2015-03-26 17:24:57 +01:00

1876 lines
48 KiB
C

/*
* Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
* of PCI-SCSI IO processors.
*
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
*
* This driver is derived from the Linux sym53c8xx driver.
* Copyright (C) 1998-2000 Gerard Roudier
*
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
* a port of the FreeBSD ncr driver to Linux-1.2.13.
*
* The original ncr driver has been written for 386bsd and FreeBSD by
* Wolfgang Stanglmeier <wolf@cologne.de>
* Stefan Esser <se@mi.Uni-Koeln.de>
* Copyright (C) 1994 Wolfgang Stanglmeier
*
* Other major contributions:
*
* NVRAM detection and reading.
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
*
*-----------------------------------------------------------------------------
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* Scripts for SYMBIOS-Processor
*
* We have to know the offsets of all labels before we reach
* them (for forward jumps). Therefore we declare a struct
* here. If you make changes inside the script,
*
* DONT FORGET TO CHANGE THE LENGTHS HERE!
*/
/*
* Script fragments which are loaded into the on-chip RAM
* of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
* Must not exceed 4K bytes.
*/
struct SYM_FWA_SCR {
u32 start [ 14];
u32 getjob_begin [ 4];
u32 getjob_end [ 4];
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
u32 select [ 6];
#else
u32 select [ 4];
#endif
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
u32 is_dmap_dirty [ 4];
#endif
u32 wf_sel_done [ 2];
u32 sel_done [ 2];
u32 send_ident [ 2];
#ifdef SYM_CONF_IARB_SUPPORT
u32 select2 [ 8];
#else
u32 select2 [ 2];
#endif
u32 command [ 2];
u32 dispatch [ 28];
u32 sel_no_cmd [ 10];
u32 init [ 6];
u32 clrack [ 4];
u32 datai_done [ 10];
u32 datai_done_wsr [ 20];
u32 datao_done [ 10];
u32 datao_done_wss [ 6];
u32 datai_phase [ 4];
u32 datao_phase [ 6];
u32 msg_in [ 2];
u32 msg_in2 [ 10];
#ifdef SYM_CONF_IARB_SUPPORT
u32 status [ 14];
#else
u32 status [ 10];
#endif
u32 complete [ 6];
u32 complete2 [ 12];
u32 done [ 14];
u32 done_end [ 2];
u32 complete_error [ 4];
u32 save_dp [ 12];
u32 restore_dp [ 8];
u32 disconnect [ 12];
#ifdef SYM_CONF_IARB_SUPPORT
u32 idle [ 4];
#else
u32 idle [ 2];
#endif
#ifdef SYM_CONF_IARB_SUPPORT
u32 ungetjob [ 6];
#else
u32 ungetjob [ 4];
#endif
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
u32 reselect [ 4];
#else
u32 reselect [ 2];
#endif
u32 reselected [ 22];
u32 resel_scntl4 [ 20];
u32 resel_lun0 [ 6];
#if SYM_CONF_MAX_TASK*4 > 512
u32 resel_tag [ 26];
#elif SYM_CONF_MAX_TASK*4 > 256
u32 resel_tag [ 20];
#else
u32 resel_tag [ 16];
#endif
u32 resel_dsa [ 2];
u32 resel_dsa1 [ 4];
u32 resel_no_tag [ 6];
u32 data_in [SYM_CONF_MAX_SG * 2];
u32 data_in2 [ 4];
u32 data_out [SYM_CONF_MAX_SG * 2];
u32 data_out2 [ 4];
u32 pm0_data [ 12];
u32 pm0_data_out [ 6];
u32 pm0_data_end [ 6];
u32 pm1_data [ 12];
u32 pm1_data_out [ 6];
u32 pm1_data_end [ 6];
};
/*
* Script fragments which stay in main memory for all chips
* except for chips that support 8K on-chip RAM.
*/
struct SYM_FWB_SCR {
u32 start64 [ 2];
u32 no_data [ 2];
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
u32 sel_for_abort [ 18];
#else
u32 sel_for_abort [ 16];
#endif
u32 sel_for_abort_1 [ 2];
u32 msg_in_etc [ 12];
u32 msg_received [ 4];
u32 msg_weird_seen [ 4];
u32 msg_extended [ 20];
u32 msg_bad [ 6];
u32 msg_weird [ 4];
u32 msg_weird1 [ 8];
u32 wdtr_resp [ 6];
u32 send_wdtr [ 4];
u32 sdtr_resp [ 6];
u32 send_sdtr [ 4];
u32 ppr_resp [ 6];
u32 send_ppr [ 4];
u32 nego_bad_phase [ 4];
u32 msg_out [ 4];
u32 msg_out_done [ 4];
u32 data_ovrun [ 2];
u32 data_ovrun1 [ 22];
u32 data_ovrun2 [ 8];
u32 abort_resel [ 16];
u32 resend_ident [ 4];
u32 ident_break [ 4];
u32 ident_break_atn [ 4];
u32 sdata_in [ 6];
u32 resel_bad_lun [ 4];
u32 bad_i_t_l [ 4];
u32 bad_i_t_l_q [ 4];
u32 bad_status [ 6];
u32 pm_handle [ 20];
u32 pm_handle1 [ 4];
u32 pm_save [ 4];
u32 pm0_save [ 12];
u32 pm_save_end [ 4];
u32 pm1_save [ 14];
/* WSR handling */
u32 pm_wsr_handle [ 38];
u32 wsr_ma_helper [ 4];
/* Data area */
u32 zero [ 1];
u32 scratch [ 1];
u32 pm0_data_addr [ 1];
u32 pm1_data_addr [ 1];
u32 done_pos [ 1];
u32 startpos [ 1];
u32 targtbl [ 1];
};
/*
* Script fragments used at initialisations.
* Only runs out of main memory.
*/
struct SYM_FWZ_SCR {
u32 snooptest [ 6];
u32 snoopend [ 2];
};
static struct SYM_FWA_SCR SYM_FWA_SCR = {
/*--------------------------< START >----------------------------*/ {
/*
* Switch the LED on.
* Will be patched with a NO_OP if LED
* not needed or not desired.
*/
SCR_REG_REG (gpreg, SCR_AND, 0xfe),
0,
/*
* Clear SIGP.
*/
SCR_FROM_REG (ctest2),
0,
/*
* Stop here if the C code wants to perform
* some error recovery procedure manually.
* (Indicate this by setting SEM in ISTAT)
*/
SCR_FROM_REG (istat),
0,
/*
* Report to the C code the next position in
* the start queue the SCRIPTS will schedule.
* The C code must not change SCRATCHA.
*/
SCR_LOAD_ABS (scratcha, 4),
PADDR_B (startpos),
SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
SIR_SCRIPT_STOPPED,
/*
* Start the next job.
*
* @DSA = start point for this job.
* SCRATCHA = address of this job in the start queue.
*
* We will restore startpos with SCRATCHA if we fails the
* arbitration or if it is the idle job.
*
* The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
* is a critical path. If it is partially executed, it then
* may happen that the job address is not yet in the DSA
* and the next queue position points to the next JOB.
*/
SCR_LOAD_ABS (dsa, 4),
PADDR_B (startpos),
SCR_LOAD_REL (temp, 4),
4,
}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
SCR_STORE_ABS (temp, 4),
PADDR_B (startpos),
SCR_LOAD_REL (dsa, 4),
0,
}/*-------------------------< GETJOB_END >-----------------------*/,{
SCR_LOAD_REL (temp, 4),
0,
SCR_RETURN,
0,
}/*-------------------------< SELECT >---------------------------*/,{
/*
* DSA contains the address of a scheduled
* data structure.
*
* SCRATCHA contains the address of the start queue
* entry which points to the next job.
*
* Set Initiator mode.
*
* (Target mode is left as an exercise for the reader)
*/
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
SCR_CLR (SCR_TRG),
0,
#endif
/*
* And try to select this target.
*/
SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
PADDR_A (ungetjob),
/*
* Now there are 4 possibilities:
*
* (1) The chip loses arbitration.
* This is ok, because it will try again,
* when the bus becomes idle.
* (But beware of the timeout function!)
*
* (2) The chip is reselected.
* Then the script processor takes the jump
* to the RESELECT label.
*
* (3) The chip wins arbitration.
* Then it will execute SCRIPTS instruction until
* the next instruction that checks SCSI phase.
* Then will stop and wait for selection to be
* complete or selection time-out to occur.
*
* After having won arbitration, the SCRIPTS
* processor is able to execute instructions while
* the SCSI core is performing SCSI selection.
*/
/*
* Initialize the status registers
*/
SCR_LOAD_REL (scr0, 4),
offsetof (struct sym_ccb, phys.head.status),
/*
* We may need help from CPU if the DMA segment
* registers aren't up-to-date for this IO.
* Patched with NOOP for chips that donnot
* support DAC addressing.
*/
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
}/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
SCR_FROM_REG (HX_REG),
0,
SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
SIR_DMAP_DIRTY,
#endif
}/*-------------------------< WF_SEL_DONE >----------------------*/,{
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
SIR_SEL_ATN_NO_MSG_OUT,
}/*-------------------------< SEL_DONE >-------------------------*/,{
/*
* C1010-33 errata work-around.
* Due to a race, the SCSI core may not have
* loaded SCNTL3 on SEL_TBL instruction.
* We reload it once phase is stable.
* Patched with a NOOP for other chips.
*/
SCR_LOAD_REL (scntl3, 1),
offsetof(struct sym_dsb, select.sel_scntl3),
}/*-------------------------< SEND_IDENT >-----------------------*/,{
/*
* Selection complete.
* Send the IDENTIFY and possibly the TAG message
* and negotiation message if present.
*/
SCR_MOVE_TBL ^ SCR_MSG_OUT,
offsetof (struct sym_dsb, smsg),
}/*-------------------------< SELECT2 >--------------------------*/,{
#ifdef SYM_CONF_IARB_SUPPORT
/*
* Set IMMEDIATE ARBITRATION if we have been given
* a hint to do so. (Some job to do after this one).
*/
SCR_FROM_REG (HF_REG),
0,
SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
8,
SCR_REG_REG (scntl1, SCR_OR, IARB),
0,
#endif
/*
* Anticipate the COMMAND phase.
* This is the PHASE we expect at this point.
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
PADDR_A (sel_no_cmd),
}/*-------------------------< COMMAND >--------------------------*/,{
/*
* ... and send the command
*/
SCR_MOVE_TBL ^ SCR_COMMAND,
offsetof (struct sym_dsb, cmd),
}/*-------------------------< DISPATCH >-------------------------*/,{
/*
* MSG_IN is the only phase that shall be
* entered at least once for each (re)selection.
* So we test it first.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR_A (msg_in),
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
PADDR_A (datao_phase),
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
PADDR_A (datai_phase),
SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
PADDR_A (status),
SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
PADDR_A (command),
SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
PADDR_B (msg_out),
/*
* Discard as many illegal phases as
* required and tell the C code about.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
16,
SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
HADDR_1 (scratch),
SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
-16,
SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
16,
SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
HADDR_1 (scratch),
SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
-16,
SCR_INT,
SIR_BAD_PHASE,
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
/*
* The target does not switch to command
* phase after IDENTIFY has been sent.
*
* If it stays in MSG OUT phase send it
* the IDENTIFY again.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
PADDR_B (resend_ident),
/*
* If target does not switch to MSG IN phase
* and we sent a negotiation, assert the
* failure immediately.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR_A (dispatch),
SCR_FROM_REG (HS_REG),
0,
SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
SIR_NEGO_FAILED,
/*
* Jump to dispatcher.
*/
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< INIT >-----------------------------*/,{
/*
* Wait for the SCSI RESET signal to be
* inactive before restarting operations,
* since the chip may hang on SEL_ATN
* if SCSI RESET is active.
*/
SCR_FROM_REG (sstat0),
0,
SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
-16,
SCR_JUMP,
PADDR_A (start),
}/*-------------------------< CLRACK >---------------------------*/,{
/*
* Terminate possible pending message phase.
*/
SCR_CLR (SCR_ACK),
0,
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< DATAI_DONE >-----------------------*/,{
/*
* Save current pointer to LASTP.
*/
SCR_STORE_REL (temp, 4),
offsetof (struct sym_ccb, phys.head.lastp),
/*
* If the SWIDE is not full, jump to dispatcher.
* We anticipate a STATUS phase.
*/
SCR_FROM_REG (scntl2),
0,
SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
PADDR_A (datai_done_wsr),
SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
PADDR_A (status),
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
/*
* The SWIDE is full.
* Clear this condition.
*/
SCR_REG_REG (scntl2, SCR_OR, WSR),
0,
/*
* We are expecting an IGNORE RESIDUE message
* from the device, otherwise we are in data
* overrun condition. Check against MSG_IN phase.
*/
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
SIR_SWIDE_OVERRUN,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR_A (dispatch),
/*
* We are in MSG_IN phase,
* Read the first byte of the message.
* If it is not an IGNORE RESIDUE message,
* signal overrun and jump to message
* processing.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
HADDR_1 (msgin[0]),
SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
SIR_SWIDE_OVERRUN,
SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
PADDR_A (msg_in2),
/*
* We got the message we expected.
* Read the 2nd byte, and jump to dispatcher.
*/
SCR_CLR (SCR_ACK),
0,
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
HADDR_1 (msgin[1]),
SCR_CLR (SCR_ACK),
0,
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< DATAO_DONE >-----------------------*/,{
/*
* Save current pointer to LASTP.
*/
SCR_STORE_REL (temp, 4),
offsetof (struct sym_ccb, phys.head.lastp),
/*
* If the SODL is not full jump to dispatcher.
* We anticipate a STATUS phase.
*/
SCR_FROM_REG (scntl2),
0,
SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
PADDR_A (datao_done_wss),
SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
PADDR_A (status),
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
/*
* The SODL is full, clear this condition.
*/
SCR_REG_REG (scntl2, SCR_OR, WSS),
0,
/*
* And signal a DATA UNDERRUN condition
* to the C code.
*/
SCR_INT,
SIR_SODL_UNDERRUN,
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< DATAI_PHASE >----------------------*/,{
/*
* Jump to current pointer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.head.lastp),
SCR_RETURN,
0,
}/*-------------------------< DATAO_PHASE >----------------------*/,{
/*
* C1010-66 errata work-around.
* Extra clocks of data hold must be inserted
* in DATA OUT phase on 33 MHz PCI BUS.
* Patched with a NOOP for other chips.
*/
SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
0,
/*
* Jump to current pointer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.head.lastp),
SCR_RETURN,
0,
}/*-------------------------< MSG_IN >---------------------------*/,{
/*
* Get the first byte of the message.
*
* The script processor doesn't negate the
* ACK signal after this transfer.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
HADDR_1 (msgin[0]),
}/*-------------------------< MSG_IN2 >--------------------------*/,{
/*
* Check first against 1 byte messages
* that we handle from SCRIPTS.
*/
SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
PADDR_A (complete),
SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
PADDR_A (disconnect),
SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
PADDR_A (save_dp),
SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
PADDR_A (restore_dp),
/*
* We handle all other messages from the
* C code, so no need to waste on-chip RAM
* for those ones.
*/
SCR_JUMP,
PADDR_B (msg_in_etc),
}/*-------------------------< STATUS >---------------------------*/,{
/*
* get the status
*/
SCR_MOVE_ABS (1) ^ SCR_STATUS,
HADDR_1 (scratch),
#ifdef SYM_CONF_IARB_SUPPORT
/*
* If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
* since we may have to tamper the start queue from
* the C code.
*/
SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
8,
SCR_REG_REG (scntl1, SCR_AND, ~IARB),
0,
#endif
/*
* save status to scsi_status.
* mark as complete.
*/
SCR_TO_REG (SS_REG),
0,
SCR_LOAD_REG (HS_REG, HS_COMPLETE),
0,
/*
* Anticipate the MESSAGE PHASE for
* the TASK COMPLETE message.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR_A (msg_in),
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< COMPLETE >-------------------------*/,{
/*
* Complete message.
*
* When we terminate the cycle by clearing ACK,
* the target may disconnect immediately.
*
* We don't want to be told of an "unexpected disconnect",
* so we disable this feature.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
/*
* Terminate cycle ...
*/
SCR_CLR (SCR_ACK|SCR_ATN),
0,
/*
* ... and wait for the disconnect.
*/
SCR_WAIT_DISC,
0,
}/*-------------------------< COMPLETE2 >------------------------*/,{
/*
* Save host status.
*/
SCR_STORE_REL (scr0, 4),
offsetof (struct sym_ccb, phys.head.status),
/*
* Some bridges may reorder DMA writes to memory.
* We donnot want the CPU to deal with completions
* without all the posted write having been flushed
* to memory. This DUMMY READ should flush posted
* buffers prior to the CPU having to deal with
* completions.
*/
SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
offsetof (struct sym_ccb, phys.head.status),
/*
* If command resulted in not GOOD status,
* call the C code if needed.
*/
SCR_FROM_REG (SS_REG),
0,
SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
PADDR_B (bad_status),
/*
* If we performed an auto-sense, call
* the C code to synchronyze task aborts
* with UNIT ATTENTION conditions.
*/
SCR_FROM_REG (HF_REG),
0,
SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
PADDR_A (complete_error),
}/*-------------------------< DONE >-----------------------------*/,{
/*
* Copy the DSA to the DONE QUEUE and
* signal completion to the host.
* If we are interrupted between DONE
* and DONE_END, we must reset, otherwise
* the completed CCB may be lost.
*/
SCR_STORE_ABS (dsa, 4),
PADDR_B (scratch),
SCR_LOAD_ABS (dsa, 4),
PADDR_B (done_pos),
SCR_LOAD_ABS (scratcha, 4),
PADDR_B (scratch),
SCR_STORE_REL (scratcha, 4),
0,
/*
* The instruction below reads the DONE QUEUE next
* free position from memory.
* In addition it ensures that all PCI posted writes
* are flushed and so the DSA value of the done
* CCB is visible by the CPU before INTFLY is raised.
*/
SCR_LOAD_REL (scratcha, 4),
4,
SCR_INT_FLY,
0,
SCR_STORE_ABS (scratcha, 4),
PADDR_B (done_pos),
}/*-------------------------< DONE_END >-------------------------*/,{
SCR_JUMP,
PADDR_A (start),
}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
SCR_LOAD_ABS (scratcha, 4),
PADDR_B (startpos),
SCR_INT,
SIR_COMPLETE_ERROR,
}/*-------------------------< SAVE_DP >--------------------------*/,{
/*
* Clear ACK immediately.
* No need to delay it.
*/
SCR_CLR (SCR_ACK),
0,
/*
* Keep track we received a SAVE DP, so
* we will switch to the other PM context
* on the next PM since the DP may point
* to the current PM context.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
0,
/*
* SAVE_DP message:
* Copy LASTP to SAVEP.
*/
SCR_LOAD_REL (scratcha, 4),
offsetof (struct sym_ccb, phys.head.lastp),
SCR_STORE_REL (scratcha, 4),
offsetof (struct sym_ccb, phys.head.savep),
/*
* Anticipate the MESSAGE PHASE for
* the DISCONNECT message.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR_A (msg_in),
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< RESTORE_DP >-----------------------*/,{
/*
* Clear ACK immediately.
* No need to delay it.
*/
SCR_CLR (SCR_ACK),
0,
/*
* Copy SAVEP to LASTP.
*/
SCR_LOAD_REL (scratcha, 4),
offsetof (struct sym_ccb, phys.head.savep),
SCR_STORE_REL (scratcha, 4),
offsetof (struct sym_ccb, phys.head.lastp),
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< DISCONNECT >-----------------------*/,{
/*
* DISCONNECTing ...
*
* disable the "unexpected disconnect" feature,
* and remove the ACK signal.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_CLR (SCR_ACK|SCR_ATN),
0,
/*
* Wait for the disconnect.
*/
SCR_WAIT_DISC,
0,
/*
* Status is: DISCONNECTED.
*/
SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
0,
/*
* Save host status.
*/
SCR_STORE_REL (scr0, 4),
offsetof (struct sym_ccb, phys.head.status),
SCR_JUMP,
PADDR_A (start),
}/*-------------------------< IDLE >-----------------------------*/,{
/*
* Nothing to do?
* Switch the LED off and wait for reselect.
* Will be patched with a NO_OP if LED
* not needed or not desired.
*/
SCR_REG_REG (gpreg, SCR_OR, 0x01),
0,
#ifdef SYM_CONF_IARB_SUPPORT
SCR_JUMPR,
8,
#endif
}/*-------------------------< UNGETJOB >-------------------------*/,{
#ifdef SYM_CONF_IARB_SUPPORT
/*
* Set IMMEDIATE ARBITRATION, for the next time.
* This will give us better chance to win arbitration
* for the job we just wanted to do.
*/
SCR_REG_REG (scntl1, SCR_OR, IARB),
0,
#endif
/*
* We are not able to restart the SCRIPTS if we are
* interrupted and these instruction haven't been
* all executed. BTW, this is very unlikely to
* happen, but we check that from the C code.
*/
SCR_LOAD_REG (dsa, 0xff),
0,
SCR_STORE_ABS (scratcha, 4),
PADDR_B (startpos),
}/*-------------------------< RESELECT >-------------------------*/,{
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
/*
* Make sure we are in initiator mode.
*/
SCR_CLR (SCR_TRG),
0,
#endif
/*
* Sleep waiting for a reselection.
*/
SCR_WAIT_RESEL,
PADDR_A(start),
}/*-------------------------< RESELECTED >-----------------------*/,{
/*
* Switch the LED on.
* Will be patched with a NO_OP if LED
* not needed or not desired.
*/
SCR_REG_REG (gpreg, SCR_AND, 0xfe),
0,
/*
* load the target id into the sdid
*/
SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
0,
SCR_TO_REG (sdid),
0,
/*
* Load the target control block address
*/
SCR_LOAD_ABS (dsa, 4),
PADDR_B (targtbl),
SCR_SFBR_REG (dsa, SCR_SHL, 0),
0,
SCR_REG_REG (dsa, SCR_SHL, 0),
0,
SCR_REG_REG (dsa, SCR_AND, 0x3c),
0,
SCR_LOAD_REL (dsa, 4),
0,
/*
* We expect MESSAGE IN phase.
* If not, get help from the C code.
*/
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
SIR_RESEL_NO_MSG_IN,
/*
* Load the legacy synchronous transfer registers.
*/
SCR_LOAD_REL (scntl3, 1),
offsetof(struct sym_tcb, head.wval),
SCR_LOAD_REL (sxfer, 1),
offsetof(struct sym_tcb, head.sval),
}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
/*
* The C1010 uses a new synchronous timing scheme.
* Will be patched with a NO_OP if not a C1010.
*/
SCR_LOAD_REL (scntl4, 1),
offsetof(struct sym_tcb, head.uval),
/*
* Get the IDENTIFY message.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
HADDR_1 (msgin),
/*
* If IDENTIFY LUN #0, use a faster path
* to find the LCB structure.
*/
SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
PADDR_A (resel_lun0),
/*
* If message isn't an IDENTIFY,
* tell the C code about.
*/
SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
SIR_RESEL_NO_IDENTIFY,
/*
* It is an IDENTIFY message,
* Load the LUN control block address.
*/
SCR_LOAD_REL (dsa, 4),
offsetof(struct sym_tcb, head.luntbl_sa),
SCR_SFBR_REG (dsa, SCR_SHL, 0),
0,
SCR_REG_REG (dsa, SCR_SHL, 0),
0,
SCR_REG_REG (dsa, SCR_AND, 0xfc),
0,
SCR_LOAD_REL (dsa, 4),
0,
SCR_JUMPR,
8,
}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
/*
* LUN 0 special case (but usual one :))
*/
SCR_LOAD_REL (dsa, 4),
offsetof(struct sym_tcb, head.lun0_sa),
/*
* Jump indirectly to the reselect action for this LUN.
*/
SCR_LOAD_REL (temp, 4),
offsetof(struct sym_lcb, head.resel_sa),
SCR_RETURN,
0,
/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
}/*-------------------------< RESEL_TAG >------------------------*/,{
/*
* ACK the IDENTIFY previously received.
*/
SCR_CLR (SCR_ACK),
0,
/*
* It shall be a tagged command.
* Read SIMPLE+TAG.
* The C code will deal with errors.
* Aggressive optimization, isn't it? :)
*/
SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
HADDR_1 (msgin),
/*
* Load the pointer to the tagged task
* table for this LUN.
*/
SCR_LOAD_REL (dsa, 4),
offsetof(struct sym_lcb, head.itlq_tbl_sa),
/*
* The SIDL still contains the TAG value.
* Aggressive optimization, isn't it? :):)
*/
SCR_REG_SFBR (sidl, SCR_SHL, 0),
0,
#if SYM_CONF_MAX_TASK*4 > 512
SCR_JUMPR ^ IFFALSE (CARRYSET),
8,
SCR_REG_REG (dsa1, SCR_OR, 2),
0,
SCR_REG_REG (sfbr, SCR_SHL, 0),
0,
SCR_JUMPR ^ IFFALSE (CARRYSET),
8,
SCR_REG_REG (dsa1, SCR_OR, 1),
0,
#elif SYM_CONF_MAX_TASK*4 > 256
SCR_JUMPR ^ IFFALSE (CARRYSET),
8,
SCR_REG_REG (dsa1, SCR_OR, 1),
0,
#endif
/*
* Retrieve the DSA of this task.
* JUMP indirectly to the restart point of the CCB.
*/
SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
0,
SCR_LOAD_REL (dsa, 4),
0,
SCR_LOAD_REL (temp, 4),
offsetof(struct sym_ccb, phys.head.go.restart),
SCR_RETURN,
0,
/* In normal situations we branch to RESEL_DSA */
}/*-------------------------< RESEL_DSA >------------------------*/,{
/*
* ACK the IDENTIFY or TAG previously received.
*/
SCR_CLR (SCR_ACK),
0,
}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
/*
* Initialize the status registers
*/
SCR_LOAD_REL (scr0, 4),
offsetof (struct sym_ccb, phys.head.status),
/*
* Jump to dispatcher.
*/
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
/*
* Load the DSA with the unique ITL task.
*/
SCR_LOAD_REL (dsa, 4),
offsetof(struct sym_lcb, head.itl_task_sa),
/*
* JUMP indirectly to the restart point of the CCB.
*/
SCR_LOAD_REL (temp, 4),
offsetof(struct sym_ccb, phys.head.go.restart),
SCR_RETURN,
0,
/* In normal situations we branch to RESEL_DSA */
}/*-------------------------< DATA_IN >--------------------------*/,{
/*
* Because the size depends on the
* #define SYM_CONF_MAX_SG parameter,
* it is filled in at runtime.
*
* ##===========< i=0; i<SYM_CONF_MAX_SG >=========
* || SCR_CHMOV_TBL ^ SCR_DATA_IN,
* || offsetof (struct sym_dsb, data[ i]),
* ##==========================================
*/
0
}/*-------------------------< DATA_IN2 >-------------------------*/,{
SCR_CALL,
PADDR_A (datai_done),
SCR_JUMP,
PADDR_B (data_ovrun),
}/*-------------------------< DATA_OUT >-------------------------*/,{
/*
* Because the size depends on the
* #define SYM_CONF_MAX_SG parameter,
* it is filled in at runtime.
*
* ##===========< i=0; i<SYM_CONF_MAX_SG >=========
* || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
* || offsetof (struct sym_dsb, data[ i]),
* ##==========================================
*/
0
}/*-------------------------< DATA_OUT2 >------------------------*/,{
SCR_CALL,
PADDR_A (datao_done),
SCR_JUMP,
PADDR_B (data_ovrun),
}/*-------------------------< PM0_DATA >-------------------------*/,{
/*
* Read our host flags to SFBR, so we will be able
* to check against the data direction we expect.
*/
SCR_FROM_REG (HF_REG),
0,
/*
* Check against actual DATA PHASE.
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
PADDR_A (pm0_data_out),
/*
* Actual phase is DATA IN.
* Check against expected direction.
*/
SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
PADDR_B (data_ovrun),
/*
* Keep track we are moving data from the
* PM0 DATA mini-script.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
0,
/*
* Move the data to memory.
*/
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct sym_ccb, phys.pm0.sg),
SCR_JUMP,
PADDR_A (pm0_data_end),
}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
/*
* Actual phase is DATA OUT.
* Check against expected direction.
*/
SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
PADDR_B (data_ovrun),
/*
* Keep track we are moving data from the
* PM0 DATA mini-script.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
0,
/*
* Move the data from memory.
*/
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
offsetof (struct sym_ccb, phys.pm0.sg),
}/*-------------------------< PM0_DATA_END >---------------------*/,{
/*
* Clear the flag that told we were moving
* data from the PM0 DATA mini-script.
*/
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
0,
/*
* Return to the previous DATA script which
* is guaranteed by design (if no bug) to be
* the main DATA script for this transfer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.pm0.ret),
SCR_RETURN,
0,
}/*-------------------------< PM1_DATA >-------------------------*/,{
/*
* Read our host flags to SFBR, so we will be able
* to check against the data direction we expect.
*/
SCR_FROM_REG (HF_REG),
0,
/*
* Check against actual DATA PHASE.
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
PADDR_A (pm1_data_out),
/*
* Actual phase is DATA IN.
* Check against expected direction.
*/
SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
PADDR_B (data_ovrun),
/*
* Keep track we are moving data from the
* PM1 DATA mini-script.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
0,
/*
* Move the data to memory.
*/
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct sym_ccb, phys.pm1.sg),
SCR_JUMP,
PADDR_A (pm1_data_end),
}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
/*
* Actual phase is DATA OUT.
* Check against expected direction.
*/
SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
PADDR_B (data_ovrun),
/*
* Keep track we are moving data from the
* PM1 DATA mini-script.
*/
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
0,
/*
* Move the data from memory.
*/
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
offsetof (struct sym_ccb, phys.pm1.sg),
}/*-------------------------< PM1_DATA_END >---------------------*/,{
/*
* Clear the flag that told we were moving
* data from the PM1 DATA mini-script.
*/
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
0,
/*
* Return to the previous DATA script which
* is guaranteed by design (if no bug) to be
* the main DATA script for this transfer.
*/
SCR_LOAD_REL (temp, 4),
offsetof (struct sym_ccb, phys.pm1.ret),
SCR_RETURN,
0,
}/*-------------------------<>-----------------------------------*/
};
static struct SYM_FWB_SCR SYM_FWB_SCR = {
/*--------------------------< START64 >--------------------------*/ {
/*
* SCRIPT entry point for the 895A, 896 and 1010.
* For now, there is no specific stuff for those
* chips at this point, but this may come.
*/
SCR_JUMP,
PADDR_A (init),
}/*-------------------------< NO_DATA >--------------------------*/,{
SCR_JUMP,
PADDR_B (data_ovrun),
}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
/*
* We are jumped here by the C code, if we have
* some target to reset or some disconnected
* job to abort. Since error recovery is a serious
* busyness, we will really reset the SCSI BUS, if
* case of a SCSI interrupt occurring in this path.
*/
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
/*
* Set initiator mode.
*/
SCR_CLR (SCR_TRG),
0,
#endif
/*
* And try to select this target.
*/
SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
PADDR_A (reselect),
/*
* Wait for the selection to complete or
* the selection to time out.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
-8,
/*
* Call the C code.
*/
SCR_INT,
SIR_TARGET_SELECTED,
/*
* The C code should let us continue here.
* Send the 'kiss of death' message.
* We expect an immediate disconnect once
* the target has eaten the message.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_MOVE_TBL ^ SCR_MSG_OUT,
offsetof (struct sym_hcb, abrt_tbl),
SCR_CLR (SCR_ACK|SCR_ATN),
0,
SCR_WAIT_DISC,
0,
/*
* Tell the C code that we are done.
*/
SCR_INT,
SIR_ABORT_SENT,
}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
/*
* Jump at scheduler.
*/
SCR_JUMP,
PADDR_A (start),
}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
/*
* If it is an EXTENDED (variable size message)
* Handle it.
*/
SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
PADDR_B (msg_extended),
/*
* Let the C code handle any other
* 1 byte message.
*/
SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
PADDR_B (msg_received),
SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
PADDR_B (msg_received),
/*
* We donnot handle 2 bytes messages from SCRIPTS.
* So, let the C code deal with these ones too.
*/
SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
PADDR_B (msg_weird_seen),
SCR_CLR (SCR_ACK),
0,
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
HADDR_1 (msgin[1]),
}/*-------------------------< MSG_RECEIVED >---------------------*/,{
SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
0,
SCR_INT,
SIR_MSG_RECEIVED,
}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
0,
SCR_INT,
SIR_MSG_WEIRD,
}/*-------------------------< MSG_EXTENDED >---------------------*/,{
/*
* Clear ACK and get the next byte
* assumed to be the message length.
*/
SCR_CLR (SCR_ACK),
0,
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
HADDR_1 (msgin[1]),
/*
* Try to catch some unlikely situations as 0 length
* or too large the length.
*/
SCR_JUMP ^ IFTRUE (DATA (0)),
PADDR_B (msg_weird_seen),
SCR_TO_REG (scratcha),
0,
SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
0,
SCR_JUMP ^ IFTRUE (CARRYSET),
PADDR_B (msg_weird_seen),
/*
* We donnot handle extended messages from SCRIPTS.
* Read the amount of data correponding to the
* message length and call the C code.
*/
SCR_STORE_REL (scratcha, 1),
offsetof (struct sym_dsb, smsg_ext.size),
SCR_CLR (SCR_ACK),
0,
SCR_MOVE_TBL ^ SCR_MSG_IN,
offsetof (struct sym_dsb, smsg_ext),
SCR_JUMP,
PADDR_B (msg_received),
}/*-------------------------< MSG_BAD >--------------------------*/,{
/*
* unimplemented message - reject it.
*/
SCR_INT,
SIR_REJECT_TO_SEND,
SCR_SET (SCR_ATN),
0,
SCR_JUMP,
PADDR_A (clrack),
}/*-------------------------< MSG_WEIRD >------------------------*/,{
/*
* weird message received
* ignore all MSG IN phases and reject it.
*/
SCR_INT,
SIR_REJECT_TO_SEND,
SCR_SET (SCR_ATN),
0,
}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR_A (dispatch),
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
HADDR_1 (scratch),
SCR_JUMP,
PADDR_B (msg_weird1),
}/*-------------------------< WDTR_RESP >------------------------*/,{
/*
* let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDR_B (nego_bad_phase),
}/*-------------------------< SEND_WDTR >------------------------*/,{
/*
* Send the M_X_WIDE_REQ
*/
SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
HADDR_1 (msgout),
SCR_JUMP,
PADDR_B (msg_out_done),
}/*-------------------------< SDTR_RESP >------------------------*/,{
/*
* let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDR_B (nego_bad_phase),
}/*-------------------------< SEND_SDTR >------------------------*/,{
/*
* Send the M_X_SYNC_REQ
*/
SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
HADDR_1 (msgout),
SCR_JUMP,
PADDR_B (msg_out_done),
}/*-------------------------< PPR_RESP >-------------------------*/,{
/*
* let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDR_B (nego_bad_phase),
}/*-------------------------< SEND_PPR >-------------------------*/,{
/*
* Send the M_X_PPR_REQ
*/
SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
HADDR_1 (msgout),
SCR_JUMP,
PADDR_B (msg_out_done),
}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
SCR_INT,
SIR_NEGO_PROTO,
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< MSG_OUT >--------------------------*/,{
/*
* The target requests a message.
* We donnot send messages that may
* require the device to go to bus free.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
HADDR_1 (msgout),
/*
* ... wait for the next phase
* if it's a message out, send it again, ...
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
PADDR_B (msg_out),
}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
/*
* Let the C code be aware of the
* sent message and clear the message.
*/
SCR_INT,
SIR_MSG_OUT_DONE,
/*
* ... and process the next phase
*/
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< DATA_OVRUN >-----------------------*/,{
/*
* Use scratcha to count the extra bytes.
*/
SCR_LOAD_ABS (scratcha, 4),
PADDR_B (zero),
}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
/*
* The target may want to transfer too much data.
*
* If phase is DATA OUT write 1 byte and count it.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
16,
SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
HADDR_1 (scratch),
SCR_JUMP,
PADDR_B (data_ovrun2),
/*
* If WSR is set, clear this condition, and
* count this byte.
*/
SCR_FROM_REG (scntl2),
0,
SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
16,
SCR_REG_REG (scntl2, SCR_OR, WSR),
0,
SCR_JUMP,
PADDR_B (data_ovrun2),
/*
* Finally check against DATA IN phase.
* Signal data overrun to the C code
* and jump to dispatcher if not so.
* Read 1 byte otherwise and count it.
*/
SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
16,
SCR_INT,
SIR_DATA_OVERRUN,
SCR_JUMP,
PADDR_A (dispatch),
SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
HADDR_1 (scratch),
}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
/*
* Count this byte.
* This will allow to return a negative
* residual to user.
*/
SCR_REG_REG (scratcha, SCR_ADD, 0x01),
0,
SCR_REG_REG (scratcha1, SCR_ADDC, 0),
0,
SCR_REG_REG (scratcha2, SCR_ADDC, 0),
0,
/*
* .. and repeat as required.
*/
SCR_JUMP,
PADDR_B (data_ovrun1),
}/*-------------------------< ABORT_RESEL >----------------------*/,{
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
/*
* send the abort/abortag/reset message
* we expect an immediate disconnect
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
HADDR_1 (msgout),
SCR_CLR (SCR_ACK|SCR_ATN),
0,
SCR_WAIT_DISC,
0,
SCR_INT,
SIR_RESEL_ABORTED,
SCR_JUMP,
PADDR_A (start),
}/*-------------------------< RESEND_IDENT >---------------------*/,{
/*
* The target stays in MSG OUT phase after having acked
* Identify [+ Tag [+ Extended message ]]. Targets shall
* behave this way on parity error.
* We must send it again all the messages.
*/
SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
SCR_JUMP,
PADDR_A (send_ident),
}/*-------------------------< IDENT_BREAK >----------------------*/,{
SCR_CLR (SCR_ATN),
0,
SCR_JUMP,
PADDR_A (select2),
}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
SCR_SET (SCR_ATN),
0,
SCR_JUMP,
PADDR_A (select2),
}/*-------------------------< SDATA_IN >-------------------------*/,{
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct sym_dsb, sense),
SCR_CALL,
PADDR_A (datai_done),
SCR_JUMP,
PADDR_B (data_ovrun),
}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
/*
* Message is an IDENTIFY, but lun is unknown.
* Signal problem to C code for logging the event.
* Send a M_ABORT to clear all pending tasks.
*/
SCR_INT,
SIR_RESEL_BAD_LUN,
SCR_JUMP,
PADDR_B (abort_resel),
}/*-------------------------< BAD_I_T_L >------------------------*/,{
/*
* We donnot have a task for that I_T_L.
* Signal problem to C code for logging the event.
* Send a M_ABORT message.
*/
SCR_INT,
SIR_RESEL_BAD_I_T_L,
SCR_JUMP,
PADDR_B (abort_resel),
}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
/*
* We donnot have a task that matches the tag.
* Signal problem to C code for logging the event.
* Send a M_ABORTTAG message.
*/
SCR_INT,
SIR_RESEL_BAD_I_T_L_Q,
SCR_JUMP,
PADDR_B (abort_resel),
}/*-------------------------< BAD_STATUS >-----------------------*/,{
/*
* Anything different from INTERMEDIATE
* CONDITION MET should be a bad SCSI status,
* given that GOOD status has already been tested.
* Call the C code.
*/
SCR_LOAD_ABS (scratcha, 4),
PADDR_B (startpos),
SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
SIR_BAD_SCSI_STATUS,
SCR_RETURN,
0,
}/*-------------------------< PM_HANDLE >------------------------*/,{
/*
* Phase mismatch handling.
*
* Since we have to deal with 2 SCSI data pointers
* (current and saved), we need at least 2 contexts.
* Each context (pm0 and pm1) has a saved area, a
* SAVE mini-script and a DATA phase mini-script.
*/
/*
* Get the PM handling flags.
*/
SCR_FROM_REG (HF_REG),
0,
/*
* If no flags (1rst PM for example), avoid
* all the below heavy flags testing.
* This makes the normal case a bit faster.
*/
SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
PADDR_B (pm_handle1),
/*
* If we received a SAVE DP, switch to the
* other PM context since the savep may point
* to the current PM context.
*/
SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
8,
SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
0,
/*
* If we have been interrupt in a PM DATA mini-script,
* we take the return address from the corresponding
* saved area.
* This ensure the return address always points to the
* main DATA script for this transfer.
*/
SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
PADDR_B (pm_handle1),
SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
16,
SCR_LOAD_REL (ia, 4),
offsetof(struct sym_ccb, phys.pm0.ret),
SCR_JUMP,
PADDR_B (pm_save),
SCR_LOAD_REL (ia, 4),
offsetof(struct sym_ccb, phys.pm1.ret),
SCR_JUMP,
PADDR_B (pm_save),
}/*-------------------------< PM_HANDLE1 >-----------------------*/,{
/*
* Normal case.
* Update the return address so that it
* will point after the interrupted MOVE.
*/
SCR_REG_REG (ia, SCR_ADD, 8),
0,
SCR_REG_REG (ia1, SCR_ADDC, 0),
0,
}/*-------------------------< PM_SAVE >--------------------------*/,{
/*
* Clear all the flags that told us if we were
* interrupted in a PM DATA mini-script and/or
* we received a SAVE DP.
*/
SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
0,
/*
* Choose the current PM context.
*/
SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
PADDR_B (pm1_save),
}/*-------------------------< PM0_SAVE >-------------------------*/,{
SCR_STORE_REL (ia, 4),
offsetof(struct sym_ccb, phys.pm0.ret),
/*
* If WSR bit is set, either UA and RBC may
* have to be changed whether the device wants
* to ignore this residue or not.
*/
SCR_FROM_REG (scntl2),
0,
SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
PADDR_B (pm_wsr_handle),
/*
* Save the remaining byte count, the updated
* address and the return address.
*/
SCR_STORE_REL (rbc, 4),
offsetof(struct sym_ccb, phys.pm0.sg.size),
SCR_STORE_REL (ua, 4),
offsetof(struct sym_ccb, phys.pm0.sg.addr),
/*
* Set the current pointer at the PM0 DATA mini-script.
*/
SCR_LOAD_ABS (ia, 4),
PADDR_B (pm0_data_addr),
}/*-------------------------< PM_SAVE_END >----------------------*/,{
SCR_STORE_REL (ia, 4),
offsetof(struct sym_ccb, phys.head.lastp),
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< PM1_SAVE >-------------------------*/,{
SCR_STORE_REL (ia, 4),
offsetof(struct sym_ccb, phys.pm1.ret),
/*
* If WSR bit is set, either UA and RBC may
* have to be changed whether the device wants
* to ignore this residue or not.
*/
SCR_FROM_REG (scntl2),
0,
SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
PADDR_B (pm_wsr_handle),
/*
* Save the remaining byte count, the updated
* address and the return address.
*/
SCR_STORE_REL (rbc, 4),
offsetof(struct sym_ccb, phys.pm1.sg.size),
SCR_STORE_REL (ua, 4),
offsetof(struct sym_ccb, phys.pm1.sg.addr),
/*
* Set the current pointer at the PM1 DATA mini-script.
*/
SCR_LOAD_ABS (ia, 4),
PADDR_B (pm1_data_addr),
SCR_JUMP,
PADDR_B (pm_save_end),
}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
/*
* Phase mismatch handling from SCRIPT with WSR set.
* Such a condition can occur if the chip wants to
* execute a CHMOV(size > 1) when the WSR bit is
* set and the target changes PHASE.
*
* We must move the residual byte to memory.
*
* UA contains bit 0..31 of the address to
* move the residual byte.
* Move it to the table indirect.
*/
SCR_STORE_REL (ua, 4),
offsetof (struct sym_ccb, phys.wresid.addr),
/*
* Increment UA (move address to next position).
*/
SCR_REG_REG (ua, SCR_ADD, 1),
0,
SCR_REG_REG (ua1, SCR_ADDC, 0),
0,
SCR_REG_REG (ua2, SCR_ADDC, 0),
0,
SCR_REG_REG (ua3, SCR_ADDC, 0),
0,
/*
* Compute SCRATCHA as:
* - size to transfer = 1 byte.
* - bit 24..31 = high address bit [32...39].
*/
SCR_LOAD_ABS (scratcha, 4),
PADDR_B (zero),
SCR_REG_REG (scratcha, SCR_OR, 1),
0,
SCR_FROM_REG (rbc3),
0,
SCR_TO_REG (scratcha3),
0,
/*
* Move this value to the table indirect.
*/
SCR_STORE_REL (scratcha, 4),
offsetof (struct sym_ccb, phys.wresid.size),
/*
* Wait for a valid phase.
* While testing with bogus QUANTUM drives, the C1010
* sometimes raised a spurious phase mismatch with
* WSR and the CHMOV(1) triggered another PM.
* Waiting explicitly for the PHASE seemed to avoid
* the nested phase mismatch. Btw, this didn't happen
* using my IBM drives.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
0,
/*
* Perform the move of the residual byte.
*/
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct sym_ccb, phys.wresid),
/*
* We can now handle the phase mismatch with UA fixed.
* RBC[0..23]=0 is a special case that does not require
* a PM context. The C code also checks against this.
*/
SCR_FROM_REG (rbc),
0,
SCR_RETURN ^ IFFALSE (DATA (0)),
0,
SCR_FROM_REG (rbc1),
0,
SCR_RETURN ^ IFFALSE (DATA (0)),
0,
SCR_FROM_REG (rbc2),
0,
SCR_RETURN ^ IFFALSE (DATA (0)),
0,
/*
* RBC[0..23]=0.
* Not only we donnot need a PM context, but this would
* lead to a bogus CHMOV(0). This condition means that
* the residual was the last byte to move from this CHMOV.
* So, we just have to move the current data script pointer
* (i.e. TEMP) to the SCRIPTS address following the
* interrupted CHMOV and jump to dispatcher.
* IA contains the data pointer to save.
*/
SCR_JUMP,
PADDR_B (pm_save_end),
}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
/*
* Helper for the C code when WSR bit is set.
* Perform the move of the residual byte.
*/
SCR_CHMOV_TBL ^ SCR_DATA_IN,
offsetof (struct sym_ccb, phys.wresid),
SCR_JUMP,
PADDR_A (dispatch),
}/*-------------------------< ZERO >-----------------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< SCRATCH >--------------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< DONE_POS >-------------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< STARTPOS >-------------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------< TARGTBL >--------------------------*/,{
SCR_DATA_ZERO,
}/*-------------------------<>-----------------------------------*/
};
static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
/*-------------------------< SNOOPTEST >------------------------*/{
/*
* Read the variable from memory.
*/
SCR_LOAD_REL (scratcha, 4),
offsetof(struct sym_hcb, scratch),
/*
* Write the variable to memory.
*/
SCR_STORE_REL (temp, 4),
offsetof(struct sym_hcb, scratch),
/*
* Read back the variable from memory.
*/
SCR_LOAD_REL (temp, 4),
offsetof(struct sym_hcb, scratch),
}/*-------------------------< SNOOPEND >-------------------------*/,{
/*
* And stop.
*/
SCR_INT,
99,
}/*-------------------------<>-----------------------------------*/
};