2014-09-27 09:25:14 +02:00

150 lines
4.8 KiB
C

#include "imagescaler.h"
#include <cstdlib>
#include <cmath>
ImageScaler::ImageScaler() :
m_memory(NULL),
m_hor_filters(NULL),
m_ver_filters(NULL),
m_buffer(NULL),
m_dst_image(NULL),
m_dst_stride(0),
m_dst_width(0),
m_dst_height(0),
m_src_width(0),
m_src_height(0),
m_src_x(0),
m_src_y(0),
m_dst_x(0),
m_dst_y(0) {
}
ImageScaler::~ImageScaler() {
if ( m_memory ) free( m_memory );
}
// sin(x)/(x)
static float sincf( float x ) {
if ( fabsf(x) < 0.05f ) return 1.0f - (1.0f/6.0f)*x*x; // taylor series approximation to avoid 0/0
return sin(x)/x;
}
static void CalculateFilters( ImageScaler::Filter *filters, int dst_size, int src_size ) {
const float fc = dst_size >= src_size ? 1.0f : ((float) dst_size)/((float) src_size);
for (int i = 0; i < dst_size; i++) {
const int d = 2*dst_size; // sample position denominator
const int e = (2*i+1) * src_size - dst_size; // sample position enumerator
int offset = e / d; // truncated sample position
const float sub_offset = ((float) (e - offset*d)) / ((float) d); // exact sample position is (float) e/d = offset + sub_offset
// calculate filter coefficients
float h[4];
for (int j=0; j<4; j++) {
const float t = 3.14159265359f * (sub_offset+(1-j));
h[j] = sincf( fc * t ) * cosf( 0.25f * t ); // sinc-lowpass and cos-window
}
// ensure that filter does not reach out off image bounds:
while ( offset < 1 ) {
h[0] += h[1];
h[1] = h[2];
h[2] = h[3];
h[3] = 0.0f;
offset++;
}
while ( offset+3 > src_size ) {
h[3] += h[2];
h[2] = h[1];
h[1] = h[0];
h[0] = 0.0f;
offset--;
}
// coefficients are normalized to sum up to 2048
const float norm = 2048.0f / ( h[0] + h[1] + h[2] + h[3] );
offset--; // offset of fist used pixel
filters[i].m_offset = offset + 4; // store offset of first unused pixel
for (int j=0; j<4; j++) {
const float t = norm * h[j];
filters[i].m_coeff[(offset+j) & 3] = (int) ((t > 0.0f) ? (t+0.5f) : (t-0.5f)); // consider ring buffer index permutations
}
}
// set end marker
filters[dst_size].m_offset = (unsigned) -1;
}
void ImageScaler::SetImageParameters( unsigned *dst_image, unsigned dst_stride, unsigned dst_width, unsigned dst_height, unsigned src_width, unsigned src_height ) {
m_src_x = 0;
m_src_y = 0;
m_dst_x = 0;
m_dst_y = 0;
m_dst_image = dst_image;
m_dst_stride = dst_stride;
// if image dimensions do not change we can keep the old filter coefficients
if ( (src_width == m_src_width) && (src_height == m_src_height) && (dst_width == m_dst_width) && (dst_height == m_dst_height) ) return;
m_dst_width = dst_width;
m_dst_height = dst_height;
m_src_width = src_width;
m_src_height = src_height;
if ( m_memory ) free( m_memory );
const unsigned hor_filters_size = (m_dst_width + 1) * sizeof(Filter); // reserve one extra position for end marker
const unsigned ver_filters_size = (m_dst_height + 1) * sizeof(Filter);
const unsigned buffer_size = 4 * m_dst_width * sizeof(TmpPixel);
char *p = (char *) malloc( hor_filters_size + ver_filters_size + buffer_size );
m_memory = p;
m_hor_filters = (Filter *) p; p += hor_filters_size;
m_ver_filters = (Filter *) p; p += ver_filters_size;
m_buffer = (TmpPixel *) p;
CalculateFilters( m_hor_filters, m_dst_width , m_src_width );
CalculateFilters( m_ver_filters, m_dst_height, m_src_height );
}
// shift range to 0..255 and clamp overflows
static unsigned shift_clamp( int x ) {
x = ( x + (1<<21) ) >> 22;
if ( x < 0 ) return 0;
if ( x > 255 ) return 255;
return x;
}
void ImageScaler::NextSourceLine() {
m_dst_x = 0;
m_src_x = 0;
m_src_y++;
while ( m_ver_filters[m_dst_y].m_offset == m_src_y ) {
const int h0 = m_ver_filters[m_dst_y].m_coeff[0];
const int h1 = m_ver_filters[m_dst_y].m_coeff[1];
const int h2 = m_ver_filters[m_dst_y].m_coeff[2];
const int h3 = m_ver_filters[m_dst_y].m_coeff[3];
const TmpPixel *src = m_buffer;
unsigned *dst = m_dst_image + m_dst_stride * m_dst_y;
for (unsigned i=0; i<m_dst_width; i++) {
const ImageScaler::TmpPixel t( src[0]*h0 + src[1]*h1 + src[2]*h2 + src[3]*h3 );
src += 4;
dst[i] = shift_clamp(t[0]) | (shift_clamp(t[1])<<8) | (shift_clamp(t[2])<<16) | (shift_clamp(t[3])<<24);
}
m_dst_y++;
}
}