1154 lines
26 KiB
C
1154 lines
26 KiB
C
/*
|
|
* stm_spi_fsm.c Support for STM SPI Serial Flash Controller
|
|
*
|
|
* Author: Angus Clark <angus.clark@st.com>
|
|
*
|
|
* Copyright (C) 2010 STMicroelectronics Limited
|
|
*
|
|
* JEDEC probe based on drivers/mtd/devices/m25p80.c
|
|
*
|
|
* May be copied or modified under the terms of the GNU General Public
|
|
* License. See linux/COPYING for more information.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/stm/platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include "stm_spi_fsm.h"
|
|
|
|
#define NAME "stm-spi-fsm"
|
|
|
|
#define FLASH_DEFAULT_FREQ 10000000 /* Default and probe freq. */
|
|
#define FLASH_PAGESIZE 256
|
|
#define FLASH_MAX_BUSY_WAIT (10 * HZ) /* Maximum erase time */
|
|
|
|
/*
|
|
* SPI FSM Controller data
|
|
*/
|
|
struct stm_spi_fsm {
|
|
struct mtd_info mtd;
|
|
struct device *dev;
|
|
struct resource *region;
|
|
|
|
void __iomem *base;
|
|
struct mutex lock;
|
|
unsigned partitioned;
|
|
uint8_t page_buf[FLASH_PAGESIZE]__attribute__((aligned(4)));
|
|
|
|
uint32_t read_mask;
|
|
struct fsm_seq *seq_read_data;
|
|
};
|
|
|
|
/*
|
|
* SPI FLASH
|
|
*/
|
|
|
|
/* Commands */
|
|
#define FLASH_CMD_WREN 0x06
|
|
#define FLASH_CMD_WRDI 0x04
|
|
#define FLASH_CMD_RDID 0x9f
|
|
#define FLASH_CMD_RDSR 0x05
|
|
#define FLASH_CMD_WRSR 0x01
|
|
#define FLASH_CMD_READ 0x03
|
|
#define FLASH_CMD_READ_FAST 0x0b
|
|
#define FLASH_CMD_READ_DUAL 0x3b
|
|
#define FLASH_CMD_PAGEPROGRAM 0x02
|
|
#define FLASH_CMD_SE_4K 0x20
|
|
#define FLASH_CMD_SE_32K 0x52
|
|
#define FLASH_CMD_SE 0xd8
|
|
#define FLASH_CMD_CHIPERASE 0xc7
|
|
|
|
/* Status register */
|
|
#define FLASH_STATUS_BUSY 0x01
|
|
#define FLASH_STATUS_WEL 0x02
|
|
#define FLASH_STATUS_BP0 0x04
|
|
#define FLASH_STATUS_BP1 0x08
|
|
#define FLASH_STATUS_BP2 0x10
|
|
#define FLASH_STATUS_TB 0x20
|
|
#define FLASH_STATUS_SP 0x40
|
|
#define FLASH_STATUS_SRWP0 0x80
|
|
|
|
/* Device capabilities */
|
|
#define SECT_4K 0x01 /* Supports FLASH_CMD_SE_4K */
|
|
#define SECT_32K 0x02 /* Supports FLASH_CMD_SE_32K */
|
|
#define FAST_READ 0x04 /* Supports FLASH_CMD_FAST_READ */
|
|
#define DUAL_READ 0x08 /* Supports FLASH_CMD_DUAL_READ */
|
|
#define QUAD_READ 0x10 /* Supports FLASH_CMD_DUAL_READ */
|
|
|
|
/*
|
|
* FSM template sequences
|
|
* (Note, various fields are modified on-the-fly)
|
|
*/
|
|
struct fsm_seq {
|
|
uint32_t data_size;
|
|
uint32_t addr1;
|
|
uint32_t addr2;
|
|
uint32_t addr_cfg;
|
|
uint32_t seq_opc[5];
|
|
uint32_t mode;
|
|
uint32_t dummy;
|
|
uint32_t status;
|
|
uint8_t seq[16];
|
|
uint32_t seq_cfg;
|
|
} __attribute__((__packed__, aligned(4)));
|
|
#define FSM_SEQ_SIZE sizeof(struct fsm_seq)
|
|
|
|
static struct fsm_seq seq_dummy = {
|
|
.data_size = TRANSFER_SIZE(0),
|
|
.seq = {
|
|
FSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct fsm_seq seq_read_jedec = {
|
|
.data_size = TRANSFER_SIZE(8),
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_RDID)),
|
|
.seq = {
|
|
FSM_INST_CMD1,
|
|
FSM_INST_DATA_READ,
|
|
FSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct fsm_seq seq_read_status = {
|
|
.data_size = TRANSFER_SIZE(4),
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_RDSR)),
|
|
.seq = {
|
|
FSM_INST_CMD1,
|
|
FSM_INST_DATA_READ,
|
|
FSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct fsm_seq seq_read_data_default = {
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_READ)),
|
|
.addr_cfg = ADR_CFG_PADS_1_ADD1 | ADR_CFG_CYCLES_ADD1(24),
|
|
.seq = {
|
|
FSM_INST_CMD1,
|
|
FSM_INST_ADD1,
|
|
FSM_INST_DATA_READ,
|
|
FSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct fsm_seq seq_read_data_dual = {
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_READ_DUAL)),
|
|
.addr_cfg = ADR_CFG_PADS_1_ADD1 | ADR_CFG_CYCLES_ADD1(24),
|
|
.dummy = DUMMY_PADS_1 | DUMMY_CYCLES(8),
|
|
.seq = {
|
|
FSM_INST_CMD1,
|
|
FSM_INST_ADD1,
|
|
FSM_INST_DUMMY,
|
|
FSM_INST_DATA_READ,
|
|
FSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_2 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct fsm_seq seq_read_data_fast = {
|
|
.seq_opc[0] = (SEQ_OPC_PADS_1 |
|
|
SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_READ_FAST)),
|
|
.addr_cfg = ADR_CFG_PADS_1_ADD1 | ADR_CFG_CYCLES_ADD1(24),
|
|
.dummy = DUMMY_PADS_1 | DUMMY_CYCLES(8),
|
|
.seq = {
|
|
FSM_INST_CMD1,
|
|
FSM_INST_ADD1,
|
|
FSM_INST_DUMMY,
|
|
FSM_INST_DATA_READ,
|
|
FSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct fsm_seq seq_write_data = {
|
|
.addr_cfg = ADR_CFG_PADS_1_ADD1 | ADR_CFG_CYCLES_ADD1(24),
|
|
.seq_opc = {
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
|
|
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_PAGEPROGRAM)),
|
|
},
|
|
.seq = {
|
|
FSM_INST_CMD1,
|
|
FSM_INST_CMD2,
|
|
FSM_INST_ADD1,
|
|
FSM_INST_DATA_WRITE,
|
|
FSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct fsm_seq seq_erase_sector = {
|
|
.addr_cfg = (ADR_CFG_PADS_1_ADD1 |
|
|
ADR_CFG_CYCLES_ADD1(24) |
|
|
ADR_CFG_CSDEASSERT_ADD1),
|
|
.seq_opc = {
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
|
|
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_SE)),
|
|
},
|
|
.seq = {
|
|
FSM_INST_CMD1,
|
|
FSM_INST_CMD2,
|
|
FSM_INST_ADD1,
|
|
FSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
static struct fsm_seq seq_erase_chip = {
|
|
.seq_opc = {
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
|
|
|
|
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
|
|
SEQ_OPC_OPCODE(FLASH_CMD_CHIPERASE)),
|
|
},
|
|
.seq = {
|
|
FSM_INST_CMD1,
|
|
FSM_INST_CMD2,
|
|
FSM_INST_STOP,
|
|
},
|
|
.seq_cfg = (SEQ_CFG_PADS_1 |
|
|
SEQ_CFG_READNOTWRITE |
|
|
SEQ_CFG_CSDEASSERT |
|
|
SEQ_CFG_STARTSEQ),
|
|
};
|
|
|
|
|
|
/*
|
|
* FSM interface
|
|
*/
|
|
static inline int fsm_is_idle(struct stm_spi_fsm *fsm)
|
|
{
|
|
return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
|
|
}
|
|
|
|
static inline uint32_t fsm_fifo_available(struct stm_spi_fsm *fsm)
|
|
{
|
|
return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
|
|
}
|
|
|
|
static inline void fsm_load_seq(struct stm_spi_fsm *fsm,
|
|
const struct fsm_seq *const seq)
|
|
{
|
|
BUG_ON(!fsm_is_idle(fsm));
|
|
memcpy_toio(fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE,
|
|
seq, FSM_SEQ_SIZE);
|
|
}
|
|
|
|
static int fsm_wait_seq(struct stm_spi_fsm *fsm)
|
|
{
|
|
unsigned long timeo = jiffies + HZ;
|
|
|
|
while (time_before(jiffies, timeo)) {
|
|
if (fsm_is_idle(fsm))
|
|
return 0;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
dev_err(fsm->dev, "timeout on sequence completion\n");
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void fsm_clear_fifo(struct stm_spi_fsm *fsm)
|
|
{
|
|
uint32_t avail;
|
|
|
|
while ((avail = fsm_fifo_available(fsm)) > 0) {
|
|
|
|
dev_dbg(fsm->dev, "clearing %d bytes from FIFO\n", avail*4);
|
|
|
|
while (avail) {
|
|
readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
|
|
avail--;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int fsm_read_fifo(struct stm_spi_fsm *fsm,
|
|
uint32_t *buf, const uint32_t size)
|
|
{
|
|
uint32_t avail;
|
|
uint32_t remaining = size >> 2;
|
|
uint32_t words;
|
|
|
|
dev_dbg(fsm->dev, "reading %d bytes from FIFO\n", size);
|
|
|
|
BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
|
|
|
|
do {
|
|
while (!(avail = fsm_fifo_available(fsm)))
|
|
;
|
|
words = min(avail, remaining);
|
|
remaining -= words;
|
|
|
|
readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
|
|
buf += words;
|
|
|
|
} while (remaining);
|
|
|
|
return size;
|
|
}
|
|
|
|
static int fsm_write_fifo(struct stm_spi_fsm *fsm,
|
|
const uint32_t *buf, const uint32_t size)
|
|
{
|
|
uint32_t words = size >> 2;
|
|
|
|
dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
|
|
|
|
BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
|
|
|
|
writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Serial Flash operations
|
|
*/
|
|
|
|
/* [AAC: The following contradicts validation GNBvd79303/GNBvd79597. Awaiting
|
|
* clarification from validation/design.]
|
|
*/
|
|
static int fsm_wait_busy(struct stm_spi_fsm *fsm)
|
|
{
|
|
const struct fsm_seq *seq = &seq_read_status;
|
|
unsigned long deadline;
|
|
uint8_t status[4] = {0x00, 0x00, 0x00, 0x00};
|
|
|
|
/* Load read_status sequence */
|
|
fsm_load_seq(fsm, seq);
|
|
|
|
/* Repeat until busy bit is deasserted, or timeout */
|
|
deadline = jiffies + FLASH_MAX_BUSY_WAIT;
|
|
do {
|
|
fsm_read_fifo(fsm, (uint32_t *)status, 4);
|
|
|
|
if ((status[3] & FLASH_STATUS_BUSY) == 0) {
|
|
fsm_wait_seq(fsm);
|
|
return 0;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
/* Wait for sequence to end, then restart */
|
|
fsm_wait_seq(fsm);
|
|
|
|
writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
|
|
} while (!time_after_eq(jiffies, deadline));
|
|
|
|
fsm_wait_seq(fsm);
|
|
|
|
dev_err(fsm->dev, "timeout on wait_busy\n");
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int fsm_read_jedec(struct stm_spi_fsm *fsm, uint8_t *const jedec)
|
|
{
|
|
const struct fsm_seq *seq = &seq_read_jedec;
|
|
uint32_t tmp[2];
|
|
|
|
fsm_load_seq(fsm, seq);
|
|
|
|
fsm_read_fifo(fsm, tmp, 8);
|
|
|
|
memcpy(jedec, tmp, 5);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsm_erase_sector(struct stm_spi_fsm *fsm, const uint32_t offset)
|
|
{
|
|
struct fsm_seq *seq = &seq_erase_sector;
|
|
|
|
dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
|
|
|
|
seq->addr1 = offset;
|
|
|
|
fsm_load_seq(fsm, seq);
|
|
|
|
fsm_wait_seq(fsm);
|
|
|
|
fsm_wait_busy(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsm_erase_chip(struct stm_spi_fsm *fsm)
|
|
{
|
|
const struct fsm_seq *seq = &seq_erase_chip;
|
|
|
|
dev_dbg(fsm->dev, "erasing chip\n");
|
|
|
|
fsm_load_seq(fsm, seq);
|
|
|
|
fsm_wait_seq(fsm);
|
|
|
|
fsm_wait_busy(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsm_read(struct stm_spi_fsm *fsm, uint8_t *const buf,
|
|
const uint32_t size, const uint32_t offset)
|
|
{
|
|
struct fsm_seq *seq = fsm->seq_read_data;
|
|
uint32_t read_mask = fsm->read_mask;
|
|
uint8_t *page_buf = fsm->page_buf;
|
|
uint32_t size_ub;
|
|
uint32_t size_lb;
|
|
uint32_t size_mop;
|
|
uint32_t tmp[2];
|
|
uint8_t *p;
|
|
|
|
dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
|
|
|
|
/* Handle non-aligned buf */
|
|
p = ((uint32_t)buf & 0x3) ? page_buf : buf;
|
|
|
|
/* Handle non-aligned size */
|
|
size_ub = (size + read_mask) & ~read_mask;
|
|
size_lb = size & ~read_mask;
|
|
size_mop = size & read_mask;
|
|
|
|
seq->data_size = TRANSFER_SIZE(size_ub);
|
|
seq->addr1 = offset;
|
|
|
|
fsm_load_seq(fsm, seq);
|
|
|
|
fsm_read_fifo(fsm, (uint32_t *)p, size_lb);
|
|
|
|
if (size_mop) {
|
|
fsm_read_fifo(fsm, tmp, read_mask + 1);
|
|
memcpy(p + size_lb, &tmp, size_mop);
|
|
}
|
|
|
|
/* Handle non-aligned buf */
|
|
if ((uint32_t)buf & 0x3)
|
|
memcpy(buf, page_buf, size);
|
|
|
|
/* Wait for sequence to finish */
|
|
fsm_wait_seq(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsm_write(struct stm_spi_fsm *fsm, const uint8_t *const buf,
|
|
const uint32_t size, const uint32_t offset)
|
|
{
|
|
struct fsm_seq *seq = &seq_write_data;
|
|
uint8_t *page_buf = fsm->page_buf;
|
|
uint32_t size_ub;
|
|
uint32_t size_lb;
|
|
uint32_t size_mop;
|
|
uint32_t tmp;
|
|
uint8_t *t = (uint8_t *)&tmp;
|
|
int i;
|
|
const uint8_t *p;
|
|
|
|
dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
|
|
|
|
/* Handle non-aligned buf */
|
|
if ((uint32_t)buf & 0x3) {
|
|
memcpy(page_buf, buf, size);
|
|
p = page_buf;
|
|
} else {
|
|
p = buf;
|
|
}
|
|
|
|
/* Handle non-aligned size */
|
|
size_ub = (size + 0x3) & ~0x3;
|
|
size_lb = size & ~0x3;
|
|
size_mop = size & 0x3;
|
|
|
|
seq->data_size = TRANSFER_SIZE(size_ub);
|
|
seq->addr1 = offset;
|
|
|
|
if (cpu_data->type == CPU_STX7106) {
|
|
/* Requires starting "dummy" sequence on stx7106 (seems vaguely
|
|
* related to GNBvd79464) [AAC: check with validation/design:
|
|
* Not down to erase sequence, setting FIFO-write bit only seems
|
|
* to work properly if dummy sequence has been run.]
|
|
*/
|
|
fsm_load_seq(fsm, &seq_dummy);
|
|
readl(fsm->base + SPI_FAST_SEQ_CFG);
|
|
}
|
|
|
|
/* Need to set FIFO to write mode, before writing data to FIFO (see
|
|
* GNBvb79594)
|
|
*/
|
|
writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
|
|
readl(fsm->base + SPI_FAST_SEQ_CFG);
|
|
|
|
/* Write data to FIFO, before starting sequence (see GNBvd79593) */
|
|
fsm_write_fifo(fsm, (uint32_t *)p, size_lb);
|
|
|
|
p += size_lb;
|
|
|
|
/* Handle non-aligned size */
|
|
if (size_mop) {
|
|
tmp = ~0ul; /* fill with 0xff's */
|
|
for (i = 0; i < size_mop; i++)
|
|
t[i] = *p++;
|
|
|
|
fsm_write_fifo(fsm, &tmp, 4);
|
|
}
|
|
|
|
/* Start sequence */
|
|
fsm_load_seq(fsm, seq);
|
|
|
|
/* Wait for sequence to finish */
|
|
fsm_wait_seq(fsm);
|
|
|
|
/* Wait for completion */
|
|
fsm_wait_busy(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* FSM Configuration
|
|
*/
|
|
static int fsm_set_mode(struct stm_spi_fsm *fsm, uint32_t mode)
|
|
{
|
|
/* Wait for controller to accept mode change */
|
|
if (!cpu_data->type == CPU_STX7108) {
|
|
/* Does not work correctly on stx7108 */
|
|
while (!(readl(fsm->base + SPI_STA_MODE_CHANGE) & 0x1))
|
|
;
|
|
}
|
|
writel(mode, fsm->base + SPI_MODESELECT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsm_set_freq(struct stm_spi_fsm *fsm, uint32_t freq)
|
|
{
|
|
struct clk *emi_clk;
|
|
uint32_t emi_freq;
|
|
uint32_t clk_div;
|
|
|
|
/* Timings set in terms of EMI clock... */
|
|
emi_clk = clk_get(NULL, "emi_clk");
|
|
|
|
if (IS_ERR(emi_clk)) {
|
|
dev_warn(fsm->dev, "Failed to find EMI clock. "
|
|
"Using default 100MHz.\n");
|
|
emi_freq = 100000000UL;
|
|
} else {
|
|
emi_freq = clk_get_rate(emi_clk);
|
|
}
|
|
|
|
/* Calculate clk_div: multiple of 2, round up, 2 -> 128. Note, clk_div =
|
|
* 4 is not supported on current SoCs, use 6 instead (RnDHV00020914) */
|
|
clk_div = 2*((emi_freq + (2*freq - 1))/(2*freq));
|
|
|
|
if (clk_div < 2)
|
|
clk_div = 2;
|
|
else if (clk_div == 4)
|
|
clk_div = 6;
|
|
else if (clk_div > 128)
|
|
clk_div = 128;
|
|
|
|
dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clock_div = %u\n",
|
|
emi_freq, freq, clk_div);
|
|
|
|
/* Set SPI_CLOCKDIV */
|
|
writel(clk_div, fsm->base + SPI_CLOCKDIV);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsm_configure_reads(struct stm_spi_fsm *fsm, uint32_t capabilities)
|
|
{
|
|
/* Disable DUAL mode on stx7106 (see GNBvd78843) */
|
|
if (cpu_data->type == CPU_STX7106) {
|
|
dev_info(fsm->dev, "disabling DUAL mode reads on stx7106\n");
|
|
capabilities &= ~DUAL_READ;
|
|
}
|
|
|
|
if (capabilities & DUAL_READ) {
|
|
/* Do DUAL mode read */
|
|
fsm->seq_read_data = &seq_read_data_dual;
|
|
fsm->read_mask = 0x7; /* Dual Mode seems to require multiple
|
|
* of 8-byte transfers! [ACC: check
|
|
* with validation/design: attempts with
|
|
* 4-byte transfers -> subsequent
|
|
* non-dual reads shift in 2 dummy
|
|
* bytes.] */
|
|
dev_dbg(fsm->dev, "setting DUAL mode reads\n");
|
|
} else if (capabilities & FAST_READ) {
|
|
/* Do FAST read */
|
|
fsm->seq_read_data = &seq_read_data_fast;
|
|
fsm->read_mask = 0x3;
|
|
dev_dbg(fsm->dev, "setting FAST reads\n");
|
|
} else {
|
|
/* Fall-back to normal read */
|
|
fsm->seq_read_data = &seq_read_data_default;
|
|
fsm->read_mask = 0x3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsm_init(struct stm_spi_fsm *fsm)
|
|
{
|
|
/* Perform a soft reset of the FSM controller */
|
|
if (!cpu_data->type == CPU_STX7106) {
|
|
/* This fails on stx7106 [AAC: check with validation. Reset
|
|
* results in non-clearable data in the FIFO.]
|
|
*/
|
|
writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
|
|
udelay(1);
|
|
writel(0, fsm->base + SPI_FAST_SEQ_CFG);
|
|
}
|
|
|
|
/* Set clock frequency to safe default */
|
|
fsm_set_freq(fsm, FLASH_DEFAULT_FREQ);
|
|
|
|
/* Switch to FSM */
|
|
fsm_set_mode(fsm, SPI_MODESELECT_FSM);
|
|
|
|
/* Set timing parameters (use reset values for now (awaiting information
|
|
* from Validation Team)
|
|
*/
|
|
writel(SPI_CFG_DEVICE_ST |
|
|
SPI_CFG_MIN_CS_HIGH(0x0AA) |
|
|
SPI_CFG_CS_SETUPHOLD(0xa0) |
|
|
SPI_CFG_DATA_HOLD(0x00), fsm->base + SPI_CONFIGDATA);
|
|
|
|
/* Clear FIFO, just in case */
|
|
fsm_clear_fifo(fsm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fsm_exit(struct stm_spi_fsm *fsm)
|
|
{
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* MTD interface
|
|
*/
|
|
|
|
/*
|
|
* Read an address range from the flash chip. The address range
|
|
* may be any size provided it is within the physical boundaries.
|
|
*/
|
|
static int mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct stm_spi_fsm *fsm = mtd->priv;
|
|
uint32_t bytes;
|
|
|
|
dev_dbg(fsm->dev, "%s %s 0x%08x, len %zd\n", __func__,
|
|
"from", (u32)from, len);
|
|
|
|
/* Byte count starts at zero. */
|
|
if (retlen)
|
|
*retlen = 0;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (from + len > mtd->size)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&fsm->lock);
|
|
|
|
while (len > 0) {
|
|
bytes = min(len, (size_t)FLASH_PAGESIZE);
|
|
|
|
fsm_read(fsm, buf, bytes, from);
|
|
|
|
buf += bytes;
|
|
from += bytes;
|
|
len -= bytes;
|
|
|
|
if (retlen)
|
|
*retlen += bytes;
|
|
}
|
|
|
|
mutex_unlock(&fsm->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write an address range to the flash chip. Data must be written in
|
|
* FLASH_PAGESIZE chunks. The address range may be any size provided
|
|
* it is within the physical boundaries.
|
|
*/
|
|
static int mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct stm_spi_fsm *fsm = mtd->priv;
|
|
|
|
u32 page_offs;
|
|
u32 bytes;
|
|
uint8_t *b = (uint8_t *)buf;
|
|
|
|
dev_dbg(fsm->dev, "%s %s 0x%08x, len %zd\n", __func__,
|
|
"to", (u32)to, len);
|
|
|
|
if (retlen)
|
|
*retlen = 0;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (to + len > mtd->size)
|
|
return -EINVAL;
|
|
|
|
/* offset within page */
|
|
page_offs = to % FLASH_PAGESIZE;
|
|
|
|
mutex_lock(&fsm->lock);
|
|
|
|
while (len) {
|
|
|
|
/* write up to page boundary */
|
|
bytes = min(FLASH_PAGESIZE - page_offs, len);
|
|
|
|
fsm_write(fsm, b, bytes, to);
|
|
|
|
b += bytes;
|
|
len -= bytes;
|
|
to += bytes;
|
|
|
|
/* We are now page-aligned */
|
|
page_offs = 0;
|
|
|
|
if (retlen)
|
|
*retlen += bytes;
|
|
|
|
}
|
|
|
|
mutex_unlock(&fsm->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Erase an address range on the flash chip. The address range may extend
|
|
* one or more erase sectors. Return an error is there is a problem erasing.
|
|
*/
|
|
static int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct stm_spi_fsm *fsm = mtd->priv;
|
|
u32 addr, len;
|
|
|
|
dev_dbg(fsm->dev, "%s %s 0x%llx, len %lld\n", __func__,
|
|
"at", (long long)instr->addr, (long long)instr->len);
|
|
|
|
if (instr->addr + instr->len > mtd->size)
|
|
return -EINVAL;
|
|
|
|
if (instr->len & (mtd->erasesize - 1))
|
|
return -EINVAL;
|
|
|
|
addr = instr->addr;
|
|
len = instr->len;
|
|
|
|
mutex_lock(&fsm->lock);
|
|
|
|
/* whole-chip erase? */
|
|
if (len == mtd->size) {
|
|
if (fsm_erase_chip(fsm)) {
|
|
instr->state = MTD_ERASE_FAILED;
|
|
mutex_unlock(&fsm->lock);
|
|
return -EIO;
|
|
}
|
|
} else {
|
|
while (len) {
|
|
if (fsm_erase_sector(fsm, addr)) {
|
|
instr->state = MTD_ERASE_FAILED;
|
|
mutex_unlock(&fsm->lock);
|
|
return -EIO;
|
|
}
|
|
|
|
addr += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&fsm->lock);
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* SPI FLASH devices
|
|
*/
|
|
struct flash_info {
|
|
char *name;
|
|
|
|
/* JEDEC id zero means "no ID" (most older chips); otherwise it has
|
|
* a high byte of zero plus three data bytes: the manufacturer id,
|
|
* then a two byte device id.
|
|
*/
|
|
u32 jedec_id;
|
|
u16 ext_id;
|
|
|
|
/* The size listed here is what works with FLASH_CMD_SE, which isn't
|
|
* necessarily called a "sector" by the vendor.
|
|
*/
|
|
unsigned sector_size;
|
|
u16 n_sectors;
|
|
|
|
/* FLASH device capabilities */
|
|
u16 capabilities;
|
|
|
|
/* Maximum operating frequency. Note, where FAST_READ is supported,
|
|
* freq_max specifies the FAST_READ frequency, not the READ frequency.
|
|
*/
|
|
u32 max_freq;
|
|
};
|
|
|
|
/* Device table adapted from drivers/mtd/devices/m25p80.c
|
|
*
|
|
* In order to configure features supported by SPI FSM controller, we have added
|
|
* FAST_READ, DUAL_READ, and QUAD_READ as device capabilities, and added a field
|
|
* specifying the device operating frequency.
|
|
*/
|
|
static struct flash_info __devinitdata flash_types[] = {
|
|
|
|
/* ST Microelectronics/Numonyx --
|
|
* (newer production versions may have feature updates (eg faster
|
|
* operating frequency) */
|
|
{ "m25p40", 0x202013, 0, 64 * 1024, 8, FAST_READ, 25000000},
|
|
{ "m25p80", 0x202014, 0, 64 * 1024, 16, FAST_READ, 25000000},
|
|
{ "m25p16", 0x202015, 0, 64 * 1024, 32, FAST_READ, 25000000},
|
|
{ "m25p32", 0x202016, 0, 64 * 1024, 64, FAST_READ, 50000000},
|
|
{ "m25p64", 0x202017, 0, 64 * 1024, 128, FAST_READ, 50000000},
|
|
{ "m25p128", 0x202018, 0, 256 * 1024, 64, FAST_READ, 50000000},
|
|
|
|
#define M25PX_CAPS (SECT_4K | FAST_READ | DUAL_READ)
|
|
{ "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_CAPS, 75000000},
|
|
{ "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_CAPS, 75000000},
|
|
|
|
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
|
|
#define W25X_CAPS (SECT_4K | FAST_READ | DUAL_READ)
|
|
{ "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_CAPS, 75000000},
|
|
{ "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_CAPS, 75000000},
|
|
{ "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_CAPS, 75000000},
|
|
{ "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_CAPS, 75000000},
|
|
{ "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_CAPS, 75000000},
|
|
|
|
#define N25Q_CAPS (FAST_READ | DUAL_READ)
|
|
{ "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_CAPS, 108000000},
|
|
|
|
/* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
|
|
#define W25Q_CAPS (SECT_4K | SECT_32K | FAST_READ | DUAL_READ | QUAD_READ)
|
|
{ "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_CAPS, 80000000},
|
|
{ "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_CAPS, 80000000},
|
|
{ "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_CAPS, 80000000},
|
|
{ "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_CAPS, 80000000},
|
|
{ NULL, 0x000000, 0, 0, 0, 0, },
|
|
};
|
|
|
|
static struct flash_info *__devinit fsm_jedec_probe(struct stm_spi_fsm *fsm)
|
|
{
|
|
u8 id[5];
|
|
u32 jedec;
|
|
u16 ext_jedec;
|
|
struct flash_info *info;
|
|
|
|
/* JEDEC also defines an optional "extended device information"
|
|
* string for after vendor-specific data, after the three bytes
|
|
* we use here. Supporting some chips might require using it.
|
|
*/
|
|
|
|
if (fsm_read_jedec(fsm, id) != 0) {
|
|
dev_info(fsm->dev, "error reading JEDEC ID\n");
|
|
return NULL;
|
|
}
|
|
|
|
jedec = id[0];
|
|
jedec = jedec << 8;
|
|
jedec |= id[1];
|
|
jedec = jedec << 8;
|
|
jedec |= id[2];
|
|
|
|
dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n",
|
|
jedec, id[0], id[1], id[2], id[3], id[4]);
|
|
|
|
ext_jedec = id[3] << 8 | id[4];
|
|
for (info = flash_types; info->name; info++) {
|
|
if (info->jedec_id == jedec) {
|
|
if (info->ext_id != 0 && info->ext_id != ext_jedec)
|
|
continue;
|
|
return info;
|
|
}
|
|
}
|
|
|
|
dev_err(fsm->dev, "unrecognized JEDEC id %06x\n", jedec);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* STM SPI FSM driver setup
|
|
*/
|
|
static int __init stm_spi_fsm_probe(struct platform_device *pdev)
|
|
{
|
|
struct stm_plat_spifsm_data *data = pdev->dev.platform_data;
|
|
struct stm_spi_fsm *fsm;
|
|
struct resource *resource;
|
|
int ret = 0;
|
|
struct flash_info *info;
|
|
unsigned i;
|
|
uint32_t freq;
|
|
|
|
/* Allocate memory for the driver structure (and zero it) */
|
|
fsm = kzalloc(sizeof(struct stm_spi_fsm), GFP_KERNEL);
|
|
if (!fsm) {
|
|
dev_err(&pdev->dev, "failed to allocate fsm controller data\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fsm->dev = &pdev->dev;
|
|
|
|
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!resource) {
|
|
dev_err(&pdev->dev, "failed to find IORESOURCE_MEM\n");
|
|
ret = -ENODEV;
|
|
goto out1;
|
|
}
|
|
|
|
fsm->region = request_mem_region(resource->start,
|
|
resource_size(resource), pdev->name);
|
|
if (!fsm->region) {
|
|
dev_err(&pdev->dev, "failed to reserve memory region "
|
|
"[0x%08x-0x%08x]\n", resource->start, resource->end);
|
|
ret = -EBUSY;
|
|
goto out1;
|
|
}
|
|
|
|
fsm->base = ioremap_nocache(resource->start, resource_size(resource));
|
|
|
|
if (!fsm->base) {
|
|
dev_err(&pdev->dev, "failed to ioremap [0x%08x]\n",
|
|
resource->start);
|
|
ret = -EINVAL;
|
|
goto out2;
|
|
}
|
|
|
|
mutex_init(&fsm->lock);
|
|
|
|
/* Initialise FSM */
|
|
|
|
if (fsm_init(fsm) != 0) {
|
|
dev_err(&pdev->dev, "failed to initialise SPI FSM "
|
|
"Controller\n");
|
|
ret = -EINVAL;
|
|
goto out3;
|
|
}
|
|
|
|
/* Detect SPI FLASH device */
|
|
info = fsm_jedec_probe(fsm);
|
|
if (!info) {
|
|
ret = -ENODEV;
|
|
goto out4;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, fsm);
|
|
|
|
/* Set operating frequency, from table or overridden by platform data */
|
|
if (data->max_freq)
|
|
freq = data->max_freq;
|
|
else if (info->max_freq)
|
|
freq = info->max_freq;
|
|
else
|
|
freq = FLASH_DEFAULT_FREQ;
|
|
fsm_set_freq(fsm, freq);
|
|
|
|
/* Configure read operations based on device capabilities */
|
|
fsm_configure_reads(fsm, info->capabilities);
|
|
|
|
/* Set up MTD parameters */
|
|
fsm->mtd.priv = fsm;
|
|
if (data && data->name)
|
|
fsm->mtd.name = data->name;
|
|
else
|
|
fsm->mtd.name = NAME;
|
|
|
|
fsm->mtd.type = MTD_NORFLASH;
|
|
fsm->mtd.writesize = 4;
|
|
fsm->mtd.flags = MTD_CAP_NORFLASH;
|
|
fsm->mtd.size = info->sector_size * info->n_sectors;
|
|
fsm->mtd.erasesize = info->sector_size;
|
|
|
|
fsm->mtd.read = mtd_read;
|
|
fsm->mtd.write = mtd_write;
|
|
fsm->mtd.erase = mtd_erase;
|
|
|
|
dev_info(&pdev->dev, "found device: %s, size = %llx (%lldMiB) "
|
|
"erasesize = 0x%08x (%uKiB)\n",
|
|
info->name,
|
|
(long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
|
|
fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
|
|
|
|
/* Add partitions */
|
|
if (mtd_has_partitions()) {
|
|
struct mtd_partition *parts = NULL;
|
|
int nr_parts = 0;
|
|
|
|
if (mtd_has_cmdlinepart()) {
|
|
static const char *part_probes[]
|
|
= { "cmdlinepart", NULL, };
|
|
|
|
nr_parts = parse_mtd_partitions(&fsm->mtd,
|
|
part_probes, &parts, 0);
|
|
}
|
|
|
|
if (nr_parts <= 0 && data && data->parts) {
|
|
parts = data->parts;
|
|
nr_parts = data->nr_parts;
|
|
}
|
|
|
|
if (nr_parts > 0) {
|
|
for (i = 0; i < nr_parts; i++) {
|
|
dev_dbg(fsm->dev, "partitions[%d] = "
|
|
"{.name = %s, .offset = 0x%llx, "
|
|
".size = 0x%llx (%lldKiB) }\n",
|
|
i, parts[i].name,
|
|
(long long)parts[i].offset,
|
|
(long long)parts[i].size,
|
|
(long long)(parts[i].size >> 10));
|
|
}
|
|
fsm->partitioned = 1;
|
|
|
|
if (add_mtd_partitions(&fsm->mtd, parts, nr_parts)) {
|
|
ret = -ENODEV;
|
|
goto out4;
|
|
}
|
|
|
|
/* Success :-) */
|
|
return 0;
|
|
}
|
|
|
|
} else if (data->nr_parts) {
|
|
dev_info(&pdev->dev, " ignoring %d default partitions on %s\n",
|
|
data->nr_parts, data->name);
|
|
}
|
|
|
|
if (add_mtd_device(&fsm->mtd)) {
|
|
ret = -ENODEV;
|
|
goto out4;
|
|
}
|
|
|
|
/* Success :-) */
|
|
return 0;
|
|
|
|
out4:
|
|
fsm_exit(fsm);
|
|
platform_set_drvdata(pdev, NULL);
|
|
out3:
|
|
iounmap(fsm->base);
|
|
out2:
|
|
release_resource(fsm->region);
|
|
out1:
|
|
kfree(fsm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __devexit stm_spi_fsm_remove(struct platform_device *pdev)
|
|
{
|
|
struct stm_spi_fsm *fsm = platform_get_drvdata(pdev);
|
|
|
|
if (mtd_has_partitions() && fsm->partitioned)
|
|
del_mtd_partitions(&fsm->mtd);
|
|
else
|
|
del_mtd_device(&fsm->mtd);
|
|
|
|
fsm_exit(fsm);
|
|
iounmap(fsm->base);
|
|
release_resource(fsm->region);
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver stm_spi_fsm_driver = {
|
|
.probe = stm_spi_fsm_probe,
|
|
.remove = stm_spi_fsm_remove,
|
|
.driver = {
|
|
.name = NAME,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static int __init stm_spi_fsm_init(void)
|
|
{
|
|
return platform_driver_register(&stm_spi_fsm_driver);
|
|
}
|
|
|
|
static void __exit stm_spi_fsm_exit(void)
|
|
{
|
|
platform_driver_unregister(&stm_spi_fsm_driver);
|
|
}
|
|
|
|
module_init(stm_spi_fsm_init);
|
|
module_exit(stm_spi_fsm_exit);
|
|
|
|
MODULE_AUTHOR("Angus Clark <Angus.Clark@st.com>");
|
|
MODULE_DESCRIPTION("STM SPI FSM driver");
|
|
MODULE_LICENSE("GPL");
|