satip-axe/kernel/sound/soc/imx/mxc-ssi.c
2015-03-26 17:24:57 +01:00

861 lines
21 KiB
C

/*
* mxc-ssi.c -- SSI driver for Freescale IMX
*
* Copyright 2006 Wolfson Microelectronics PLC.
* Author: Liam Girdwood
* liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
*
* Based on mxc-alsa-mc13783 (C) 2006 Freescale.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* TODO:
* Need to rework SSI register defs when new defs go into mainline.
* Add support for TDM and FIFO 1.
* Add support for i.mx3x DMA interface.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/clk.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <mach/dma-mx1-mx2.h>
#include <asm/mach-types.h>
#include "mxc-ssi.h"
#include "mx1_mx2-pcm.h"
#define SSI1_PORT 0
#define SSI2_PORT 1
static int ssi_active[2] = {0, 0};
/* DMA information for mx1_mx2 platforms */
static struct mx1_mx2_pcm_dma_params imx_ssi1_pcm_stereo_out0 = {
.name = "SSI1 PCM Stereo out 0",
.transfer_type = DMA_MODE_WRITE,
.per_address = SSI1_BASE_ADDR + STX0,
.event_id = DMA_REQ_SSI1_TX0,
.watermark_level = TXFIFO_WATERMARK,
.per_config = IMX_DMA_MEMSIZE_16 | IMX_DMA_TYPE_FIFO,
.mem_config = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
};
static struct mx1_mx2_pcm_dma_params imx_ssi1_pcm_stereo_out1 = {
.name = "SSI1 PCM Stereo out 1",
.transfer_type = DMA_MODE_WRITE,
.per_address = SSI1_BASE_ADDR + STX1,
.event_id = DMA_REQ_SSI1_TX1,
.watermark_level = TXFIFO_WATERMARK,
.per_config = IMX_DMA_MEMSIZE_16 | IMX_DMA_TYPE_FIFO,
.mem_config = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
};
static struct mx1_mx2_pcm_dma_params imx_ssi1_pcm_stereo_in0 = {
.name = "SSI1 PCM Stereo in 0",
.transfer_type = DMA_MODE_READ,
.per_address = SSI1_BASE_ADDR + SRX0,
.event_id = DMA_REQ_SSI1_RX0,
.watermark_level = RXFIFO_WATERMARK,
.per_config = IMX_DMA_MEMSIZE_16 | IMX_DMA_TYPE_FIFO,
.mem_config = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
};
static struct mx1_mx2_pcm_dma_params imx_ssi1_pcm_stereo_in1 = {
.name = "SSI1 PCM Stereo in 1",
.transfer_type = DMA_MODE_READ,
.per_address = SSI1_BASE_ADDR + SRX1,
.event_id = DMA_REQ_SSI1_RX1,
.watermark_level = RXFIFO_WATERMARK,
.per_config = IMX_DMA_MEMSIZE_16 | IMX_DMA_TYPE_FIFO,
.mem_config = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
};
static struct mx1_mx2_pcm_dma_params imx_ssi2_pcm_stereo_out0 = {
.name = "SSI2 PCM Stereo out 0",
.transfer_type = DMA_MODE_WRITE,
.per_address = SSI2_BASE_ADDR + STX0,
.event_id = DMA_REQ_SSI2_TX0,
.watermark_level = TXFIFO_WATERMARK,
.per_config = IMX_DMA_MEMSIZE_16 | IMX_DMA_TYPE_FIFO,
.mem_config = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
};
static struct mx1_mx2_pcm_dma_params imx_ssi2_pcm_stereo_out1 = {
.name = "SSI2 PCM Stereo out 1",
.transfer_type = DMA_MODE_WRITE,
.per_address = SSI2_BASE_ADDR + STX1,
.event_id = DMA_REQ_SSI2_TX1,
.watermark_level = TXFIFO_WATERMARK,
.per_config = IMX_DMA_MEMSIZE_16 | IMX_DMA_TYPE_FIFO,
.mem_config = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
};
static struct mx1_mx2_pcm_dma_params imx_ssi2_pcm_stereo_in0 = {
.name = "SSI2 PCM Stereo in 0",
.transfer_type = DMA_MODE_READ,
.per_address = SSI2_BASE_ADDR + SRX0,
.event_id = DMA_REQ_SSI2_RX0,
.watermark_level = RXFIFO_WATERMARK,
.per_config = IMX_DMA_MEMSIZE_16 | IMX_DMA_TYPE_FIFO,
.mem_config = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
};
static struct mx1_mx2_pcm_dma_params imx_ssi2_pcm_stereo_in1 = {
.name = "SSI2 PCM Stereo in 1",
.transfer_type = DMA_MODE_READ,
.per_address = SSI2_BASE_ADDR + SRX1,
.event_id = DMA_REQ_SSI2_RX1,
.watermark_level = RXFIFO_WATERMARK,
.per_config = IMX_DMA_MEMSIZE_16 | IMX_DMA_TYPE_FIFO,
.mem_config = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
};
static struct clk *ssi_clk0, *ssi_clk1;
int get_ssi_clk(int ssi, struct device *dev)
{
switch (ssi) {
case 0:
ssi_clk0 = clk_get(dev, "ssi1");
if (IS_ERR(ssi_clk0))
return PTR_ERR(ssi_clk0);
return 0;
case 1:
ssi_clk1 = clk_get(dev, "ssi2");
if (IS_ERR(ssi_clk1))
return PTR_ERR(ssi_clk1);
return 0;
default:
return -EINVAL;
}
}
EXPORT_SYMBOL(get_ssi_clk);
void put_ssi_clk(int ssi)
{
switch (ssi) {
case 0:
clk_put(ssi_clk0);
ssi_clk0 = NULL;
break;
case 1:
clk_put(ssi_clk1);
ssi_clk1 = NULL;
break;
}
}
EXPORT_SYMBOL(put_ssi_clk);
/*
* SSI system clock configuration.
* Should only be called when port is inactive (i.e. SSIEN = 0).
*/
static int imx_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
u32 scr;
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
scr = SSI1_SCR;
pr_debug("%s: SCR for SSI1 is %x\n", __func__, scr);
} else {
scr = SSI2_SCR;
pr_debug("%s: SCR for SSI2 is %x\n", __func__, scr);
}
if (scr & SSI_SCR_SSIEN) {
printk(KERN_WARNING "Warning ssi already enabled\n");
return 0;
}
switch (clk_id) {
case IMX_SSP_SYS_CLK:
if (dir == SND_SOC_CLOCK_OUT) {
scr |= SSI_SCR_SYS_CLK_EN;
pr_debug("%s: clk of is output\n", __func__);
} else {
scr &= ~SSI_SCR_SYS_CLK_EN;
pr_debug("%s: clk of is input\n", __func__);
}
break;
default:
return -EINVAL;
}
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
pr_debug("%s: writeback of SSI1_SCR\n", __func__);
SSI1_SCR = scr;
} else {
pr_debug("%s: writeback of SSI2_SCR\n", __func__);
SSI2_SCR = scr;
}
return 0;
}
/*
* SSI Clock dividers
* Should only be called when port is inactive (i.e. SSIEN = 0).
*/
static int imx_ssi_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
int div_id, int div)
{
u32 stccr, srccr;
pr_debug("%s\n", __func__);
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
if (SSI1_SCR & SSI_SCR_SSIEN)
return 0;
srccr = SSI1_STCCR;
stccr = SSI1_STCCR;
} else {
if (SSI2_SCR & SSI_SCR_SSIEN)
return 0;
srccr = SSI2_STCCR;
stccr = SSI2_STCCR;
}
switch (div_id) {
case IMX_SSI_TX_DIV_2:
stccr &= ~SSI_STCCR_DIV2;
stccr |= div;
break;
case IMX_SSI_TX_DIV_PSR:
stccr &= ~SSI_STCCR_PSR;
stccr |= div;
break;
case IMX_SSI_TX_DIV_PM:
stccr &= ~0xff;
stccr |= SSI_STCCR_PM(div);
break;
case IMX_SSI_RX_DIV_2:
stccr &= ~SSI_STCCR_DIV2;
stccr |= div;
break;
case IMX_SSI_RX_DIV_PSR:
stccr &= ~SSI_STCCR_PSR;
stccr |= div;
break;
case IMX_SSI_RX_DIV_PM:
stccr &= ~0xff;
stccr |= SSI_STCCR_PM(div);
break;
default:
return -EINVAL;
}
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
SSI1_STCCR = stccr;
SSI1_SRCCR = srccr;
} else {
SSI2_STCCR = stccr;
SSI2_SRCCR = srccr;
}
return 0;
}
/*
* SSI Network Mode or TDM slots configuration.
* Should only be called when port is inactive (i.e. SSIEN = 0).
*/
static int imx_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai,
unsigned int mask, int slots)
{
u32 stmsk, srmsk, stccr;
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
if (SSI1_SCR & SSI_SCR_SSIEN) {
printk(KERN_WARNING "Warning ssi already enabled\n");
return 0;
}
stccr = SSI1_STCCR;
} else {
if (SSI2_SCR & SSI_SCR_SSIEN) {
printk(KERN_WARNING "Warning ssi already enabled\n");
return 0;
}
stccr = SSI2_STCCR;
}
stmsk = srmsk = mask;
stccr &= ~SSI_STCCR_DC_MASK;
stccr |= SSI_STCCR_DC(slots - 1);
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
SSI1_STMSK = stmsk;
SSI1_SRMSK = srmsk;
SSI1_SRCCR = SSI1_STCCR = stccr;
} else {
SSI2_STMSK = stmsk;
SSI2_SRMSK = srmsk;
SSI2_SRCCR = SSI2_STCCR = stccr;
}
return 0;
}
/*
* SSI DAI format configuration.
* Should only be called when port is inactive (i.e. SSIEN = 0).
* Note: We don't use the I2S modes but instead manually configure the
* SSI for I2S.
*/
static int imx_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai,
unsigned int fmt)
{
u32 stcr = 0, srcr = 0, scr;
/*
* This is done to avoid this function to modify
* previous set values in stcr
*/
stcr = SSI1_STCR;
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2)
scr = SSI1_SCR & ~(SSI_SCR_SYN | SSI_SCR_NET);
else
scr = SSI2_SCR & ~(SSI_SCR_SYN | SSI_SCR_NET);
if (scr & SSI_SCR_SSIEN) {
printk(KERN_WARNING "Warning ssi already enabled\n");
return 0;
}
/* DAI mode */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/* data on rising edge of bclk, frame low 1clk before data */
stcr |= SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0;
srcr |= SSI_SRCR_RFSI | SSI_SRCR_REFS | SSI_SRCR_RXBIT0;
break;
case SND_SOC_DAIFMT_LEFT_J:
/* data on rising edge of bclk, frame high with data */
stcr |= SSI_STCR_TXBIT0;
srcr |= SSI_SRCR_RXBIT0;
break;
case SND_SOC_DAIFMT_DSP_B:
/* data on rising edge of bclk, frame high with data */
stcr |= SSI_STCR_TFSL;
srcr |= SSI_SRCR_RFSL;
break;
case SND_SOC_DAIFMT_DSP_A:
/* data on rising edge of bclk, frame high 1clk before data */
stcr |= SSI_STCR_TFSL | SSI_STCR_TEFS;
srcr |= SSI_SRCR_RFSL | SSI_SRCR_REFS;
break;
}
/* DAI clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_IB_IF:
stcr |= SSI_STCR_TFSI;
stcr &= ~SSI_STCR_TSCKP;
srcr |= SSI_SRCR_RFSI;
srcr &= ~SSI_SRCR_RSCKP;
break;
case SND_SOC_DAIFMT_IB_NF:
stcr &= ~(SSI_STCR_TSCKP | SSI_STCR_TFSI);
srcr &= ~(SSI_SRCR_RSCKP | SSI_SRCR_RFSI);
break;
case SND_SOC_DAIFMT_NB_IF:
stcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP;
srcr |= SSI_SRCR_RFSI | SSI_SRCR_RSCKP;
break;
case SND_SOC_DAIFMT_NB_NF:
stcr &= ~SSI_STCR_TFSI;
stcr |= SSI_STCR_TSCKP;
srcr &= ~SSI_SRCR_RFSI;
srcr |= SSI_SRCR_RSCKP;
break;
}
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
stcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
srcr |= SSI_SRCR_RFDIR | SSI_SRCR_RXDIR;
break;
case SND_SOC_DAIFMT_CBM_CFS:
stcr |= SSI_STCR_TFDIR;
srcr |= SSI_SRCR_RFDIR;
break;
case SND_SOC_DAIFMT_CBS_CFM:
stcr |= SSI_STCR_TXDIR;
srcr |= SSI_SRCR_RXDIR;
break;
}
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
SSI1_STCR = stcr;
SSI1_SRCR = srcr;
SSI1_SCR = scr;
} else {
SSI2_STCR = stcr;
SSI2_SRCR = srcr;
SSI2_SCR = scr;
}
return 0;
}
static int imx_ssi_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
/* set up TX DMA params */
switch (cpu_dai->id) {
case IMX_DAI_SSI0:
cpu_dai->dma_data = &imx_ssi1_pcm_stereo_out0;
break;
case IMX_DAI_SSI1:
cpu_dai->dma_data = &imx_ssi1_pcm_stereo_out1;
break;
case IMX_DAI_SSI2:
cpu_dai->dma_data = &imx_ssi2_pcm_stereo_out0;
break;
case IMX_DAI_SSI3:
cpu_dai->dma_data = &imx_ssi2_pcm_stereo_out1;
}
pr_debug("%s: (playback)\n", __func__);
} else {
/* set up RX DMA params */
switch (cpu_dai->id) {
case IMX_DAI_SSI0:
cpu_dai->dma_data = &imx_ssi1_pcm_stereo_in0;
break;
case IMX_DAI_SSI1:
cpu_dai->dma_data = &imx_ssi1_pcm_stereo_in1;
break;
case IMX_DAI_SSI2:
cpu_dai->dma_data = &imx_ssi2_pcm_stereo_in0;
break;
case IMX_DAI_SSI3:
cpu_dai->dma_data = &imx_ssi2_pcm_stereo_in1;
}
pr_debug("%s: (capture)\n", __func__);
}
/*
* we cant really change any SSI values after SSI is enabled
* need to fix in software for max flexibility - lrg
*/
if (cpu_dai->active) {
printk(KERN_WARNING "Warning ssi already enabled\n");
return 0;
}
/* reset the SSI port - Sect 45.4.4 */
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
if (!ssi_clk0)
return -EINVAL;
if (ssi_active[SSI1_PORT]++) {
pr_debug("%s: exit before reset\n", __func__);
return 0;
}
/* SSI1 Reset */
SSI1_SCR = 0;
SSI1_SFCSR = SSI_SFCSR_RFWM1(RXFIFO_WATERMARK) |
SSI_SFCSR_RFWM0(RXFIFO_WATERMARK) |
SSI_SFCSR_TFWM1(TXFIFO_WATERMARK) |
SSI_SFCSR_TFWM0(TXFIFO_WATERMARK);
} else {
if (!ssi_clk1)
return -EINVAL;
if (ssi_active[SSI2_PORT]++) {
pr_debug("%s: exit before reset\n", __func__);
return 0;
}
/* SSI2 Reset */
SSI2_SCR = 0;
SSI2_SFCSR = SSI_SFCSR_RFWM1(RXFIFO_WATERMARK) |
SSI_SFCSR_RFWM0(RXFIFO_WATERMARK) |
SSI_SFCSR_TFWM1(TXFIFO_WATERMARK) |
SSI_SFCSR_TFWM0(TXFIFO_WATERMARK);
}
return 0;
}
int imx_ssi_hw_tx_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
u32 stccr, stcr, sier;
pr_debug("%s\n", __func__);
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
stccr = SSI1_STCCR & ~SSI_STCCR_WL_MASK;
stcr = SSI1_STCR;
sier = SSI1_SIER;
} else {
stccr = SSI2_STCCR & ~SSI_STCCR_WL_MASK;
stcr = SSI2_STCR;
sier = SSI2_SIER;
}
/* DAI data (word) size */
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
stccr |= SSI_STCCR_WL(16);
break;
case SNDRV_PCM_FORMAT_S20_3LE:
stccr |= SSI_STCCR_WL(20);
break;
case SNDRV_PCM_FORMAT_S24_LE:
stccr |= SSI_STCCR_WL(24);
break;
}
/* enable interrupts */
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2)
stcr |= SSI_STCR_TFEN0;
else
stcr |= SSI_STCR_TFEN1;
sier |= SSI_SIER_TDMAE;
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
SSI1_STCR = stcr;
SSI1_STCCR = stccr;
SSI1_SIER = sier;
} else {
SSI2_STCR = stcr;
SSI2_STCCR = stccr;
SSI2_SIER = sier;
}
return 0;
}
int imx_ssi_hw_rx_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
u32 srccr, srcr, sier;
pr_debug("%s\n", __func__);
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
srccr = SSI1_SRCCR & ~SSI_SRCCR_WL_MASK;
srcr = SSI1_SRCR;
sier = SSI1_SIER;
} else {
srccr = SSI2_SRCCR & ~SSI_SRCCR_WL_MASK;
srcr = SSI2_SRCR;
sier = SSI2_SIER;
}
/* DAI data (word) size */
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
srccr |= SSI_SRCCR_WL(16);
break;
case SNDRV_PCM_FORMAT_S20_3LE:
srccr |= SSI_SRCCR_WL(20);
break;
case SNDRV_PCM_FORMAT_S24_LE:
srccr |= SSI_SRCCR_WL(24);
break;
}
/* enable interrupts */
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2)
srcr |= SSI_SRCR_RFEN0;
else
srcr |= SSI_SRCR_RFEN1;
sier |= SSI_SIER_RDMAE;
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
SSI1_SRCR = srcr;
SSI1_SRCCR = srccr;
SSI1_SIER = sier;
} else {
SSI2_SRCR = srcr;
SSI2_SRCCR = srccr;
SSI2_SIER = sier;
}
return 0;
}
/*
* Should only be called when port is inactive (i.e. SSIEN = 0),
* although can be called multiple times by upper layers.
*/
int imx_ssi_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
int ret;
/* cant change any parameters when SSI is running */
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
if (SSI1_SCR & SSI_SCR_SSIEN) {
printk(KERN_WARNING "Warning ssi already enabled\n");
return 0;
}
} else {
if (SSI2_SCR & SSI_SCR_SSIEN) {
printk(KERN_WARNING "Warning ssi already enabled\n");
return 0;
}
}
/*
* Configure both tx and rx params with the same settings. This is
* really a harware restriction because SSI must be disabled until
* we can change those values. If there is an active audio stream in
* one direction, enabling the other direction with different
* settings would mean disturbing the running one.
*/
ret = imx_ssi_hw_tx_params(substream, params);
if (ret < 0)
return ret;
return imx_ssi_hw_rx_params(substream, params);
}
int imx_ssi_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
int ret;
pr_debug("%s\n", __func__);
/* Enable clks here to follow SSI recommended init sequence */
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2) {
ret = clk_enable(ssi_clk0);
if (ret < 0)
printk(KERN_ERR "Unable to enable ssi_clk0\n");
} else {
ret = clk_enable(ssi_clk1);
if (ret < 0)
printk(KERN_ERR "Unable to enable ssi_clk1\n");
}
return 0;
}
static int imx_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
u32 scr;
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2)
scr = SSI1_SCR;
else
scr = SSI2_SCR;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
scr |= SSI_SCR_TE | SSI_SCR_SSIEN;
else
scr |= SSI_SCR_RE | SSI_SCR_SSIEN;
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
scr &= ~SSI_SCR_TE;
else
scr &= ~SSI_SCR_RE;
break;
default:
return -EINVAL;
}
if (cpu_dai->id == IMX_DAI_SSI0 || cpu_dai->id == IMX_DAI_SSI2)
SSI1_SCR = scr;
else
SSI2_SCR = scr;
return 0;
}
static void imx_ssi_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai;
/* shutdown SSI if neither Tx or Rx is active */
if (!cpu_dai->active) {
if (cpu_dai->id == IMX_DAI_SSI0 ||
cpu_dai->id == IMX_DAI_SSI2) {
if (--ssi_active[SSI1_PORT] > 1)
return;
SSI1_SCR = 0;
clk_disable(ssi_clk0);
} else {
if (--ssi_active[SSI2_PORT])
return;
SSI2_SCR = 0;
clk_disable(ssi_clk1);
}
}
}
#ifdef CONFIG_PM
static int imx_ssi_suspend(struct platform_device *dev,
struct snd_soc_dai *dai)
{
return 0;
}
static int imx_ssi_resume(struct platform_device *pdev,
struct snd_soc_dai *dai)
{
return 0;
}
#else
#define imx_ssi_suspend NULL
#define imx_ssi_resume NULL
#endif
#define IMX_SSI_RATES \
(SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 | \
SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \
SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | \
SNDRV_PCM_RATE_96000)
#define IMX_SSI_BITS \
(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_LE)
static struct snd_soc_dai_ops imx_ssi_pcm_dai_ops = {
.startup = imx_ssi_startup,
.shutdown = imx_ssi_shutdown,
.trigger = imx_ssi_trigger,
.prepare = imx_ssi_prepare,
.hw_params = imx_ssi_hw_params,
.set_sysclk = imx_ssi_set_dai_sysclk,
.set_clkdiv = imx_ssi_set_dai_clkdiv,
.set_fmt = imx_ssi_set_dai_fmt,
.set_tdm_slot = imx_ssi_set_dai_tdm_slot,
};
struct snd_soc_dai imx_ssi_pcm_dai[] = {
{
.name = "imx-i2s-1-0",
.id = IMX_DAI_SSI0,
.suspend = imx_ssi_suspend,
.resume = imx_ssi_resume,
.playback = {
.channels_min = 1,
.channels_max = 2,
.formats = IMX_SSI_BITS,
.rates = IMX_SSI_RATES,},
.capture = {
.channels_min = 1,
.channels_max = 2,
.formats = IMX_SSI_BITS,
.rates = IMX_SSI_RATES,},
.ops = &imx_ssi_pcm_dai_ops,
},
{
.name = "imx-i2s-2-0",
.id = IMX_DAI_SSI1,
.playback = {
.channels_min = 1,
.channels_max = 2,
.formats = IMX_SSI_BITS,
.rates = IMX_SSI_RATES,},
.capture = {
.channels_min = 1,
.channels_max = 2,
.formats = IMX_SSI_BITS,
.rates = IMX_SSI_RATES,},
.ops = &imx_ssi_pcm_dai_ops,
},
{
.name = "imx-i2s-1-1",
.id = IMX_DAI_SSI2,
.suspend = imx_ssi_suspend,
.resume = imx_ssi_resume,
.playback = {
.channels_min = 1,
.channels_max = 2,
.formats = IMX_SSI_BITS,
.rates = IMX_SSI_RATES,},
.capture = {
.channels_min = 1,
.channels_max = 2,
.formats = IMX_SSI_BITS,
.rates = IMX_SSI_RATES,},
.ops = &imx_ssi_pcm_dai_ops,
},
{
.name = "imx-i2s-2-1",
.id = IMX_DAI_SSI3,
.playback = {
.channels_min = 1,
.channels_max = 2,
.formats = IMX_SSI_BITS,
.rates = IMX_SSI_RATES,},
.capture = {
.channels_min = 1,
.channels_max = 2,
.formats = IMX_SSI_BITS,
.rates = IMX_SSI_RATES,},
.ops = &imx_ssi_pcm_dai_ops,
},
};
EXPORT_SYMBOL_GPL(imx_ssi_pcm_dai);
static int __init imx_ssi_init(void)
{
return snd_soc_register_dais(imx_ssi_pcm_dai,
ARRAY_SIZE(imx_ssi_pcm_dai));
}
static void __exit imx_ssi_exit(void)
{
snd_soc_unregister_dais(imx_ssi_pcm_dai,
ARRAY_SIZE(imx_ssi_pcm_dai));
}
module_init(imx_ssi_init);
module_exit(imx_ssi_exit);
MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com");
MODULE_DESCRIPTION("i.MX ASoC I2S driver");
MODULE_LICENSE("GPL");