1399 lines
38 KiB
C
1399 lines
38 KiB
C
/*
|
|
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
|
|
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
|
|
* Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
|
|
* Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
|
|
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#define _ATH5K_RESET
|
|
|
|
/*****************************\
|
|
Reset functions and helpers
|
|
\*****************************/
|
|
|
|
#include <linux/pci.h> /* To determine if a card is pci-e */
|
|
#include <linux/log2.h>
|
|
#include "ath5k.h"
|
|
#include "reg.h"
|
|
#include "base.h"
|
|
#include "debug.h"
|
|
|
|
/**
|
|
* ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
|
|
*
|
|
* @ah: the &struct ath5k_hw
|
|
* @channel: the currently set channel upon reset
|
|
*
|
|
* Write the delta slope coefficient (used on pilot tracking ?) for OFDM
|
|
* operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
|
|
*
|
|
* Since delta slope is floating point we split it on its exponent and
|
|
* mantissa and provide these values on hw.
|
|
*
|
|
* For more infos i think this patent is related
|
|
* http://www.freepatentsonline.com/7184495.html
|
|
*/
|
|
static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
|
|
struct ieee80211_channel *channel)
|
|
{
|
|
/* Get exponent and mantissa and set it */
|
|
u32 coef_scaled, coef_exp, coef_man,
|
|
ds_coef_exp, ds_coef_man, clock;
|
|
|
|
BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
|
|
!(channel->hw_value & CHANNEL_OFDM));
|
|
|
|
/* Get coefficient
|
|
* ALGO: coef = (5 * clock * carrier_freq) / 2)
|
|
* we scale coef by shifting clock value by 24 for
|
|
* better precision since we use integers */
|
|
/* TODO: Half/quarter rate */
|
|
clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
|
|
|
|
coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
|
|
|
|
/* Get exponent
|
|
* ALGO: coef_exp = 14 - highest set bit position */
|
|
coef_exp = ilog2(coef_scaled);
|
|
|
|
/* Doesn't make sense if it's zero*/
|
|
if (!coef_scaled || !coef_exp)
|
|
return -EINVAL;
|
|
|
|
/* Note: we've shifted coef_scaled by 24 */
|
|
coef_exp = 14 - (coef_exp - 24);
|
|
|
|
|
|
/* Get mantissa (significant digits)
|
|
* ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
|
|
coef_man = coef_scaled +
|
|
(1 << (24 - coef_exp - 1));
|
|
|
|
/* Calculate delta slope coefficient exponent
|
|
* and mantissa (remove scaling) and set them on hw */
|
|
ds_coef_man = coef_man >> (24 - coef_exp);
|
|
ds_coef_exp = coef_exp - 16;
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
|
|
AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
|
|
AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* index into rates for control rates, we can set it up like this because
|
|
* this is only used for AR5212 and we know it supports G mode
|
|
*/
|
|
static const unsigned int control_rates[] =
|
|
{ 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
|
|
|
|
/**
|
|
* ath5k_hw_write_rate_duration - fill rate code to duration table
|
|
*
|
|
* @ah: the &struct ath5k_hw
|
|
* @mode: one of enum ath5k_driver_mode
|
|
*
|
|
* Write the rate code to duration table upon hw reset. This is a helper for
|
|
* ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
|
|
* the hardware, based on current mode, for each rate. The rates which are
|
|
* capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
|
|
* different rate code so we write their value twice (one for long preample
|
|
* and one for short).
|
|
*
|
|
* Note: Band doesn't matter here, if we set the values for OFDM it works
|
|
* on both a and g modes. So all we have to do is set values for all g rates
|
|
* that include all OFDM and CCK rates. If we operate in turbo or xr/half/
|
|
* quarter rate mode, we need to use another set of bitrates (that's why we
|
|
* need the mode parameter) but we don't handle these proprietary modes yet.
|
|
*/
|
|
static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
|
|
unsigned int mode)
|
|
{
|
|
struct ath5k_softc *sc = ah->ah_sc;
|
|
struct ieee80211_rate *rate;
|
|
unsigned int i;
|
|
|
|
/* Write rate duration table */
|
|
for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
|
|
u32 reg;
|
|
u16 tx_time;
|
|
|
|
rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
|
|
|
|
/* Set ACK timeout */
|
|
reg = AR5K_RATE_DUR(rate->hw_value);
|
|
|
|
/* An ACK frame consists of 10 bytes. If you add the FCS,
|
|
* which ieee80211_generic_frame_duration() adds,
|
|
* its 14 bytes. Note we use the control rate and not the
|
|
* actual rate for this rate. See mac80211 tx.c
|
|
* ieee80211_duration() for a brief description of
|
|
* what rate we should choose to TX ACKs. */
|
|
tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
|
|
sc->vif, 10, rate));
|
|
|
|
ath5k_hw_reg_write(ah, tx_time, reg);
|
|
|
|
if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
|
|
continue;
|
|
|
|
/*
|
|
* We're not distinguishing short preamble here,
|
|
* This is true, all we'll get is a longer value here
|
|
* which is not necessarilly bad. We could use
|
|
* export ieee80211_frame_duration() but that needs to be
|
|
* fixed first to be properly used by mac802111 drivers:
|
|
*
|
|
* - remove erp stuff and let the routine figure ofdm
|
|
* erp rates
|
|
* - remove passing argument ieee80211_local as
|
|
* drivers don't have access to it
|
|
* - move drivers using ieee80211_generic_frame_duration()
|
|
* to this
|
|
*/
|
|
ath5k_hw_reg_write(ah, tx_time,
|
|
reg + (AR5K_SET_SHORT_PREAMBLE << 2));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset chipset
|
|
*/
|
|
static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
|
|
{
|
|
int ret;
|
|
u32 mask = val ? val : ~0U;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/* Read-and-clear RX Descriptor Pointer*/
|
|
ath5k_hw_reg_read(ah, AR5K_RXDP);
|
|
|
|
/*
|
|
* Reset the device and wait until success
|
|
*/
|
|
ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
|
|
|
|
/* Wait at least 128 PCI clocks */
|
|
udelay(15);
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
|
|
| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
|
|
mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
|
|
| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
|
|
} else {
|
|
val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
|
|
mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
|
|
}
|
|
|
|
ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
|
|
|
|
/*
|
|
* Reset configuration register (for hw byte-swap). Note that this
|
|
* is only set for big endian. We do the necessary magic in
|
|
* AR5K_INIT_CFG.
|
|
*/
|
|
if ((val & AR5K_RESET_CTL_PCU) == 0)
|
|
ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Sleep control
|
|
*/
|
|
int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
|
|
bool set_chip, u16 sleep_duration)
|
|
{
|
|
unsigned int i;
|
|
u32 staid, data;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
|
|
|
|
switch (mode) {
|
|
case AR5K_PM_AUTO:
|
|
staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
|
|
/* fallthrough */
|
|
case AR5K_PM_NETWORK_SLEEP:
|
|
if (set_chip)
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_SLEEP_CTL_SLE_ALLOW |
|
|
sleep_duration,
|
|
AR5K_SLEEP_CTL);
|
|
|
|
staid |= AR5K_STA_ID1_PWR_SV;
|
|
break;
|
|
|
|
case AR5K_PM_FULL_SLEEP:
|
|
if (set_chip)
|
|
ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
|
|
AR5K_SLEEP_CTL);
|
|
|
|
staid |= AR5K_STA_ID1_PWR_SV;
|
|
break;
|
|
|
|
case AR5K_PM_AWAKE:
|
|
|
|
staid &= ~AR5K_STA_ID1_PWR_SV;
|
|
|
|
if (!set_chip)
|
|
goto commit;
|
|
|
|
data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
|
|
|
|
/* If card is down we 'll get 0xffff... so we
|
|
* need to clean this up before we write the register
|
|
*/
|
|
if (data & 0xffc00000)
|
|
data = 0;
|
|
else
|
|
/* Preserve sleep duration etc */
|
|
data = data & ~AR5K_SLEEP_CTL_SLE;
|
|
|
|
ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
|
|
AR5K_SLEEP_CTL);
|
|
udelay(15);
|
|
|
|
for (i = 200; i > 0; i--) {
|
|
/* Check if the chip did wake up */
|
|
if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
|
|
AR5K_PCICFG_SPWR_DN) == 0)
|
|
break;
|
|
|
|
/* Wait a bit and retry */
|
|
udelay(50);
|
|
ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
|
|
AR5K_SLEEP_CTL);
|
|
}
|
|
|
|
/* Fail if the chip didn't wake up */
|
|
if (i == 0)
|
|
return -EIO;
|
|
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
commit:
|
|
ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Put device on hold
|
|
*
|
|
* Put MAC and Baseband on warm reset and
|
|
* keep that state (don't clean sleep control
|
|
* register). After this MAC and Baseband are
|
|
* disabled and a full reset is needed to come
|
|
* back. This way we save as much power as possible
|
|
* without puting the card on full sleep.
|
|
*/
|
|
int ath5k_hw_on_hold(struct ath5k_hw *ah)
|
|
{
|
|
struct pci_dev *pdev = ah->ah_sc->pdev;
|
|
u32 bus_flags;
|
|
int ret;
|
|
|
|
/* Make sure device is awake */
|
|
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Put chipset on warm reset...
|
|
*
|
|
* Note: puting PCI core on warm reset on PCI-E cards
|
|
* results card to hang and always return 0xffff... so
|
|
* we ingore that flag for PCI-E cards. On PCI cards
|
|
* this flag gets cleared after 64 PCI clocks.
|
|
*/
|
|
bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
|
|
AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
|
|
AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
|
|
mdelay(2);
|
|
} else {
|
|
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
|
|
AR5K_RESET_CTL_BASEBAND | bus_flags);
|
|
}
|
|
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to put device on warm reset\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* ...wakeup again!*/
|
|
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to put device on hold\n");
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Bring up MAC + PHY Chips and program PLL
|
|
* TODO: Half/Quarter rate support
|
|
*/
|
|
int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
|
|
{
|
|
struct pci_dev *pdev = ah->ah_sc->pdev;
|
|
u32 turbo, mode, clock, bus_flags;
|
|
int ret;
|
|
|
|
turbo = 0;
|
|
mode = 0;
|
|
clock = 0;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
/* Wakeup the device */
|
|
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Put chipset on warm reset...
|
|
*
|
|
* Note: puting PCI core on warm reset on PCI-E cards
|
|
* results card to hang and always return 0xffff... so
|
|
* we ingore that flag for PCI-E cards. On PCI cards
|
|
* this flag gets cleared after 64 PCI clocks.
|
|
*/
|
|
bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
|
|
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
|
|
AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
|
|
AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
|
|
mdelay(2);
|
|
} else {
|
|
ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
|
|
AR5K_RESET_CTL_BASEBAND | bus_flags);
|
|
}
|
|
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* ...wakeup again!...*/
|
|
ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
|
|
return ret;
|
|
}
|
|
|
|
/* ...clear reset control register and pull device out of
|
|
* warm reset */
|
|
if (ath5k_hw_nic_reset(ah, 0)) {
|
|
ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* On initialization skip PLL programming since we don't have
|
|
* a channel / mode set yet */
|
|
if (initial)
|
|
return 0;
|
|
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
/*
|
|
* Get channel mode flags
|
|
*/
|
|
|
|
if (ah->ah_radio >= AR5K_RF5112) {
|
|
mode = AR5K_PHY_MODE_RAD_RF5112;
|
|
clock = AR5K_PHY_PLL_RF5112;
|
|
} else {
|
|
mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
|
|
clock = AR5K_PHY_PLL_RF5111; /*Zero*/
|
|
}
|
|
|
|
if (flags & CHANNEL_2GHZ) {
|
|
mode |= AR5K_PHY_MODE_FREQ_2GHZ;
|
|
clock |= AR5K_PHY_PLL_44MHZ;
|
|
|
|
if (flags & CHANNEL_CCK) {
|
|
mode |= AR5K_PHY_MODE_MOD_CCK;
|
|
} else if (flags & CHANNEL_OFDM) {
|
|
/* XXX Dynamic OFDM/CCK is not supported by the
|
|
* AR5211 so we set MOD_OFDM for plain g (no
|
|
* CCK headers) operation. We need to test
|
|
* this, 5211 might support ofdm-only g after
|
|
* all, there are also initial register values
|
|
* in the code for g mode (see initvals.c). */
|
|
if (ah->ah_version == AR5K_AR5211)
|
|
mode |= AR5K_PHY_MODE_MOD_OFDM;
|
|
else
|
|
mode |= AR5K_PHY_MODE_MOD_DYN;
|
|
} else {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"invalid radio modulation mode\n");
|
|
return -EINVAL;
|
|
}
|
|
} else if (flags & CHANNEL_5GHZ) {
|
|
mode |= AR5K_PHY_MODE_FREQ_5GHZ;
|
|
|
|
if (ah->ah_radio == AR5K_RF5413)
|
|
clock = AR5K_PHY_PLL_40MHZ_5413;
|
|
else
|
|
clock |= AR5K_PHY_PLL_40MHZ;
|
|
|
|
if (flags & CHANNEL_OFDM)
|
|
mode |= AR5K_PHY_MODE_MOD_OFDM;
|
|
else {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"invalid radio modulation mode\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (flags & CHANNEL_TURBO)
|
|
turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
|
|
} else { /* Reset the device */
|
|
|
|
/* ...enable Atheros turbo mode if requested */
|
|
if (flags & CHANNEL_TURBO)
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
|
|
AR5K_PHY_TURBO);
|
|
}
|
|
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
|
|
/* ...update PLL if needed */
|
|
if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
|
|
ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
|
|
udelay(300);
|
|
}
|
|
|
|
/* ...set the PHY operating mode */
|
|
ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
|
|
ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If there is an external 32KHz crystal available, use it
|
|
* as ref. clock instead of 32/40MHz clock and baseband clocks
|
|
* to save power during sleep or restore normal 32/40MHz
|
|
* operation.
|
|
*
|
|
* XXX: When operating on 32KHz certain PHY registers (27 - 31,
|
|
* 123 - 127) require delay on access.
|
|
*/
|
|
static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
u32 scal, spending, usec32;
|
|
|
|
/* Only set 32KHz settings if we have an external
|
|
* 32KHz crystal present */
|
|
if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
|
|
AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
|
|
enable) {
|
|
|
|
/* 1 usec/cycle */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
|
|
/* Set up tsf increment on each cycle */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
|
|
|
|
/* Set baseband sleep control registers
|
|
* and sleep control rate */
|
|
ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
|
|
|
|
if ((ah->ah_radio == AR5K_RF5112) ||
|
|
(ah->ah_radio == AR5K_RF5413) ||
|
|
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
|
|
spending = 0x14;
|
|
else
|
|
spending = 0x18;
|
|
ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
|
|
|
|
if ((ah->ah_radio == AR5K_RF5112) ||
|
|
(ah->ah_radio == AR5K_RF5413) ||
|
|
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
|
|
ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
|
|
ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
|
|
ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
|
|
ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
|
|
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
|
|
} else {
|
|
ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
|
|
ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
|
|
ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
|
|
ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
|
|
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
|
|
}
|
|
|
|
/* Enable sleep clock operation */
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
|
|
AR5K_PCICFG_SLEEP_CLOCK_EN);
|
|
|
|
} else {
|
|
|
|
/* Disable sleep clock operation and
|
|
* restore default parameters */
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
|
|
AR5K_PCICFG_SLEEP_CLOCK_EN);
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
|
|
AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
|
|
|
|
ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
|
|
|
|
if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
|
|
scal = AR5K_PHY_SCAL_32MHZ_2417;
|
|
else if (ee->ee_is_hb63)
|
|
scal = AR5K_PHY_SCAL_32MHZ_HB63;
|
|
else
|
|
scal = AR5K_PHY_SCAL_32MHZ;
|
|
ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
|
|
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
|
|
|
|
if ((ah->ah_radio == AR5K_RF5112) ||
|
|
(ah->ah_radio == AR5K_RF5413) ||
|
|
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
|
|
spending = 0x14;
|
|
else
|
|
spending = 0x18;
|
|
ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
|
|
|
|
if ((ah->ah_radio == AR5K_RF5112) ||
|
|
(ah->ah_radio == AR5K_RF5413))
|
|
usec32 = 39;
|
|
else
|
|
usec32 = 31;
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* TODO: Half/Quarter rate */
|
|
static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
|
|
struct ieee80211_channel *channel)
|
|
{
|
|
if (ah->ah_version == AR5K_AR5212 &&
|
|
ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
|
|
|
|
/* Setup ADC control */
|
|
ath5k_hw_reg_write(ah,
|
|
(AR5K_REG_SM(2,
|
|
AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
|
|
AR5K_REG_SM(2,
|
|
AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
|
|
AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
|
|
AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
|
|
AR5K_PHY_ADC_CTL);
|
|
|
|
|
|
|
|
/* Disable barker RSSI threshold */
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
|
|
AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
|
|
AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
|
|
|
|
/* Set the mute mask */
|
|
ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
|
|
}
|
|
|
|
/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
|
|
if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
|
|
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
|
|
|
|
/* Enable DCU double buffering */
|
|
if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
|
|
AR5K_TXCFG_DCU_DBL_BUF_DIS);
|
|
|
|
/* Set DAC/ADC delays */
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
u32 scal;
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
|
|
scal = AR5K_PHY_SCAL_32MHZ_2417;
|
|
else if (ee->ee_is_hb63)
|
|
scal = AR5K_PHY_SCAL_32MHZ_HB63;
|
|
else
|
|
scal = AR5K_PHY_SCAL_32MHZ;
|
|
ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
|
|
}
|
|
|
|
/* Set fast ADC */
|
|
if ((ah->ah_radio == AR5K_RF5413) ||
|
|
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
|
|
u32 fast_adc = true;
|
|
|
|
if (channel->center_freq == 2462 ||
|
|
channel->center_freq == 2467)
|
|
fast_adc = 0;
|
|
|
|
/* Only update if needed */
|
|
if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
|
|
ath5k_hw_reg_write(ah, fast_adc,
|
|
AR5K_PHY_FAST_ADC);
|
|
}
|
|
|
|
/* Fix for first revision of the RF5112 RF chipset */
|
|
if (ah->ah_radio == AR5K_RF5112 &&
|
|
ah->ah_radio_5ghz_revision <
|
|
AR5K_SREV_RAD_5112A) {
|
|
u32 data;
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
|
|
AR5K_PHY_CCKTXCTL);
|
|
if (channel->hw_value & CHANNEL_5GHZ)
|
|
data = 0xffb81020;
|
|
else
|
|
data = 0xffb80d20;
|
|
ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
|
|
}
|
|
|
|
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
|
|
u32 usec_reg;
|
|
/* 5311 has different tx/rx latency masks
|
|
* from 5211, since we deal 5311 the same
|
|
* as 5211 when setting initvals, shift
|
|
* values here to their proper locations */
|
|
usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
|
|
ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
|
|
AR5K_USEC_32 |
|
|
AR5K_USEC_TX_LATENCY_5211 |
|
|
AR5K_REG_SM(29,
|
|
AR5K_USEC_RX_LATENCY_5210)),
|
|
AR5K_USEC_5211);
|
|
/* Clear QCU/DCU clock gating register */
|
|
ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
|
|
/* Set DAC/ADC delays */
|
|
ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
|
|
/* Enable PCU FIFO corruption ECO */
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
|
|
AR5K_DIAG_SW_ECO_ENABLE);
|
|
}
|
|
}
|
|
|
|
static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
|
|
struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
s16 cck_ofdm_pwr_delta;
|
|
|
|
/* Adjust power delta for channel 14 */
|
|
if (channel->center_freq == 2484)
|
|
cck_ofdm_pwr_delta =
|
|
((ee->ee_cck_ofdm_power_delta -
|
|
ee->ee_scaled_cck_delta) * 2) / 10;
|
|
else
|
|
cck_ofdm_pwr_delta =
|
|
(ee->ee_cck_ofdm_power_delta * 2) / 10;
|
|
|
|
/* Set CCK to OFDM power delta on tx power
|
|
* adjustment register */
|
|
if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
|
|
if (channel->hw_value == CHANNEL_G)
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
|
|
AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
|
|
AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
|
|
AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
|
|
AR5K_PHY_TX_PWR_ADJ);
|
|
else
|
|
ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
|
|
} else {
|
|
/* For older revs we scale power on sw during tx power
|
|
* setup */
|
|
ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
|
|
ah->ah_txpower.txp_cck_ofdm_gainf_delta =
|
|
ee->ee_cck_ofdm_gain_delta;
|
|
}
|
|
|
|
/* Set antenna idle switch table */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
|
|
AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
|
|
(ah->ah_ant_ctl[ee_mode][0] |
|
|
AR5K_PHY_ANT_CTL_TXRX_EN));
|
|
|
|
/* Set antenna switch tables */
|
|
ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[0]],
|
|
AR5K_PHY_ANT_SWITCH_TABLE_0);
|
|
ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[1]],
|
|
AR5K_PHY_ANT_SWITCH_TABLE_1);
|
|
|
|
/* Noise floor threshold */
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
|
|
AR5K_PHY_NFTHRES);
|
|
|
|
if ((channel->hw_value & CHANNEL_TURBO) &&
|
|
(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
|
|
/* Switch settling time (Turbo) */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
|
|
AR5K_PHY_SETTLING_SWITCH,
|
|
ee->ee_switch_settling_turbo[ee_mode]);
|
|
|
|
/* Tx/Rx attenuation (Turbo) */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
|
|
AR5K_PHY_GAIN_TXRX_ATTEN,
|
|
ee->ee_atn_tx_rx_turbo[ee_mode]);
|
|
|
|
/* ADC/PGA desired size (Turbo) */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
|
|
AR5K_PHY_DESIRED_SIZE_ADC,
|
|
ee->ee_adc_desired_size_turbo[ee_mode]);
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
|
|
AR5K_PHY_DESIRED_SIZE_PGA,
|
|
ee->ee_pga_desired_size_turbo[ee_mode]);
|
|
|
|
/* Tx/Rx margin (Turbo) */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
|
|
AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
|
|
ee->ee_margin_tx_rx_turbo[ee_mode]);
|
|
|
|
} else {
|
|
/* Switch settling time */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
|
|
AR5K_PHY_SETTLING_SWITCH,
|
|
ee->ee_switch_settling[ee_mode]);
|
|
|
|
/* Tx/Rx attenuation */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
|
|
AR5K_PHY_GAIN_TXRX_ATTEN,
|
|
ee->ee_atn_tx_rx[ee_mode]);
|
|
|
|
/* ADC/PGA desired size */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
|
|
AR5K_PHY_DESIRED_SIZE_ADC,
|
|
ee->ee_adc_desired_size[ee_mode]);
|
|
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
|
|
AR5K_PHY_DESIRED_SIZE_PGA,
|
|
ee->ee_pga_desired_size[ee_mode]);
|
|
|
|
/* Tx/Rx margin */
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
|
|
AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
|
|
ee->ee_margin_tx_rx[ee_mode]);
|
|
}
|
|
|
|
/* XPA delays */
|
|
ath5k_hw_reg_write(ah,
|
|
(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
|
|
(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
|
|
(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
|
|
(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
|
|
|
|
/* XLNA delay */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
|
|
AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
|
|
ee->ee_tx_end2xlna_enable[ee_mode]);
|
|
|
|
/* Thresh64 (ANI) */
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
|
|
AR5K_PHY_NF_THRESH62,
|
|
ee->ee_thr_62[ee_mode]);
|
|
|
|
|
|
/* False detect backoff for channels
|
|
* that have spur noise. Write the new
|
|
* cyclic power RSSI threshold. */
|
|
if (ath5k_hw_chan_has_spur_noise(ah, channel))
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
|
|
AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
|
|
AR5K_INIT_CYCRSSI_THR1 +
|
|
ee->ee_false_detect[ee_mode]);
|
|
else
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
|
|
AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
|
|
AR5K_INIT_CYCRSSI_THR1);
|
|
|
|
/* I/Q correction
|
|
* TODO: Per channel i/q infos ? */
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
|
|
AR5K_PHY_IQ_CORR_ENABLE |
|
|
(ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
|
|
ee->ee_q_cal[ee_mode]);
|
|
|
|
/* Heavy clipping -disable for now */
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
|
|
ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Main reset function
|
|
*/
|
|
int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
|
|
struct ieee80211_channel *channel, bool change_channel)
|
|
{
|
|
u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
|
|
u32 phy_tst1;
|
|
u8 mode, freq, ee_mode, ant[2];
|
|
int i, ret;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
|
|
s_ant = 0;
|
|
ee_mode = 0;
|
|
staid1_flags = 0;
|
|
tsf_up = 0;
|
|
tsf_lo = 0;
|
|
freq = 0;
|
|
mode = 0;
|
|
|
|
/*
|
|
* Save some registers before a reset
|
|
*/
|
|
/*DCU/Antenna selection not available on 5210*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
|
|
switch (channel->hw_value & CHANNEL_MODES) {
|
|
case CHANNEL_A:
|
|
mode = AR5K_MODE_11A;
|
|
freq = AR5K_INI_RFGAIN_5GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11A;
|
|
break;
|
|
case CHANNEL_G:
|
|
mode = AR5K_MODE_11G;
|
|
freq = AR5K_INI_RFGAIN_2GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11G;
|
|
break;
|
|
case CHANNEL_B:
|
|
mode = AR5K_MODE_11B;
|
|
freq = AR5K_INI_RFGAIN_2GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11B;
|
|
break;
|
|
case CHANNEL_T:
|
|
mode = AR5K_MODE_11A_TURBO;
|
|
freq = AR5K_INI_RFGAIN_5GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11A;
|
|
break;
|
|
case CHANNEL_TG:
|
|
if (ah->ah_version == AR5K_AR5211) {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"TurboG mode not available on 5211");
|
|
return -EINVAL;
|
|
}
|
|
mode = AR5K_MODE_11G_TURBO;
|
|
freq = AR5K_INI_RFGAIN_2GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11G;
|
|
break;
|
|
case CHANNEL_XR:
|
|
if (ah->ah_version == AR5K_AR5211) {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"XR mode not available on 5211");
|
|
return -EINVAL;
|
|
}
|
|
mode = AR5K_MODE_XR;
|
|
freq = AR5K_INI_RFGAIN_5GHZ;
|
|
ee_mode = AR5K_EEPROM_MODE_11A;
|
|
break;
|
|
default:
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"invalid channel: %d\n", channel->center_freq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (change_channel) {
|
|
/*
|
|
* Save frame sequence count
|
|
* For revs. after Oahu, only save
|
|
* seq num for DCU 0 (Global seq num)
|
|
*/
|
|
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
|
|
|
|
for (i = 0; i < 10; i++)
|
|
s_seq[i] = ath5k_hw_reg_read(ah,
|
|
AR5K_QUEUE_DCU_SEQNUM(i));
|
|
|
|
} else {
|
|
s_seq[0] = ath5k_hw_reg_read(ah,
|
|
AR5K_QUEUE_DCU_SEQNUM(0));
|
|
}
|
|
|
|
/* TSF accelerates on AR5211 durring reset
|
|
* As a workaround save it here and restore
|
|
* it later so that it's back in time after
|
|
* reset. This way it'll get re-synced on the
|
|
* next beacon without breaking ad-hoc.
|
|
*
|
|
* On AR5212 TSF is almost preserved across a
|
|
* reset so it stays back in time anyway and
|
|
* we don't have to save/restore it.
|
|
*
|
|
* XXX: Since this breaks power saving we have
|
|
* to disable power saving until we receive the
|
|
* next beacon, so we can resync beacon timers */
|
|
if (ah->ah_version == AR5K_AR5211) {
|
|
tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
|
|
tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
|
|
}
|
|
}
|
|
|
|
/* Save default antenna */
|
|
s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
|
|
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
/* Restore normal 32/40MHz clock operation
|
|
* to avoid register access delay on certain
|
|
* PHY registers */
|
|
ath5k_hw_set_sleep_clock(ah, false);
|
|
|
|
/* Since we are going to write rf buffer
|
|
* check if we have any pending gain_F
|
|
* optimization settings */
|
|
if (change_channel && ah->ah_rf_banks != NULL)
|
|
ath5k_hw_gainf_calibrate(ah);
|
|
}
|
|
}
|
|
|
|
/*GPIOs*/
|
|
s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
|
|
AR5K_PCICFG_LEDSTATE;
|
|
s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
|
|
s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
|
|
|
|
/* AR5K_STA_ID1 flags, only preserve antenna
|
|
* settings and ack/cts rate mode */
|
|
staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
|
|
(AR5K_STA_ID1_DEFAULT_ANTENNA |
|
|
AR5K_STA_ID1_DESC_ANTENNA |
|
|
AR5K_STA_ID1_RTS_DEF_ANTENNA |
|
|
AR5K_STA_ID1_ACKCTS_6MB |
|
|
AR5K_STA_ID1_BASE_RATE_11B |
|
|
AR5K_STA_ID1_SELFGEN_DEF_ANT);
|
|
|
|
/* Wakeup the device */
|
|
ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Initialize operating mode
|
|
*/
|
|
ah->ah_op_mode = op_mode;
|
|
|
|
/* PHY access enable */
|
|
if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
|
|
else
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
|
|
AR5K_PHY(0));
|
|
|
|
/* Write initial settings */
|
|
ret = ath5k_hw_write_initvals(ah, mode, change_channel);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* 5211/5212 Specific
|
|
*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
|
|
/*
|
|
* Write initial RF gain settings
|
|
* This should work for both 5111/5112
|
|
*/
|
|
ret = ath5k_hw_rfgain_init(ah, freq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mdelay(1);
|
|
|
|
/*
|
|
* Tweak initval settings for revised
|
|
* chipsets and add some more config
|
|
* bits
|
|
*/
|
|
ath5k_hw_tweak_initval_settings(ah, channel);
|
|
|
|
/*
|
|
* Set TX power
|
|
*/
|
|
ret = ath5k_hw_txpower(ah, channel, ee_mode,
|
|
ah->ah_txpower.txp_max_pwr / 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Write rate duration table only on AR5212 and if
|
|
* virtual interface has already been brought up
|
|
* XXX: rethink this after new mode changes to
|
|
* mac80211 are integrated */
|
|
if (ah->ah_version == AR5K_AR5212 &&
|
|
ah->ah_sc->vif != NULL)
|
|
ath5k_hw_write_rate_duration(ah, mode);
|
|
|
|
/*
|
|
* Write RF buffer
|
|
*/
|
|
ret = ath5k_hw_rfregs_init(ah, channel, mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
|
|
/* Write OFDM timings on 5212*/
|
|
if (ah->ah_version == AR5K_AR5212 &&
|
|
channel->hw_value & CHANNEL_OFDM) {
|
|
struct ath5k_eeprom_info *ee =
|
|
&ah->ah_capabilities.cap_eeprom;
|
|
|
|
ret = ath5k_hw_write_ofdm_timings(ah, channel);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Note: According to docs we can have a newer
|
|
* EEPROM on old hardware, so we need to verify
|
|
* that our hardware is new enough to have spur
|
|
* mitigation registers (delta phase etc) */
|
|
if (ah->ah_mac_srev >= AR5K_SREV_AR5424 ||
|
|
(ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
|
|
ee->ee_version >= AR5K_EEPROM_VERSION_5_3))
|
|
ath5k_hw_set_spur_mitigation_filter(ah,
|
|
channel);
|
|
}
|
|
|
|
/*Enable/disable 802.11b mode on 5111
|
|
(enable 2111 frequency converter + CCK)*/
|
|
if (ah->ah_radio == AR5K_RF5111) {
|
|
if (mode == AR5K_MODE_11B)
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
|
|
AR5K_TXCFG_B_MODE);
|
|
else
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
|
|
AR5K_TXCFG_B_MODE);
|
|
}
|
|
|
|
/*
|
|
* In case a fixed antenna was set as default
|
|
* use the same switch table twice.
|
|
*/
|
|
if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
|
|
ant[0] = ant[1] = AR5K_ANT_SWTABLE_A;
|
|
else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
|
|
ant[0] = ant[1] = AR5K_ANT_SWTABLE_B;
|
|
else {
|
|
ant[0] = AR5K_ANT_SWTABLE_A;
|
|
ant[1] = AR5K_ANT_SWTABLE_B;
|
|
}
|
|
|
|
/* Commit values from EEPROM */
|
|
ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
|
|
|
|
} else {
|
|
/*
|
|
* For 5210 we do all initialization using
|
|
* initvals, so we don't have to modify
|
|
* any settings (5210 also only supports
|
|
* a/aturbo modes)
|
|
*/
|
|
mdelay(1);
|
|
/* Disable phy and wait */
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
|
|
mdelay(1);
|
|
}
|
|
|
|
/*
|
|
* Restore saved values
|
|
*/
|
|
|
|
/*DCU/Antenna selection not available on 5210*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
|
|
if (change_channel) {
|
|
if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
|
|
for (i = 0; i < 10; i++)
|
|
ath5k_hw_reg_write(ah, s_seq[i],
|
|
AR5K_QUEUE_DCU_SEQNUM(i));
|
|
} else {
|
|
ath5k_hw_reg_write(ah, s_seq[0],
|
|
AR5K_QUEUE_DCU_SEQNUM(0));
|
|
}
|
|
|
|
|
|
if (ah->ah_version == AR5K_AR5211) {
|
|
ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
|
|
ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
|
|
}
|
|
}
|
|
|
|
ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
|
|
}
|
|
|
|
/* Ledstate */
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
|
|
|
|
/* Gpio settings */
|
|
ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
|
|
ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
|
|
|
|
/* Restore sta_id flags and preserve our mac address*/
|
|
ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
|
|
AR5K_STA_ID0);
|
|
ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
|
|
AR5K_STA_ID1);
|
|
|
|
|
|
/*
|
|
* Configure PCU
|
|
*/
|
|
|
|
/* Restore bssid and bssid mask */
|
|
/* XXX: add ah->aid once mac80211 gives this to us */
|
|
ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
|
|
|
|
/* Set PCU config */
|
|
ath5k_hw_set_opmode(ah);
|
|
|
|
/* Clear any pending interrupts
|
|
* PISR/SISR Not available on 5210 */
|
|
if (ah->ah_version != AR5K_AR5210)
|
|
ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
|
|
|
|
/* Set RSSI/BRSSI thresholds
|
|
*
|
|
* Note: If we decide to set this value
|
|
* dynamicaly, have in mind that when AR5K_RSSI_THR
|
|
* register is read it might return 0x40 if we haven't
|
|
* wrote anything to it plus BMISS RSSI threshold is zeroed.
|
|
* So doing a save/restore procedure here isn't the right
|
|
* choice. Instead store it on ath5k_hw */
|
|
ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
|
|
AR5K_TUNE_BMISS_THRES <<
|
|
AR5K_RSSI_THR_BMISS_S),
|
|
AR5K_RSSI_THR);
|
|
|
|
/* MIC QoS support */
|
|
if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
|
|
ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
|
|
ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
|
|
}
|
|
|
|
/* QoS NOACK Policy */
|
|
if (ah->ah_version == AR5K_AR5212) {
|
|
ath5k_hw_reg_write(ah,
|
|
AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
|
|
AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
|
|
AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
|
|
AR5K_QOS_NOACK);
|
|
}
|
|
|
|
|
|
/*
|
|
* Configure PHY
|
|
*/
|
|
|
|
/* Set channel on PHY */
|
|
ret = ath5k_hw_channel(ah, channel);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Enable the PHY and wait until completion
|
|
* This includes BaseBand and Synthesizer
|
|
* activation.
|
|
*/
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
|
|
|
|
/*
|
|
* On 5211+ read activation -> rx delay
|
|
* and use it.
|
|
*
|
|
* TODO: Half/quarter rate support
|
|
*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
u32 delay;
|
|
delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
|
|
AR5K_PHY_RX_DELAY_M;
|
|
delay = (channel->hw_value & CHANNEL_CCK) ?
|
|
((delay << 2) / 22) : (delay / 10);
|
|
|
|
udelay(100 + (2 * delay));
|
|
} else {
|
|
mdelay(1);
|
|
}
|
|
|
|
/*
|
|
* Perform ADC test to see if baseband is ready
|
|
* Set tx hold and check adc test register
|
|
*/
|
|
phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
|
|
ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
|
|
for (i = 0; i <= 20; i++) {
|
|
if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
|
|
break;
|
|
udelay(200);
|
|
}
|
|
ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
|
|
|
|
/*
|
|
* Start automatic gain control calibration
|
|
*
|
|
* During AGC calibration RX path is re-routed to
|
|
* a power detector so we don't receive anything.
|
|
*
|
|
* This method is used to calibrate some static offsets
|
|
* used together with on-the fly I/Q calibration (the
|
|
* one performed via ath5k_hw_phy_calibrate), that doesn't
|
|
* interrupt rx path.
|
|
*
|
|
* While rx path is re-routed to the power detector we also
|
|
* start a noise floor calibration, to measure the
|
|
* card's noise floor (the noise we measure when we are not
|
|
* transmiting or receiving anything).
|
|
*
|
|
* If we are in a noisy environment AGC calibration may time
|
|
* out and/or noise floor calibration might timeout.
|
|
*/
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
|
|
AR5K_PHY_AGCCTL_CAL);
|
|
|
|
/* At the same time start I/Q calibration for QAM constellation
|
|
* -no need for CCK- */
|
|
ah->ah_calibration = false;
|
|
if (!(mode == AR5K_MODE_11B)) {
|
|
ah->ah_calibration = true;
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
|
|
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
|
|
AR5K_PHY_IQ_RUN);
|
|
}
|
|
|
|
/* Wait for gain calibration to finish (we check for I/Q calibration
|
|
* during ath5k_phy_calibrate) */
|
|
if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
|
|
AR5K_PHY_AGCCTL_CAL, 0, false)) {
|
|
ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
|
|
channel->center_freq);
|
|
}
|
|
|
|
/*
|
|
* If we run NF calibration before AGC, it always times out.
|
|
* Binary HAL starts NF and AGC calibration at the same time
|
|
* and only waits for AGC to finish. Also if AGC or NF cal.
|
|
* times out, reset doesn't fail on binary HAL. I believe
|
|
* that's wrong because since rx path is routed to a detector,
|
|
* if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
|
|
* enables noise floor calibration after offset calibration and if noise
|
|
* floor calibration fails, reset fails. I believe that's
|
|
* a better approach, we just need to find a polling interval
|
|
* that suits best, even if reset continues we need to make
|
|
* sure that rx path is ready.
|
|
*/
|
|
ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
|
|
|
|
/* Restore antenna mode */
|
|
ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
|
|
|
|
/*
|
|
* Configure QCUs/DCUs
|
|
*/
|
|
|
|
/* TODO: HW Compression support for data queues */
|
|
/* TODO: Burst prefetch for data queues */
|
|
|
|
/*
|
|
* Reset queues and start beacon timers at the end of the reset routine
|
|
* This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
|
|
* Note: If we want we can assign multiple qcus on one dcu.
|
|
*/
|
|
for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
|
|
ret = ath5k_hw_reset_tx_queue(ah, i);
|
|
if (ret) {
|
|
ATH5K_ERR(ah->ah_sc,
|
|
"failed to reset TX queue #%d\n", i);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Configure DMA/Interrupts
|
|
*/
|
|
|
|
/*
|
|
* Set Rx/Tx DMA Configuration
|
|
*
|
|
* Set standard DMA size (128). Note that
|
|
* a DMA size of 512 causes rx overruns and tx errors
|
|
* on pci-e cards (tested on 5424 but since rx overruns
|
|
* also occur on 5416/5418 with madwifi we set 128
|
|
* for all PCI-E cards to be safe).
|
|
*
|
|
* XXX: need to check 5210 for this
|
|
* TODO: Check out tx triger level, it's always 64 on dumps but I
|
|
* guess we can tweak it and see how it goes ;-)
|
|
*/
|
|
if (ah->ah_version != AR5K_AR5210) {
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
|
|
AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
|
|
AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
|
|
AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
|
|
}
|
|
|
|
/* Pre-enable interrupts on 5211/5212*/
|
|
if (ah->ah_version != AR5K_AR5210)
|
|
ath5k_hw_set_imr(ah, ah->ah_imr);
|
|
|
|
/* Enable 32KHz clock function for AR5212+ chips
|
|
* Set clocks to 32KHz operation and use an
|
|
* external 32KHz crystal when sleeping if one
|
|
* exists */
|
|
if (ah->ah_version == AR5K_AR5212 &&
|
|
ah->ah_op_mode != NL80211_IFTYPE_AP)
|
|
ath5k_hw_set_sleep_clock(ah, true);
|
|
|
|
/*
|
|
* Disable beacons and reset the register
|
|
*/
|
|
AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
|
|
AR5K_BEACON_RESET_TSF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#undef _ATH5K_RESET
|