		       "(mis)configuration!\n", map_cse0.name, map_cse1.name);
 | 
						|
		mtd_toal = NULL;
 | 
						|
#endif
 | 
						|
		if (!mtd_total) {
 | 
						|
			printk(KERN_ERR "%s and %s: Concatenation failed!\n",
 | 
						|
				map_cse0.name, map_cse1.name);
 | 
						|
 | 
						|
			/* The best we can do now is to only use what we found
 | 
						|
			 * at cse0. */
 | 
						|
			mtd_total = mtd_cse0;
 | 
						|
			map_destroy(mtd_cse1);
 | 
						|
		}
 | 
						|
	} else
 | 
						|
		mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
 | 
						|
 | 
						|
	return mtd_total;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Probe the flash chip(s) and, if it succeeds, read the partition-table
 | 
						|
 * and register the partitions with MTD.
 | 
						|
 */
 | 
						|
static int __init init_axis_flash(void)
 | 
						|
{
 | 
						|
	struct mtd_info *main_mtd;
 | 
						|
	struct mtd_info *aux_mtd = NULL;
 | 
						|
	int err = 0;
 | 
						|
	int pidx = 0;
 | 
						|
	struct partitiontable_head *ptable_head = NULL;
 | 
						|
	struct partitiontable_entry *ptable;
 | 
						|
	int ptable_ok = 0;
 | 
						|
	static char page[PAGESIZE];
 | 
						|
	size_t len;
 | 
						|
	int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
 | 
						|
	int part;
 | 
						|
 | 
						|
	/* We need a root fs. If it resides in RAM, we need to use an
 | 
						|
	 * MTDRAM device, so it must be enabled in the kernel config,
 | 
						|
	 * but its size must be configured as 0 so as not to conflict
 | 
						|
	 * with our usage.
 | 
						|
	 */
 | 
						|
#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
 | 
						|
	if (!romfs_in_flash && !nand_boot) {
 | 
						|
		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
 | 
						|
		       "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
 | 
						|
		panic("This kernel cannot boot from RAM!\n");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef CONFIG_ETRAX_VCS_SIM
 | 
						|
	main_mtd = flash_probe();
 | 
						|
	if (main_mtd)
 | 
						|
		printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
 | 
						|
		       main_mtd->name, main_mtd->size);
 | 
						|
 | 
						|
#ifdef CONFIG_ETRAX_NANDFLASH
 | 
						|
	aux_mtd = crisv32_nand_flash_probe();
 | 
						|
	if (aux_mtd)
 | 
						|
		printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
 | 
						|
			aux_mtd->name, aux_mtd->size);
 | 
						|
 | 
						|
#ifdef CONFIG_ETRAX_NANDBOOT
 | 
						|
	{
 | 
						|
		struct mtd_info *tmp_mtd;
 | 
						|
 | 
						|
		printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
 | 
						|
		       "making NAND flash primary device.\n");
 | 
						|
		tmp_mtd = main_mtd;
 | 
						|
		main_mtd = aux_mtd;
 | 
						|
		aux_mtd = tmp_mtd;
 | 
						|
	}
 | 
						|
#endif /* CONFIG_ETRAX_NANDBOOT */
 | 
						|
#endif /* CONFIG_ETRAX_NANDFLASH */
 | 
						|
 | 
						|
	if (!main_mtd && !aux_mtd) {
 | 
						|
		/* There's no reason to use this module if no flash chip can
 | 
						|
		 * be identified. Make sure that's understood.
 | 
						|
		 */
 | 
						|
		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
 | 
						|
	}
 | 
						|
 | 
						|
#if 0 /* Dump flash memory so we can see what is going on */
 | 
						|
	if (main_mtd) {
 | 
						|
		int sectoraddr, i;
 | 
						|
		for (sectoraddr = 0; sectoraddr < 2*65536+4096;
 | 
						|
				sectoraddr += PAGESIZE) {
 | 
						|
			main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
 | 
						|
				page);
 | 
						|
			printk(KERN_INFO
 | 
						|
			       "Sector at %d (length %d):\n",
 | 
						|
			       sectoraddr, len);
 | 
						|
			for (i = 0; i < PAGESIZE; i += 16) {
 | 
						|
				printk(KERN_INFO
 | 
						|
				       "%02x %02x %02x %02x "
 | 
						|
				       "%02x %02x %02x %02x "
 | 
						|
				       "%02x %02x %02x %02x "
 | 
						|
				       "%02x %02x %02x %02x\n",
 | 
						|
				       page[i] & 255, page[i+1] & 255,
 | 
						|
				       page[i+2] & 255, page[i+3] & 255,
 | 
						|
				       page[i+4] & 255, page[i+5] & 255,
 | 
						|
				       page[i+6] & 255, page[i+7] & 255,
 | 
						|
				       page[i+8] & 255, page[i+9] & 255,
 | 
						|
				       page[i+10] & 255, page[i+11] & 255,
 | 
						|
				       page[i+12] & 255, page[i+13] & 255,
 | 
						|
				       page[i+14] & 255, page[i+15] & 255);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	if (main_mtd) {
 | 
						|
		main_mtd->owner = THIS_MODULE;
 | 
						|
		axisflash_mtd = main_mtd;
 | 
						|
 | 
						|
		loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
 | 
						|
 | 
						|
		/* First partition (rescue) is always set to the default. */
 | 
						|
		pidx++;
 | 
						|
#ifdef CONFIG_ETRAX_NANDBOOT
 | 
						|
		/* We know where the partition table should be located,
 | 
						|
		 * it will be in first good block after that.
 | 
						|
		 */
 | 
						|
		int blockstat;
 | 
						|
		do {
 | 
						|
			blockstat = main_mtd->block_isbad(main_mtd,
 | 
						|
				ptable_sector);
 | 
						|
			if (blockstat < 0)
 | 
						|
				ptable_sector = 0; /* read error */
 | 
						|
			else if (blockstat)
 | 
						|
				ptable_sector += main_mtd->erasesize;
 | 
						|
		} while (blockstat && ptable_sector);
 | 
						|
#endif
 | 
						|
		if (ptable_sector) {
 | 
						|
			main_mtd->read(main_mtd, ptable_sector, PAGESIZE,
 | 
						|
				&len, page);
 | 
						|
			ptable_head = &((struct partitiontable *) page)->head;
 | 
						|
		}
 | 
						|
 | 
						|
#if 0 /* Dump partition table so we can see what is going on */
 | 
						|
		printk(KERN_INFO
 | 
						|
		       "axisflashmap: flash read %d bytes at 0x%08x, data: "
 | 
						|
		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
 | 
						|
		       len, CONFIG_ETRAX_PTABLE_SECTOR,
 | 
						|
		       page[0] & 255, page[1] & 255,
 | 
						|
		       page[2] & 255, page[3] & 255,
 | 
						|
		       page[4] & 255, page[5] & 255,
 | 
						|
		       page[6] & 255, page[7] & 255);
 | 
						|
		printk(KERN_INFO
 | 
						|
		       "axisflashmap: partition table offset %d, data: "
 | 
						|
		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
 | 
						|
		       PARTITION_TABLE_OFFSET,
 | 
						|
		       page[PARTITION_TABLE_OFFSET+0] & 255,
 | 
						|
		       page[PARTITION_TABLE_OFFSET+1] & 255,
 | 
						|
		       page[PARTITION_TABLE_OFFSET+2] & 255,
 | 
						|
		       page[PARTITION_TABLE_OFFSET+3] & 255,
 | 
						|
		       page[PARTITION_TABLE_OFFSET+4] & 255,
 | 
						|
		       page[PARTITION_TABLE_OFFSET+5] & 255,
 | 
						|
		       page[PARTITION_TABLE_OFFSET+6] & 255,
 | 
						|
		       page[PARTITION_TABLE_OFFSET+7] & 255);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
 | 
						|
	    && (ptable_head->size <
 | 
						|
		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
 | 
						|
		PARTITIONTABLE_END_MARKER_SIZE))
 | 
						|
	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
 | 
						|
				  ptable_head->size -
 | 
						|
				  PARTITIONTABLE_END_MARKER_SIZE)
 | 
						|
		== PARTITIONTABLE_END_MARKER)) {
 | 
						|
		/* Looks like a start, sane length and end of a
 | 
						|
		 * partition table, lets check csum etc.
 | 
						|
		 */
 | 
						|
		struct partitiontable_entry *max_addr =
 | 
						|
			(struct partitiontable_entry *)
 | 
						|
			((unsigned long)ptable_head + sizeof(*ptable_head) +
 | 
						|
			 ptable_head->size);
 | 
						|
		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
 | 
						|
		unsigned char *p;
 | 
						|
		unsigned long csum = 0;
 | 
						|
 | 
						|
		ptable = (struct partitiontable_entry *)
 | 
						|
			((unsigned long)ptable_head + sizeof(*ptable_head));
 | 
						|
 | 
						|
		/* Lets be PARANOID, and check the checksum. */
 | 
						|
		p = (unsigned char*) ptable;
 | 
						|
 | 
						|
		while (p <= (unsigned char*)max_addr) {
 | 
						|
			csum += *p++;
 | 
						|
			csum += *p++;
 | 
						|
			csum += *p++;
 | 
						|
			csum += *p++;
 | 
						|
		}
 | 
						|
		ptable_ok = (csum == ptable_head->checksum);
 | 
						|
 | 
						|
		/* Read the entries and use/show the info.  */
 | 
						|
		printk(KERN_INFO "axisflashmap: "
 | 
						|
		       "Found a%s partition table at 0x%p-0x%p.\n",
 | 
						|
		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
 | 
						|
		       max_addr);
 | 
						|
 | 
						|
		/* We have found a working bootblock.  Now read the
 | 
						|
		 * partition table.  Scan the table.  It ends with 0xffffffff.
 | 
						|
		 */
 | 
						|
		while (ptable_ok
 | 
						|
		       && ptable->offset != PARTITIONTABLE_END_MARKER
 | 
						|
		       && ptable < max_addr
 | 
						|
		       && pidx < MAX_PARTITIONS - 1) {
 | 
						|
 | 
						|
			axis_partitions[pidx].offset = offset + ptable->offset;
 | 
						|
#ifdef CONFIG_ETRAX_NANDFLASH
 | 
						|
			if (main_mtd->type == MTD_NANDFLASH) {
 | 
						|
				axis_partitions[pidx].size =
 | 
						|
					(((ptable+1)->offset ==
 | 
						|
					  PARTITIONTABLE_END_MARKER) ?
 | 
						|
					  main_mtd->size :
 | 
						|
					  ((ptable+1)->offset + offset)) -
 | 
						|
					(ptable->offset + offset);
 | 
						|
 | 
						|
			} else
 | 
						|
#endif /* CONFIG_ETRAX_NANDFLASH */
 | 
						|
				axis_partitions[pidx].size = ptable->size;
 | 
						|
#ifdef CONFIG_ETRAX_NANDBOOT
 | 
						|
			/* Save partition number of jffs2 ro partition.
 | 
						|
			 * Needed if RAM booting or root file system in RAM.
 | 
						|
			 */
 | 
						|
			if (!nand_boot &&
 | 
						|
			    ram_rootfs_partition < 0 && /* not already set */
 | 
						|
			    ptable->type == PARTITION_TYPE_JFFS2 &&
 | 
						|
			    (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
 | 
						|
				PARTITION_FLAGS_READONLY)
 | 
						|
				ram_rootfs_partition = pidx;
 | 
						|
#endif /* CONFIG_ETRAX_NANDBOOT */
 | 
						|
			pidx++;
 | 
						|
			ptable++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Decide whether to use default partition table. */
 | 
						|
	/* Only use default table if we actually have a device (main_mtd) */
 | 
						|
 | 
						|
	struct mtd_partition *partition = &axis_partitions[0];
 | 
						|
	if (main_mtd && !ptable_ok) {
 | 
						|
		memcpy(axis_partitions, axis_default_partitions,
 | 
						|
		       sizeof(axis_default_partitions));
 | 
						|
		pidx = NUM_DEFAULT_PARTITIONS;
 | 
						|
		ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Add artificial partitions for rootfs if necessary */
 | 
						|
	if (romfs_in_flash) {
 | 
						|
		/* rootfs is in directly accessible flash memory = NOR flash.
 | 
						|
		   Add an overlapping device for the rootfs partition. */
 | 
						|
		printk(KERN_INFO "axisflashmap: Adding partition for "
 | 
						|
		       "overlapping root file system image\n");
 | 
						|
		axis_partitions[pidx].size = romfs_length;
 | 
						|
		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
 | 
						|
		axis_partitions[pidx].name = "romfs";
 | 
						|
		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
 | 
						|
		ram_rootfs_partition = -1;
 | 
						|
		pidx++;
 | 
						|
	} else if (romfs_length && !nand_boot) {
 | 
						|
		/* romfs exists in memory, but not in flash, so must be in RAM.
 | 
						|
		 * Configure an MTDRAM partition. */
 | 
						|
		if (ram_rootfs_partition < 0) {
 | 
						|
			/* None set yet, put it at the end */
 | 
						|
			ram_rootfs_partition = pidx;
 | 
						|
			pidx++;
 | 
						|
		}
 | 
						|
		printk(KERN_INFO "axisflashmap: Adding partition for "
 | 
						|
		       "root file system image in RAM\n");
 | 
						|
		axis_partitions[ram_rootfs_partition].size = romfs_length;
 | 
						|
		axis_partitions[ram_rootfs_partition].offset = romfs_start;
 | 
						|
		axis_partitions[ram_rootfs_partition].name = "romfs";
 | 
						|
		axis_partitions[ram_rootfs_partition].mask_flags |=
 | 
						|
			MTD_WRITEABLE;
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 | 
						|
	if (main_mtd) {
 | 
						|
		main_partition.size = main_mtd->size;
 | 
						|
		err = add_mtd_partitions(main_mtd, &main_partition, 1);
 | 
						|
		if (err)
 | 
						|
			panic("axisflashmap: Could not initialize "
 | 
						|
			      "partition for whole main mtd device!\n");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Now, register all partitions with mtd.
 | 
						|
	 * We do this one at a time so we can slip in an MTDRAM device
 | 
						|
	 * in the proper place if required. */
 | 
						|
 | 
						|
	for (part = 0; part < pidx; part++) {
 | 
						|
		if (part == ram_rootfs_partition) {
 | 
						|
			/* add MTDRAM partition here */
 | 
						|
			struct mtd_info *mtd_ram;
 | 
						|
 | 
						|
			mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
 | 
						|
			if (!mtd_ram)
 | 
						|
				panic("axisflashmap: Couldn't allocate memory "
 | 
						|
				      "for mtd_info!\n");
 | 
						|
			printk(KERN_INFO "axisflashmap: Adding RAM partition "
 | 
						|
			       "for rootfs image.\n");
 | 
						|
			err = mtdram_init_device(mtd_ram,
 | 
						|
						 (void *)partition[part].offset,
 | 
						|
						 partition[part].size,
 | 
						|
						 partition[part].name);
 | 
						|
			if (err)
 | 
						|
				panic("axisflashmap: Could not initialize "
 | 
						|
				      "MTD RAM device!\n");
 | 
						|
			/* JFFS2 likes to have an erasesize. Keep potential
 | 
						|
			 * JFFS2 rootfs happy by providing one. Since image
 | 
						|
			 * was most likely created for main mtd, use that
 | 
						|
			 * erasesize, if available. Otherwise, make a guess. */
 | 
						|
			mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
 | 
						|
				CONFIG_ETRAX_PTABLE_SECTOR);
 | 
						|
		} else {
 | 
						|
			err = add_mtd_partitions(main_mtd, &partition[part], 1);
 | 
						|
			if (err)
 | 
						|
				panic("axisflashmap: Could not add mtd "
 | 
						|
					"partition %d\n", part);
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif /* CONFIG_EXTRAX_VCS_SIM */
 | 
						|
 | 
						|
#ifdef CONFIG_ETRAX_VCS_SIM
 | 
						|
	/* For simulator, always use a RAM partition.
 | 
						|
	 * The rootfs will be found after the kernel in RAM,
 | 
						|
	 * with romfs_start and romfs_end indicating location and size.
 | 
						|
	 */
 | 
						|
	struct mtd_info *mtd_ram;
 | 
						|
 | 
						|
	mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
 | 
						|
	if (!mtd_ram) {
 | 
						|
		panic("axisflashmap: Couldn't allocate memory for "
 | 
						|
		      "mtd_info!\n");
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_INFO "axisflashmap: Adding RAM partition for romfs, "
 | 
						|
	       "at %u, size %u\n",
 | 
						|
	       (unsigned) romfs_start, (unsigned) romfs_length);
 | 
						|
 | 
						|
	err = mtdram_init_device(mtd_ram, (void *)romfs_start,
 | 
						|
				 romfs_length, "romfs");
 | 
						|
	if (err) {
 | 
						|
		panic("axisflashmap: Could not initialize MTD RAM "
 | 
						|
		      "device!\n");
 | 
						|
	}
 | 
						|
#endif /* CONFIG_EXTRAX_VCS_SIM */
 | 
						|
 | 
						|
#ifndef CONFIG_ETRAX_VCS_SIM
 | 
						|
	if (aux_mtd) {
 | 
						|
		aux_partition.size = aux_mtd->size;
 | 
						|
		err = add_mtd_partitions(aux_mtd, &aux_partition, 1);
 | 
						|
		if (err)
 | 
						|
			panic("axisflashmap: Could not initialize "
 | 
						|
			      "aux mtd device!\n");
 | 
						|
 | 
						|
	}
 | 
						|
#endif /* CONFIG_EXTRAX_VCS_SIM */
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/* This adds the above to the kernels init-call chain. */
 | 
						|
module_init(init_axis_flash);
 | 
						|
 | 
						|
EXPORT_SYMBOL(axisflash_mtd);
 |