2015-03-26 17:24:57 +01:00

862 lines
21 KiB
C

/*
* arch/sh/mm/pmb.c
*
* Privileged Space Mapping Buffer (PMB) Support.
*
* Copyright (C) 2005, 2006, 2007 Paul Mundt
*
* P1/P2 Section mapping definitions from map32.h, which was:
*
* Copyright 2003 (c) Lineo Solutions,Inc.
*
* Large changes to support dynamic mappings using PMB
* Copyright (c) 2007 STMicroelectronics Limited
* Author: Stuart Menefy <stuart.menefy@st.com>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sysdev.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <linux/pm.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/sections.h>
#include <asm/cacheflush.h>
#if 0
#define DPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __FUNCTION__, ## args)
#else
#define DPRINTK(fmt, args...) do { ; } while (0)
#endif
#define NR_PMB_ENTRIES 16
#define MIN_PMB_MAPPING_SIZE (8*1024*1024)
#ifdef CONFIG_PMB_64M_TILES
#define PMB_FIXED_SHIFT 26
#define PMB_VIRT2POS(virt) (((virt) >> PMB_FIXED_SHIFT) & (NR_PMB_ENTRIES - 1))
#define PMB_POS2VIRT(pos) (((pos) << PMB_FIXED_SHIFT) + P1SEG)
#endif
struct pmb_entry {
unsigned long vpn;
unsigned long ppn;
unsigned long flags; /* Only size */
struct pmb_entry *next;
unsigned long size;
int pos;
};
struct pmb_mapping {
unsigned long phys;
unsigned long virt;
unsigned long size;
unsigned long flags; /* Only cache etc */
struct pmb_entry *entries;
struct pmb_mapping *next;
int usage;
};
static DEFINE_RWLOCK(pmb_lock);
static unsigned long pmb_map;
static struct pmb_entry pmbe[NR_PMB_ENTRIES] __attribute__ ((__section__ (".uncached.data")));
static struct pmb_mapping pmbm[NR_PMB_ENTRIES];
static struct pmb_mapping *pmb_mappings, *pmb_mappings_free;
static __always_inline unsigned long mk_pmb_entry(unsigned int entry)
{
return (entry & PMB_E_MASK) << PMB_E_SHIFT;
}
static __always_inline unsigned long mk_pmb_addr(unsigned int entry)
{
return mk_pmb_entry(entry) | PMB_ADDR;
}
static __always_inline unsigned long mk_pmb_data(unsigned int entry)
{
return mk_pmb_entry(entry) | PMB_DATA;
}
static __always_inline void __set_pmb_entry(unsigned long vpn,
unsigned long ppn, unsigned long flags, int pos)
{
#ifdef CONFIG_CACHE_WRITETHROUGH
/*
* When we are in 32-bit address extended mode, CCR.CB becomes
* invalid, so care must be taken to manually adjust cacheable
* translations.
*/
if (likely(flags & PMB_C))
flags |= PMB_WT;
#endif
#ifdef CONFIG_PMB_64M_TILES
BUG_ON(pos != PMB_VIRT2POS(vpn));
#endif
ctrl_outl(0, mk_pmb_addr(pos));
ctrl_outl(vpn, mk_pmb_addr(pos));
ctrl_outl(ppn | flags | PMB_V, mk_pmb_data(pos));
/*
* Read back the value just written. This shouldn't be necessary,
* but when resuming from hibernation it appears to fix a problem.
*/
ctrl_inl(mk_pmb_addr(pos));
}
static void __uses_jump_to_uncached set_pmb_entry(unsigned long vpn,
unsigned long ppn, unsigned long flags, int pos)
{
jump_to_uncached();
__set_pmb_entry(vpn, ppn, flags, pos);
back_to_cached();
}
static __always_inline void __clear_pmb_entry(int pos)
{
#ifdef CONFIG_PMB_64M_TILES
ctrl_outl(0, mk_pmb_addr(pos));
ctrl_outl(PMB_POS2VIRT(pos), mk_pmb_addr(pos));
ctrl_outl((CONFIG_PMB_64M_TILES_PHYS & ~((1 << PMB_FIXED_SHIFT)-1)) |
PMB_SZ_64M | PMB_WT | PMB_UB | PMB_V, mk_pmb_data(pos));
#else
ctrl_outl(0, mk_pmb_addr(pos));
#endif
}
static void __uses_jump_to_uncached clear_pmb_entry(int pos)
{
jump_to_uncached();
__clear_pmb_entry(pos);
back_to_cached();
}
static int pmb_alloc(int pos)
{
if (likely(pos == PMB_NO_ENTRY))
pos = find_first_zero_bit(&pmb_map, NR_PMB_ENTRIES);
repeat:
if (unlikely(pos >= NR_PMB_ENTRIES))
return PMB_NO_ENTRY;
if (test_and_set_bit(pos, &pmb_map)) {
pos = find_first_zero_bit(&pmb_map, NR_PMB_ENTRIES);
goto repeat;
}
return pos;
}
static void pmb_free(int entry)
{
clear_bit(entry, &pmb_map);
}
static struct pmb_mapping* pmb_mapping_alloc(void)
{
struct pmb_mapping *mapping;
if (pmb_mappings_free == NULL)
return NULL;
mapping = pmb_mappings_free;
pmb_mappings_free = mapping->next;
memset(mapping, 0, sizeof(*mapping));
return mapping;
}
static void pmb_mapping_free(struct pmb_mapping* mapping)
{
mapping->next = pmb_mappings_free;
pmb_mappings_free = mapping;
}
static __always_inline void __pmb_mapping_set(struct pmb_mapping *mapping)
{
struct pmb_entry *entry = mapping->entries;
do {
__set_pmb_entry(entry->vpn, entry->ppn,
entry->flags | mapping->flags, entry->pos);
entry = entry->next;
} while (entry);
}
static void pmb_mapping_set(struct pmb_mapping *mapping)
{
struct pmb_entry *entry = mapping->entries;
do {
set_pmb_entry(entry->vpn, entry->ppn,
entry->flags | mapping->flags, entry->pos);
entry = entry->next;
} while (entry);
}
static void pmb_mapping_clear_and_free(struct pmb_mapping *mapping)
{
struct pmb_entry *entry = mapping->entries;
do {
clear_pmb_entry(entry->pos);
pmb_free(entry->pos);
entry = entry->next;
} while (entry);
}
#ifdef CONFIG_PMB_64M_TILES
static struct {
unsigned long size;
int flag;
} pmb_sizes[] = {
{ .size = 1 << PMB_FIXED_SHIFT, .flag = PMB_SZ_64M, },
};
/*
* Different algorithm when we tile the entire P1/P2 region with
* 64M PMB entries. This means the PMB entry is tied to the virtual
* address it covers, so we only need to search for the virtual
* address which accomodates the mapping we're interested in.
*/
static struct pmb_mapping* pmb_calc(unsigned long phys, unsigned long size,
unsigned long req_virt, int *req_pos,
unsigned long pmb_flags)
{
struct pmb_mapping *new_mapping;
struct pmb_mapping **prev_ptr;
unsigned long prev_end, next_start;
struct pmb_mapping *next_mapping;
unsigned long new_start, new_end;
const unsigned long pmb_size = pmb_sizes[0].size;
struct pmb_entry *entry;
struct pmb_entry **prev_entry_ptr;
if (size == 0)
return NULL;
new_mapping = pmb_mapping_alloc();
if (!new_mapping)
return NULL;
DPRINTK("request: phys %08lx, size %08lx\n", phys, size);
prev_end = P1SEG;
next_mapping = pmb_mappings;
prev_ptr = &pmb_mappings;
for (;;) {
if (next_mapping == NULL)
next_start = P3SEG;
else
next_start = next_mapping->virt;
DPRINTK("checking space between %08lx and %08lx\n",
prev_end, next_start);
if (req_virt) {
if ((req_virt < prev_end) || (req_virt > next_start))
goto next;
new_start = req_virt;
} else {
new_start = prev_end + (phys & (pmb_size-1));
}
new_end = new_start + size;
if (new_end <= next_start)
break;
next:
if (next_mapping == NULL) {
DPRINTK("failed, give up\n");
return NULL;
}
prev_ptr = &next_mapping->next;
prev_end = next_mapping->virt + next_mapping->size;
next_mapping = next_mapping->next;
}
DPRINTK("found space at %08lx to %08lx\n", new_start, new_end);
BUG_ON(req_pos && (*req_pos != PMB_VIRT2POS(new_start)));
phys &= ~(pmb_size - 1);
new_start &= ~(pmb_size - 1);
new_mapping->phys = phys;
new_mapping->virt = new_start;
new_mapping->size = 0;
new_mapping->flags = pmb_flags;
new_mapping->entries = NULL;
new_mapping->usage = 1;
new_mapping->next = *prev_ptr;
*prev_ptr = new_mapping;
prev_entry_ptr = &new_mapping->entries;
while (new_start < new_end) {
int pos = PMB_VIRT2POS(new_start);
pos = pmb_alloc(pos);
BUG_ON(pos == PMB_NO_ENTRY);
DPRINTK("using PMB entry %d\n", pos);
entry = &pmbe[pos];
entry->vpn = new_start;
entry->ppn = phys;
entry->flags = pmb_sizes[0].flag;
entry->next = NULL;
entry->size = pmb_size;
*prev_entry_ptr = entry;
prev_entry_ptr = &entry->next;
new_start += pmb_size;
phys += pmb_size;
new_mapping->size += pmb_size;
}
return new_mapping;
}
#else
static struct {
unsigned long size;
int flag;
} pmb_sizes[] = {
{ .size = 0x01000000, .flag = PMB_SZ_16M, },
{ .size = 0x04000000, .flag = PMB_SZ_64M, },
{ .size = 0x08000000, .flag = PMB_SZ_128M, },
{ .size = 0x20000000, .flag = PMB_SZ_512M, },
};
static struct pmb_mapping* pmb_calc(unsigned long phys, unsigned long size,
unsigned long req_virt, int *req_pos,
unsigned long pmb_flags)
{
unsigned long orig_phys = phys;
unsigned long orig_size = size;
int max_i = ARRAY_SIZE(pmb_sizes)-1;
struct pmb_mapping *new_mapping;
unsigned long alignment;
unsigned long virt_offset;
struct pmb_entry **prev_entry_ptr;
unsigned long prev_end, next_start;
struct pmb_mapping *next_mapping;
struct pmb_mapping **prev_ptr;
struct pmb_entry *entry;
unsigned long start;
if (size == 0)
return NULL;
new_mapping = pmb_mapping_alloc();
if (!new_mapping)
return NULL;
DPRINTK("request: phys %08lx, size %08lx\n", phys, size);
/*
* First work out the PMB entries to tile the physical region.
*
* Fill in new_mapping and its list of entries, all fields
* except those related to virtual addresses.
*
* alignment is the maximum alignment of all of the entries which
* make up the mapping.
* virt_offset will be non-zero in case some of the entries leading
* upto those which force the maximal alignment are smaller than
* those largest ones, and in this case virt_offset must be added
* to the eventual virtual address (which is aligned to alignment),
* to get the virtual address of the first entry.
*/
retry:
phys = orig_phys;
size = orig_size;
alignment = 0;
virt_offset = 0;
prev_entry_ptr = &new_mapping->entries;
new_mapping->size = 0;
while (size > 0) {
unsigned long best_size; /* bytes of size covered by tile */
int best_i;
unsigned long entry_phys;
unsigned long entry_size; /* total size of tile */
int i;
entry = *prev_entry_ptr;
if (entry == NULL) {
int pos;
pos = pmb_alloc(req_pos ? *req_pos++ : PMB_NO_ENTRY);
if (pos == PMB_NO_ENTRY)
goto failed_give_up;
entry = &pmbe[pos];
entry->next = NULL;
*prev_entry_ptr = entry;
}
prev_entry_ptr = &entry->next;
/*
* Calculate the 'best' PMB entry size. This is the
* one which covers the largest amount of the physical
* address range we are trying to map, but if
* increasing the size wouldn't increase the amount we
* would be able to map, don't bother. Similarly, if
* increasing the size would result in a mapping where
* half or more of the coverage is wasted, don't bother.
*/
best_size = best_i = 0;
for (i = 0; i <= max_i; i++) {
unsigned long pmb_size = pmb_sizes[i].size;
unsigned long tmp_start, tmp_end, tmp_size;
tmp_start = phys & ~(pmb_size-1);
tmp_end = tmp_start + pmb_size;
tmp_size = min(phys+size, tmp_end)-max(phys, tmp_start);
if (tmp_size <= best_size)
continue;
if (best_size) {
unsigned long wasted_size;
wasted_size = pmb_size - tmp_size;
if (wasted_size >= (pmb_size / 2))
continue;
}
best_i = i;
best_size = tmp_size;
}
BUG_ON(best_size == 0);
entry_size = pmb_sizes[best_i].size;
entry_phys = phys & ~(entry_size-1);
DPRINTK("using PMB %d: phys %08lx, size %08lx\n",
entry->pos, entry_phys, entry_size);
entry->ppn = entry_phys;
entry->size = entry_size;
entry->flags = pmb_sizes[best_i].flag;
if (pmb_sizes[best_i].size > alignment) {
alignment = entry_size;
if (new_mapping->size)
virt_offset = alignment - new_mapping->size;
}
new_mapping->size += entry_size;
size -= best_size;
phys += best_size;
}
new_mapping->phys = new_mapping->entries->ppn;
DPRINTK("mapping: phys %08lx, size %08lx\n", new_mapping->phys, new_mapping->size);
DPRINTK("virtual alignment %08lx, offset %08lx\n", alignment, virt_offset);
/* Each iteration should use at least as many entries previous ones */
BUG_ON(entry->next);
/* Do we have a conflict with the requested maping? */
BUG_ON(req_virt && ((req_virt & (alignment-1)) != virt_offset));
/* Next try and find a virtual address to map this */
prev_end = P1SEG;
next_mapping = pmb_mappings;
prev_ptr = &pmb_mappings;
do {
if (next_mapping == NULL)
next_start = P3SEG;
else
next_start = next_mapping->virt;
if (req_virt)
start = req_virt;
else
start = ALIGN(prev_end, alignment) + virt_offset;
DPRINTK("checking for virt %08lx between %08lx and %08lx\n",
start, prev_end, next_start);
if ((start >= prev_end) &&
(start + new_mapping->size <= next_start))
break;
if (next_mapping == NULL)
goto failed;
prev_ptr = &next_mapping->next;
prev_end = next_mapping->virt + next_mapping->size;
next_mapping = next_mapping->next;
} while (1);
DPRINTK("success, using %08lx\n", start);
new_mapping->virt = start;
new_mapping->flags = pmb_flags;
new_mapping->usage = 1;
new_mapping->next = *prev_ptr;
*prev_ptr = new_mapping;
/* Finally fill in the vpn's */
for (entry = new_mapping->entries; entry; entry=entry->next) {
entry->vpn = start;
start += entry->size;
}
return new_mapping;
failed:
if (--max_i >= 0) {
DPRINTK("failed, try again with max_i %d\n", max_i);
goto retry;
}
failed_give_up:
DPRINTK("failed, give up\n");
for (entry = new_mapping->entries; entry; entry = entry->next)
pmb_free(entry->pos);
pmb_mapping_free(new_mapping);
return NULL;
}
#endif
long pmb_remap(unsigned long phys,
unsigned long size, unsigned long flags)
{
struct pmb_mapping *mapping;
int pmb_flags;
unsigned long offset;
/* Convert typical pgprot value to the PMB equivalent */
if (flags & _PAGE_CACHABLE) {
if (flags & _PAGE_WT)
pmb_flags = PMB_WT;
else
pmb_flags = PMB_C;
} else
pmb_flags = PMB_WT | PMB_UB;
DPRINTK("phys: %08lx, size %08lx, flags %08lx->%08x\n",
phys, size, flags, pmb_flags);
write_lock(&pmb_lock);
for (mapping = pmb_mappings; mapping; mapping=mapping->next) {
DPRINTK("check against phys %08lx size %08lx flags %08lx\n",
mapping->phys, mapping->size, mapping->flags);
if ((phys >= mapping->phys) &&
(phys+size <= mapping->phys+mapping->size) &&
(pmb_flags == mapping->flags))
break;
}
if (mapping) {
/* If we hit an existing mapping, use it */
mapping->usage++;
DPRINTK("found, usage now %d\n", mapping->usage);
} else if (size < MIN_PMB_MAPPING_SIZE) {
/* We spit upon small mappings */
write_unlock(&pmb_lock);
return 0;
} else {
mapping = pmb_calc(phys, size, 0, NULL, pmb_flags);
if (!mapping) {
write_unlock(&pmb_lock);
return 0;
}
pmb_mapping_set(mapping);
}
write_unlock(&pmb_lock);
offset = phys - mapping->phys;
return mapping->virt + offset;
}
static struct pmb_mapping *pmb_mapping_find(unsigned long addr,
struct pmb_mapping ***prev)
{
struct pmb_mapping *mapping;
struct pmb_mapping **prev_mapping = &pmb_mappings;
for (mapping = pmb_mappings; mapping; mapping=mapping->next) {
if ((addr >= mapping->virt) &&
(addr < mapping->virt + mapping->size))
break;
prev_mapping = &mapping->next;
}
if (prev != NULL)
*prev = prev_mapping;
return mapping;
}
int pmb_unmap(unsigned long addr)
{
struct pmb_mapping *mapping;
struct pmb_mapping **prev_mapping;
write_lock(&pmb_lock);
mapping = pmb_mapping_find(addr, &prev_mapping);
if (unlikely(!mapping)) {
write_unlock(&pmb_lock);
return 0;
}
DPRINTK("mapping: phys %08lx, size %08lx, count %d\n",
mapping->phys, mapping->size, mapping->usage);
if (--mapping->usage == 0) {
pmb_mapping_clear_and_free(mapping);
*prev_mapping = mapping->next;
pmb_mapping_free(mapping);
}
write_unlock(&pmb_lock);
return 1;
}
static void noinline __uses_jump_to_uncached
apply_boot_mappings(struct pmb_mapping *uc_mapping, struct pmb_mapping *ram_mapping)
{
register int i __asm__("r1");
register unsigned long c2uc __asm__("r2");
register struct pmb_entry *entry __asm__("r3");
register unsigned long flags __asm__("r4");
/* We can execute this directly, as the current PMB is uncached */
__pmb_mapping_set(uc_mapping);
cached_to_uncached = uc_mapping->virt -
(((unsigned long)&__uncached_start) & ~(uc_mapping->entries->size-1));
jump_to_uncached();
/*
* We have to be cautious here, as we will temporarily lose access to
* the PMB entry which is mapping main RAM, and so loose access to
* data. So make sure all data is going to be in registers or the
* uncached region.
*/
c2uc = cached_to_uncached;
entry = ram_mapping->entries;
flags = ram_mapping->flags;
for (i=0; i<NR_PMB_ENTRIES-1; i++)
__clear_pmb_entry(i);
do {
entry = (struct pmb_entry*)(((unsigned long)entry) + c2uc);
__set_pmb_entry(entry->vpn, entry->ppn,
entry->flags | flags, entry->pos);
entry = entry->next;
} while (entry);
/* Flush out the TLB */
i = ctrl_inl(MMUCR);
i |= MMUCR_TI;
ctrl_outl(i, MMUCR);
back_to_cached();
}
struct pmb_mapping *uc_mapping, *ram_mapping
__attribute__ ((__section__ (".uncached.data")));
void __init pmb_init(void)
{
int i;
int entry;
/* Create the free list of mappings */
pmb_mappings_free = &pmbm[0];
for (i=0; i<NR_PMB_ENTRIES-1; i++)
pmbm[i].next = &pmbm[i+1];
pmbm[NR_PMB_ENTRIES-1].next = NULL;
/* Initialise the PMB entrie's pos */
for (i=0; i<NR_PMB_ENTRIES; i++)
pmbe[i].pos = i;
/* Create the initial mappings */
entry = NR_PMB_ENTRIES-1;
uc_mapping = pmb_calc(__pa(&__uncached_start), &__uncached_end - &__uncached_start,
P3SEG-pmb_sizes[0].size, &entry, PMB_WT | PMB_UB);
ram_mapping = pmb_calc(__MEMORY_START, __MEMORY_SIZE, P1SEG, 0, PMB_C);
apply_boot_mappings(uc_mapping, ram_mapping);
}
int pmb_virt_to_phys(void *addr, unsigned long *phys, unsigned long *flags)
{
struct pmb_mapping *mapping;
unsigned long vaddr = (unsigned long __force)addr;
read_lock(&pmb_lock);
mapping = pmb_mapping_find(vaddr, NULL);
if (!mapping) {
read_unlock(&pmb_lock);
return EFAULT;
}
if (phys)
*phys = mapping->phys + (vaddr - mapping->virt);
if (flags)
*flags = mapping->flags;
read_unlock(&pmb_lock);
return 0;
}
EXPORT_SYMBOL(pmb_virt_to_phys);
bool __in_29bit_mode(void)
{
#ifdef CONFIG_CPU_SUBTYPE_STX7100
/* ST40-200 used a different mechanism to control SE mode */
return (__raw_readl(MMUCR) & MMUCR_SE) == 0;
#else
return (__raw_readl(PMB_PASCR) & PASCR_SE) == 0;
#endif
}
static int pmb_seq_show(struct seq_file *file, void *iter)
{
int i;
seq_printf(file, "V: Valid, C: Cacheable, WT: Write-Through\n"
"CB: Copy-Back, B: Buffered, UB: Unbuffered\n");
seq_printf(file, "ety vpn ppn size flags\n");
for (i = 0; i < NR_PMB_ENTRIES; i++) {
unsigned long addr, data;
unsigned int size;
char *sz_str = NULL;
addr = ctrl_inl(mk_pmb_addr(i));
data = ctrl_inl(mk_pmb_data(i));
size = data & PMB_SZ_MASK;
sz_str = (size == PMB_SZ_16M) ? " 16MB":
(size == PMB_SZ_64M) ? " 64MB":
(size == PMB_SZ_128M) ? "128MB":
"512MB";
/* 02: V 0x88 0x08 128MB C CB B */
seq_printf(file, "%02d: %c 0x%02lx 0x%02lx %s %c %s %s\n",
i, ((addr & PMB_V) && (data & PMB_V)) ? 'V' : ' ',
(addr >> 24) & 0xff, (data >> 24) & 0xff,
sz_str, (data & PMB_C) ? 'C' : ' ',
(data & PMB_WT) ? "WT" : "CB",
(data & PMB_UB) ? "UB" : " B");
}
return 0;
}
static int pmb_debugfs_open(struct inode *inode, struct file *file)
{
return single_open(file, pmb_seq_show, NULL);
}
static const struct file_operations pmb_debugfs_fops = {
.owner = THIS_MODULE,
.open = pmb_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init pmb_debugfs_init(void)
{
struct dentry *dentry;
dentry = debugfs_create_file("pmb", S_IFREG | S_IRUGO,
sh_debugfs_root, NULL, &pmb_debugfs_fops);
if (!dentry)
return -ENOMEM;
if (IS_ERR(dentry))
return PTR_ERR(dentry);
return 0;
}
subsys_initcall(pmb_debugfs_init);
#ifdef CONFIG_PM
static __uses_jump_to_uncached
int pmb_sysdev_suspend(struct sys_device *dev, pm_message_t state)
{
static pm_message_t prev_state;
int idx;
switch (state.event) {
case PM_EVENT_ON:
/* Resumeing from hibernation */
if (prev_state.event == PM_EVENT_FREEZE) {
for (idx = 1; idx < NR_PMB_ENTRIES; ++idx)
if (pmbm[idx].usage && pmbm[idx].virt != 0xbf)
pmb_mapping_set(&pmbm[idx]);
flush_cache_all();
}
break;
case PM_EVENT_SUSPEND:
break;
case PM_EVENT_FREEZE:
break;
}
prev_state = state;
return 0;
}
static int pmb_sysdev_resume(struct sys_device *dev)
{
return pmb_sysdev_suspend(dev, PMSG_ON);
}
static struct sysdev_driver pmb_sysdev_driver = {
.suspend = pmb_sysdev_suspend,
.resume = pmb_sysdev_resume,
};
static int __init pmb_sysdev_init(void)
{
return sysdev_driver_register(&cpu_sysdev_class, &pmb_sysdev_driver);
}
subsys_initcall(pmb_sysdev_init);
#ifdef CONFIG_HIBERNATION_ON_MEMORY
void __uses_jump_to_uncached stm_hom_pmb_init(void)
{
apply_boot_mappings(uc_mapping, ram_mapping);
/* Now I can call the pmb_sysdev_resume */
pmb_sysdev_suspend(NULL, PMSG_ON);
}
#endif
#endif