satip-axe/kernel/drivers/mmc/host/sh_mmcif.c
2015-03-26 17:24:57 +01:00

941 lines
25 KiB
C

/*
* MMCIF eMMC driver.
*
* Copyright (C) 2010 Renesas Solutions Corp.
* Yusuke Goda <yusuke.goda.sx@renesas.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
*
* TODO
* 1. DMA
* 2. Power management
* 3. Handle MMC errors better
*
*/
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/mmc/sh_mmcif.h>
#define DRIVER_NAME "sh_mmcif"
#define DRIVER_VERSION "2010-04-28"
/* CE_CMD_SET */
#define CMD_MASK 0x3f000000
#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
#define CMD_SET_RBSY (1 << 21) /* R1b */
#define CMD_SET_CCSEN (1 << 20)
#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
#define CMD_SET_CCSH (1 << 5)
#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
/* CE_CMD_CTRL */
#define CMD_CTRL_BREAK (1 << 0)
/* CE_BLOCK_SET */
#define BLOCK_SIZE_MASK 0x0000ffff
/* CE_CLK_CTRL */
#define CLK_ENABLE (1 << 24) /* 1: output mmc clock */
#define CLK_CLEAR ((1 << 19) | (1 << 18) | (1 << 17) | (1 << 16))
#define CLK_SUP_PCLK ((1 << 19) | (1 << 18) | (1 << 17) | (1 << 16))
#define SRSPTO_256 ((1 << 13) | (0 << 12)) /* resp timeout */
#define SRBSYTO_29 ((1 << 11) | (1 << 10) | \
(1 << 9) | (1 << 8)) /* resp busy timeout */
#define SRWDTO_29 ((1 << 7) | (1 << 6) | \
(1 << 5) | (1 << 4)) /* read/write timeout */
#define SCCSTO_29 ((1 << 3) | (1 << 2) | \
(1 << 1) | (1 << 0)) /* ccs timeout */
/* CE_BUF_ACC */
#define BUF_ACC_DMAWEN (1 << 25)
#define BUF_ACC_DMAREN (1 << 24)
#define BUF_ACC_BUSW_32 (0 << 17)
#define BUF_ACC_BUSW_16 (1 << 17)
#define BUF_ACC_ATYP (1 << 16)
/* CE_INT */
#define INT_CCSDE (1 << 29)
#define INT_CMD12DRE (1 << 26)
#define INT_CMD12RBE (1 << 25)
#define INT_CMD12CRE (1 << 24)
#define INT_DTRANE (1 << 23)
#define INT_BUFRE (1 << 22)
#define INT_BUFWEN (1 << 21)
#define INT_BUFREN (1 << 20)
#define INT_CCSRCV (1 << 19)
#define INT_RBSYE (1 << 17)
#define INT_CRSPE (1 << 16)
#define INT_CMDVIO (1 << 15)
#define INT_BUFVIO (1 << 14)
#define INT_WDATERR (1 << 11)
#define INT_RDATERR (1 << 10)
#define INT_RIDXERR (1 << 9)
#define INT_RSPERR (1 << 8)
#define INT_CCSTO (1 << 5)
#define INT_CRCSTO (1 << 4)
#define INT_WDATTO (1 << 3)
#define INT_RDATTO (1 << 2)
#define INT_RBSYTO (1 << 1)
#define INT_RSPTO (1 << 0)
#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
INT_RDATTO | INT_RBSYTO | INT_RSPTO)
/* CE_INT_MASK */
#define MASK_ALL 0x00000000
#define MASK_MCCSDE (1 << 29)
#define MASK_MCMD12DRE (1 << 26)
#define MASK_MCMD12RBE (1 << 25)
#define MASK_MCMD12CRE (1 << 24)
#define MASK_MDTRANE (1 << 23)
#define MASK_MBUFRE (1 << 22)
#define MASK_MBUFWEN (1 << 21)
#define MASK_MBUFREN (1 << 20)
#define MASK_MCCSRCV (1 << 19)
#define MASK_MRBSYE (1 << 17)
#define MASK_MCRSPE (1 << 16)
#define MASK_MCMDVIO (1 << 15)
#define MASK_MBUFVIO (1 << 14)
#define MASK_MWDATERR (1 << 11)
#define MASK_MRDATERR (1 << 10)
#define MASK_MRIDXERR (1 << 9)
#define MASK_MRSPERR (1 << 8)
#define MASK_MCCSTO (1 << 5)
#define MASK_MCRCSTO (1 << 4)
#define MASK_MWDATTO (1 << 3)
#define MASK_MRDATTO (1 << 2)
#define MASK_MRBSYTO (1 << 1)
#define MASK_MRSPTO (1 << 0)
/* CE_HOST_STS1 */
#define STS1_CMDSEQ (1 << 31)
/* CE_HOST_STS2 */
#define STS2_CRCSTE (1 << 31)
#define STS2_CRC16E (1 << 30)
#define STS2_AC12CRCE (1 << 29)
#define STS2_RSPCRC7E (1 << 28)
#define STS2_CRCSTEBE (1 << 27)
#define STS2_RDATEBE (1 << 26)
#define STS2_AC12REBE (1 << 25)
#define STS2_RSPEBE (1 << 24)
#define STS2_AC12IDXE (1 << 23)
#define STS2_RSPIDXE (1 << 22)
#define STS2_CCSTO (1 << 15)
#define STS2_RDATTO (1 << 14)
#define STS2_DATBSYTO (1 << 13)
#define STS2_CRCSTTO (1 << 12)
#define STS2_AC12BSYTO (1 << 11)
#define STS2_RSPBSYTO (1 << 10)
#define STS2_AC12RSPTO (1 << 9)
#define STS2_RSPTO (1 << 8)
#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
STS2_DATBSYTO | STS2_CRCSTTO | \
STS2_AC12BSYTO | STS2_RSPBSYTO | \
STS2_AC12RSPTO | STS2_RSPTO)
/* CE_VERSION */
#define SOFT_RST_ON (1 << 31)
#define SOFT_RST_OFF (0 << 31)
#define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
#define CLKDEV_MMC_DATA 20000000 /* 20MHz */
#define CLKDEV_INIT 400000 /* 400 KHz */
struct sh_mmcif_host {
struct mmc_host *mmc;
struct mmc_data *data;
struct mmc_command *cmd;
struct platform_device *pd;
struct clk *hclk;
unsigned int clk;
int bus_width;
u16 wait_int;
u16 sd_error;
long timeout;
void __iomem *addr;
wait_queue_head_t intr_wait;
};
static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
unsigned int reg, u32 val)
{
writel(val | readl(host->addr + reg), host->addr + reg);
}
static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
unsigned int reg, u32 val)
{
writel(~val & readl(host->addr + reg), host->addr + reg);
}
static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
{
struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
if (!clk)
return;
if (p->sup_pclk && clk == host->clk)
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
else
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
(ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
}
static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
{
u32 tmp;
tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
/* byte swap on */
sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
}
static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
{
u32 state1, state2;
int ret, timeout = 10000000;
host->sd_error = 0;
host->wait_int = 0;
state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
pr_debug("%s: ERR HOST_STS1 = %08x\n", DRIVER_NAME, state1);
pr_debug("%s: ERR HOST_STS2 = %08x\n", DRIVER_NAME, state2);
if (state1 & STS1_CMDSEQ) {
sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
while (1) {
timeout--;
if (timeout < 0) {
pr_err(DRIVER_NAME": Forceed end of " \
"command sequence timeout err\n");
return -EIO;
}
if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
& STS1_CMDSEQ))
break;
mdelay(1);
}
sh_mmcif_sync_reset(host);
pr_debug(DRIVER_NAME": Forced end of command sequence\n");
return -EIO;
}
if (state2 & STS2_CRC_ERR) {
pr_debug(DRIVER_NAME": Happened CRC error\n");
ret = -EIO;
} else if (state2 & STS2_TIMEOUT_ERR) {
pr_debug(DRIVER_NAME": Happened Timeout error\n");
ret = -ETIMEDOUT;
} else {
pr_debug(DRIVER_NAME": Happened End/Index error\n");
ret = -EIO;
}
return ret;
}
static int sh_mmcif_single_read(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
long time;
u32 blocksize, i, *p = sg_virt(data->sg);
host->wait_int = 0;
/* buf read enable */
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
time = wait_event_interruptible_timeout(host->intr_wait,
host->wait_int == 1 ||
host->sd_error == 1, host->timeout);
if (host->wait_int != 1 && (time == 0 || host->sd_error != 0))
return sh_mmcif_error_manage(host);
host->wait_int = 0;
blocksize = (BLOCK_SIZE_MASK &
sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
for (i = 0; i < blocksize / 4; i++)
*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
/* buffer read end */
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
time = wait_event_interruptible_timeout(host->intr_wait,
host->wait_int == 1 ||
host->sd_error == 1, host->timeout);
if (host->wait_int != 1 && (time == 0 || host->sd_error != 0))
return sh_mmcif_error_manage(host);
host->wait_int = 0;
return 0;
}
static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
long time;
u32 blocksize, i, j, sec, *p;
blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
MMCIF_CE_BLOCK_SET);
for (j = 0; j < data->sg_len; j++) {
p = sg_virt(data->sg);
host->wait_int = 0;
for (sec = 0; sec < data->sg->length / blocksize; sec++) {
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
/* buf read enable */
time = wait_event_interruptible_timeout(host->intr_wait,
host->wait_int == 1 ||
host->sd_error == 1, host->timeout);
if (host->wait_int != 1 &&
(time == 0 || host->sd_error != 0))
return sh_mmcif_error_manage(host);
host->wait_int = 0;
for (i = 0; i < blocksize / 4; i++)
*p++ = sh_mmcif_readl(host->addr,
MMCIF_CE_DATA);
}
if (j < data->sg_len - 1)
data->sg++;
}
return 0;
}
static int sh_mmcif_single_write(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
long time;
u32 blocksize, i, *p = sg_virt(data->sg);
host->wait_int = 0;
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
/* buf write enable */
time = wait_event_interruptible_timeout(host->intr_wait,
host->wait_int == 1 ||
host->sd_error == 1, host->timeout);
if (host->wait_int != 1 && (time == 0 || host->sd_error != 0))
return sh_mmcif_error_manage(host);
host->wait_int = 0;
blocksize = (BLOCK_SIZE_MASK &
sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
for (i = 0; i < blocksize / 4; i++)
sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
/* buffer write end */
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
time = wait_event_interruptible_timeout(host->intr_wait,
host->wait_int == 1 ||
host->sd_error == 1, host->timeout);
if (host->wait_int != 1 && (time == 0 || host->sd_error != 0))
return sh_mmcif_error_manage(host);
host->wait_int = 0;
return 0;
}
static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
long time;
u32 i, sec, j, blocksize, *p;
blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
MMCIF_CE_BLOCK_SET);
for (j = 0; j < data->sg_len; j++) {
p = sg_virt(data->sg);
host->wait_int = 0;
for (sec = 0; sec < data->sg->length / blocksize; sec++) {
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
/* buf write enable*/
time = wait_event_interruptible_timeout(host->intr_wait,
host->wait_int == 1 ||
host->sd_error == 1, host->timeout);
if (host->wait_int != 1 &&
(time == 0 || host->sd_error != 0))
return sh_mmcif_error_manage(host);
host->wait_int = 0;
for (i = 0; i < blocksize / 4; i++)
sh_mmcif_writel(host->addr,
MMCIF_CE_DATA, *p++);
}
if (j < data->sg_len - 1)
data->sg++;
}
return 0;
}
static void sh_mmcif_get_response(struct sh_mmcif_host *host,
struct mmc_command *cmd)
{
if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
} else
cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
}
static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
struct mmc_command *cmd)
{
cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
}
static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
{
u32 tmp = 0;
/* Response Type check */
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
tmp |= CMD_SET_RTYP_NO;
break;
case MMC_RSP_R1:
case MMC_RSP_R1B:
case MMC_RSP_R3:
tmp |= CMD_SET_RTYP_6B;
break;
case MMC_RSP_R2:
tmp |= CMD_SET_RTYP_17B;
break;
default:
pr_err(DRIVER_NAME": Not support type response.\n");
break;
}
switch (opc) {
/* RBSY */
case MMC_SWITCH:
case MMC_STOP_TRANSMISSION:
case MMC_SET_WRITE_PROT:
case MMC_CLR_WRITE_PROT:
case MMC_ERASE:
case MMC_GEN_CMD:
tmp |= CMD_SET_RBSY;
break;
}
/* WDAT / DATW */
if (host->data) {
tmp |= CMD_SET_WDAT;
switch (host->bus_width) {
case MMC_BUS_WIDTH_1:
tmp |= CMD_SET_DATW_1;
break;
case MMC_BUS_WIDTH_4:
tmp |= CMD_SET_DATW_4;
break;
case MMC_BUS_WIDTH_8:
tmp |= CMD_SET_DATW_8;
break;
default:
pr_err(DRIVER_NAME": Not support bus width.\n");
break;
}
}
/* DWEN */
if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
tmp |= CMD_SET_DWEN;
/* CMLTE/CMD12EN */
if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
mrq->data->blocks << 16);
}
/* RIDXC[1:0] check bits */
if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
tmp |= CMD_SET_RIDXC_BITS;
/* RCRC7C[1:0] check bits */
if (opc == MMC_SEND_OP_COND)
tmp |= CMD_SET_CRC7C_BITS;
/* RCRC7C[1:0] internal CRC7 */
if (opc == MMC_ALL_SEND_CID ||
opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
tmp |= CMD_SET_CRC7C_INTERNAL;
return opc = ((opc << 24) | tmp);
}
static u32 sh_mmcif_data_trans(struct sh_mmcif_host *host,
struct mmc_request *mrq, u32 opc)
{
u32 ret;
switch (opc) {
case MMC_READ_MULTIPLE_BLOCK:
ret = sh_mmcif_multi_read(host, mrq);
break;
case MMC_WRITE_MULTIPLE_BLOCK:
ret = sh_mmcif_multi_write(host, mrq);
break;
case MMC_WRITE_BLOCK:
ret = sh_mmcif_single_write(host, mrq);
break;
case MMC_READ_SINGLE_BLOCK:
case MMC_SEND_EXT_CSD:
ret = sh_mmcif_single_read(host, mrq);
break;
default:
pr_err(DRIVER_NAME": NOT SUPPORT CMD = d'%08d\n", opc);
ret = -EINVAL;
break;
}
return ret;
}
static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
struct mmc_request *mrq, struct mmc_command *cmd)
{
long time;
int ret = 0, mask = 0;
u32 opc = cmd->opcode;
host->cmd = cmd;
switch (opc) {
/* respons busy check */
case MMC_SWITCH:
case MMC_STOP_TRANSMISSION:
case MMC_SET_WRITE_PROT:
case MMC_CLR_WRITE_PROT:
case MMC_ERASE:
case MMC_GEN_CMD:
mask = MASK_MRBSYE;
break;
default:
mask = MASK_MCRSPE;
break;
}
mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
if (host->data) {
sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
mrq->data->blksz);
}
opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
/* set arg */
sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
host->wait_int = 0;
/* set cmd */
sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
time = wait_event_interruptible_timeout(host->intr_wait,
host->wait_int == 1 || host->sd_error == 1, host->timeout);
if (host->wait_int != 1 && time == 0) {
cmd->error = sh_mmcif_error_manage(host);
return;
}
if (host->sd_error) {
switch (cmd->opcode) {
case MMC_ALL_SEND_CID:
case MMC_SELECT_CARD:
case MMC_APP_CMD:
cmd->error = -ETIMEDOUT;
break;
default:
pr_debug("%s: Cmd(d'%d) err\n",
DRIVER_NAME, cmd->opcode);
cmd->error = sh_mmcif_error_manage(host);
break;
}
host->sd_error = 0;
host->wait_int = 0;
return;
}
if (!(cmd->flags & MMC_RSP_PRESENT)) {
cmd->error = ret;
host->wait_int = 0;
return;
}
if (host->wait_int == 1) {
sh_mmcif_get_response(host, cmd);
host->wait_int = 0;
}
if (host->data) {
ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
if (ret < 0)
mrq->data->bytes_xfered = 0;
else
mrq->data->bytes_xfered =
mrq->data->blocks * mrq->data->blksz;
}
cmd->error = ret;
}
static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
struct mmc_request *mrq, struct mmc_command *cmd)
{
long time;
if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
else {
pr_err(DRIVER_NAME": not support stop cmd\n");
cmd->error = sh_mmcif_error_manage(host);
return;
}
time = wait_event_interruptible_timeout(host->intr_wait,
host->wait_int == 1 ||
host->sd_error == 1, host->timeout);
if (host->wait_int != 1 && (time == 0 || host->sd_error != 0)) {
cmd->error = sh_mmcif_error_manage(host);
return;
}
sh_mmcif_get_cmd12response(host, cmd);
host->wait_int = 0;
cmd->error = 0;
}
static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sh_mmcif_host *host = mmc_priv(mmc);
switch (mrq->cmd->opcode) {
/* MMCIF does not support SD/SDIO command */
case SD_IO_SEND_OP_COND:
case MMC_APP_CMD:
mrq->cmd->error = -ETIMEDOUT;
mmc_request_done(mmc, mrq);
return;
case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
if (!mrq->data) {
/* send_if_cond cmd (not support) */
mrq->cmd->error = -ETIMEDOUT;
mmc_request_done(mmc, mrq);
return;
}
break;
default:
break;
}
host->data = mrq->data;
sh_mmcif_start_cmd(host, mrq, mrq->cmd);
host->data = NULL;
if (mrq->cmd->error != 0) {
mmc_request_done(mmc, mrq);
return;
}
if (mrq->stop)
sh_mmcif_stop_cmd(host, mrq, mrq->stop);
mmc_request_done(mmc, mrq);
}
static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sh_mmcif_host *host = mmc_priv(mmc);
struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
if (ios->power_mode == MMC_POWER_OFF) {
/* clock stop */
sh_mmcif_clock_control(host, 0);
if (p->down_pwr)
p->down_pwr(host->pd);
return;
} else if (ios->power_mode == MMC_POWER_UP) {
if (p->set_pwr)
p->set_pwr(host->pd, ios->power_mode);
}
if (ios->clock)
sh_mmcif_clock_control(host, ios->clock);
host->bus_width = ios->bus_width;
}
static struct mmc_host_ops sh_mmcif_ops = {
.request = sh_mmcif_request,
.set_ios = sh_mmcif_set_ios,
};
static void sh_mmcif_detect(struct mmc_host *mmc)
{
mmc_detect_change(mmc, 0);
}
static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
{
struct sh_mmcif_host *host = dev_id;
u32 state = 0;
int err = 0;
state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
if (state & INT_RBSYE) {
sh_mmcif_writel(host->addr, MMCIF_CE_INT,
~(INT_RBSYE | INT_CRSPE));
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
} else if (state & INT_CRSPE) {
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
} else if (state & INT_BUFREN) {
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
} else if (state & INT_BUFWEN) {
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
} else if (state & INT_CMD12DRE) {
sh_mmcif_writel(host->addr, MMCIF_CE_INT,
~(INT_CMD12DRE | INT_CMD12RBE |
INT_CMD12CRE | INT_BUFRE));
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
} else if (state & INT_BUFRE) {
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
} else if (state & INT_DTRANE) {
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
} else if (state & INT_CMD12RBE) {
sh_mmcif_writel(host->addr, MMCIF_CE_INT,
~(INT_CMD12RBE | INT_CMD12CRE));
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
} else if (state & INT_ERR_STS) {
/* err interrupts */
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
err = 1;
} else {
pr_debug("%s: Not support int\n", DRIVER_NAME);
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
err = 1;
}
if (err) {
host->sd_error = 1;
pr_debug("%s: int err state = %08x\n", DRIVER_NAME, state);
}
host->wait_int = 1;
wake_up(&host->intr_wait);
return IRQ_HANDLED;
}
static int __devinit sh_mmcif_probe(struct platform_device *pdev)
{
int ret = 0, irq[2];
struct mmc_host *mmc;
struct sh_mmcif_host *host = NULL;
struct sh_mmcif_plat_data *pd = NULL;
struct resource *res;
void __iomem *reg;
char clk_name[8];
irq[0] = platform_get_irq(pdev, 0);
irq[1] = platform_get_irq(pdev, 1);
if (irq[0] < 0 || irq[1] < 0) {
pr_err(DRIVER_NAME": Get irq error\n");
return -ENXIO;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "platform_get_resource error.\n");
return -ENXIO;
}
reg = ioremap(res->start, resource_size(res));
if (!reg) {
dev_err(&pdev->dev, "ioremap error.\n");
return -ENOMEM;
}
pd = (struct sh_mmcif_plat_data *)(pdev->dev.platform_data);
if (!pd) {
dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
ret = -ENXIO;
goto clean_up;
}
mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto clean_up;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->addr = reg;
host->timeout = 1000;
snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
host->hclk = clk_get(&pdev->dev, clk_name);
if (IS_ERR(host->hclk)) {
dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
ret = PTR_ERR(host->hclk);
goto clean_up1;
}
clk_enable(host->hclk);
host->clk = clk_get_rate(host->hclk);
host->pd = pdev;
init_waitqueue_head(&host->intr_wait);
mmc->ops = &sh_mmcif_ops;
mmc->f_max = host->clk;
/* close to 400KHz */
if (mmc->f_max < 51200000)
mmc->f_min = mmc->f_max / 128;
else if (mmc->f_max < 102400000)
mmc->f_min = mmc->f_max / 256;
else
mmc->f_min = mmc->f_max / 512;
if (pd->ocr)
mmc->ocr_avail = pd->ocr;
mmc->caps = MMC_CAP_MMC_HIGHSPEED;
if (pd->caps)
mmc->caps |= pd->caps;
mmc->max_phys_segs = 128;
mmc->max_hw_segs = 128;
mmc->max_blk_size = 512;
mmc->max_blk_count = 65535;
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
sh_mmcif_sync_reset(host);
platform_set_drvdata(pdev, host);
mmc_add_host(mmc);
ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
if (ret) {
pr_err(DRIVER_NAME": request_irq error (sh_mmc:error)\n");
goto clean_up2;
}
ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
if (ret) {
free_irq(irq[0], host);
pr_err(DRIVER_NAME": request_irq error (sh_mmc:int)\n");
goto clean_up2;
}
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
sh_mmcif_detect(host->mmc);
pr_info("%s: driver version %s\n", DRIVER_NAME, DRIVER_VERSION);
pr_debug("%s: chip ver H'%04x\n", DRIVER_NAME,
sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
return ret;
clean_up2:
clk_disable(host->hclk);
clean_up1:
mmc_free_host(mmc);
clean_up:
if (reg)
iounmap(reg);
return ret;
}
static int __devexit sh_mmcif_remove(struct platform_device *pdev)
{
struct sh_mmcif_host *host = platform_get_drvdata(pdev);
int irq[2];
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
irq[0] = platform_get_irq(pdev, 0);
irq[1] = platform_get_irq(pdev, 1);
if (host->addr)
iounmap(host->addr);
platform_set_drvdata(pdev, NULL);
mmc_remove_host(host->mmc);
free_irq(irq[0], host);
free_irq(irq[1], host);
clk_disable(host->hclk);
mmc_free_host(host->mmc);
return 0;
}
static struct platform_driver sh_mmcif_driver = {
.probe = sh_mmcif_probe,
.remove = sh_mmcif_remove,
.driver = {
.name = DRIVER_NAME,
},
};
static int __init sh_mmcif_init(void)
{
return platform_driver_register(&sh_mmcif_driver);
}
static void __exit sh_mmcif_exit(void)
{
platform_driver_unregister(&sh_mmcif_driver);
}
module_init(sh_mmcif_init);
module_exit(sh_mmcif_exit);
MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS(DRIVER_NAME);
MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");