// Copyright (c) 2015-2018, bacondither // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer // in this position and unchanged. // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. // IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT // NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF // THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Adaptive sharpen - version 2018-04-14 - (requires ps >= 3.0) // Tuned for use post resize //!HOOK SCALED //!BIND HOOKED //!SAVE ASSD //!COMPONENTS 2 //!DESC adaptive-sharpen //--------------------------------------- Settings ------------------------------------------------ #define curve_height 1.6 // Main control of sharpening strength [>0] // 0.3 <-> 2.0 is a reasonable range of values // Defined values under this row are "optimal" DO NOT CHANGE IF YOU DO NOT KNOW WHAT YOU ARE DOING! #define curveslope 0.5 // Sharpening curve slope, high edge values #define L_overshoot 0.003 // Max light overshoot before compression [>0.001] #define L_compr_low 0.167 // Light compression, default (0.169=~9x) #define L_compr_high 0.334 // Light compression, surrounded by edges (0.337=~4x) #define D_overshoot 0.009 // Max dark overshoot before compression [>0.001] #define D_compr_low 0.250 // Dark compression, default (0.253=~6x) #define D_compr_high 0.500 // Dark compression, surrounded by edges (0.504=~2.5x) #define scale_lim 0.1 // Abs max change before compression (0.1=+-10%) #define scale_cs 0.056 // Compression slope above scale_lim #define pm_p sat(1.0/curve_height) // Power mean p-value [>0-1.0] //------------------------------------------------------------------------------------------------- // Soft limit #define soft_lim(v,s) ( (exp(2.0*min(abs(v), s*24.0)/s) - 1.0)/(exp(2.0*min(abs(v), s*24.0)/s) + 1.0)*s ) // Weighted power mean #define wpmean(a,b,c) ( pow((c*pow(abs(a), pm_p) + (1.0-c)*pow(b, pm_p)), (1.0/pm_p)) ) // Get destination pixel values #define get(x,y) ( HOOKED_texOff(vec2(x, y)).rgb ) #define sat(x) ( clamp(x, 0.0, 1.0) ) // Colour to luma, fast approx gamma, avg of rec. 709 & 601 luma coeffs #define CtL(RGB) ( sqrt(dot(vec3(0.2558, 0.6511, 0.0931), pow(sat(RGB), vec3(2.0)))) ) // Center pixel diff #define mdiff(a,b,c,d,e,f,g) ( abs(luma[g]-luma[a]) + abs(luma[g]-luma[b]) \ + abs(luma[g]-luma[c]) + abs(luma[g]-luma[d]) \ + 0.5*(abs(luma[g]-luma[e]) + abs(luma[g]-luma[f])) ) #define b_diff(pix) ( abs(blur-c[pix]) ) vec4 hook() { vec4 o = HOOKED_tex(HOOKED_pos); // Get points, saturate colour data in c[0] // [ c22 ] // [ c24, c9, c23 ] // [ c21, c1, c2, c3, c18 ] // [ c19, c10, c4, c0, c5, c11, c16 ] // [ c20, c6, c7, c8, c17 ] // [ c15, c12, c14 ] // [ c13 ] vec3 c[25] = vec3[](sat(o.rgb), get(-1,-1), get( 0,-1), get( 1,-1), get(-1, 0), get( 1, 0), get(-1, 1), get( 0, 1), get( 1, 1), get( 0,-2), get(-2, 0), get( 2, 0), get( 0, 2), get( 0, 3), get( 1, 2), get(-1, 2), get( 3, 0), get( 2, 1), get( 2,-1), get(-3, 0), get(-2, 1), get(-2,-1), get( 0,-3), get( 1,-2), get(-1,-2)); // Blur, gauss 3x3 vec3 blur = (2.0 * (c[2]+c[4]+c[5]+c[7]) + (c[1]+c[3]+c[6]+c[8]) + 4.0 * c[0]) / 16.0; // Contrast compression, center = 0.5, scaled to 1/3 float c_comp = sat(0.266666681f + 0.9*exp2(dot(blur, vec3(-7.4/3.0)))); // Edge detection // Relative matrix weights // [ 1 ] // [ 4, 5, 4 ] // [ 1, 5, 6, 5, 1 ] // [ 4, 5, 4 ] // [ 1 ] float edge = length( 1.38*b_diff(0) + 1.15*(b_diff(2) + b_diff(4) + b_diff(5) + b_diff(7)) + 0.92*(b_diff(1) + b_diff(3) + b_diff(6) + b_diff(8)) + 0.23*(b_diff(9) + b_diff(10) + b_diff(11) + b_diff(12)) ) * c_comp; // RGB to luma float c0_Y = CtL(c[0]); float luma[25] = float[](c0_Y, CtL(c[1]), CtL(c[2]), CtL(c[3]), CtL(c[4]), CtL(c[5]), CtL(c[6]), CtL(c[7]), CtL(c[8]), CtL(c[9]), CtL(c[10]), CtL(c[11]), CtL(c[12]), CtL(c[13]), CtL(c[14]), CtL(c[15]), CtL(c[16]), CtL(c[17]), CtL(c[18]), CtL(c[19]), CtL(c[20]), CtL(c[21]), CtL(c[22]), CtL(c[23]), CtL(c[24])); // Precalculated default squared kernel weights const vec3 w1 = vec3(0.5, 1.0, 1.41421356237); // 0.25, 1.0, 2.0 const vec3 w2 = vec3(0.86602540378, 1.0, 0.54772255751); // 0.75, 1.0, 0.3 // Transition to a concave kernel if the center edge val is above thr vec3 dW = pow(mix( w1, w2, smoothstep( 0.3, 0.8, edge)), vec3(2.0)); float mdiff_c0 = 0.02 + 3.0*( abs(luma[0]-luma[2]) + abs(luma[0]-luma[4]) + abs(luma[0]-luma[5]) + abs(luma[0]-luma[7]) + 0.25*(abs(luma[0]-luma[1]) + abs(luma[0]-luma[3]) +abs(luma[0]-luma[6]) + abs(luma[0]-luma[8])) ); // Use lower weights for pixels in a more active area relative to center pixel area // This results in narrower and less visible overshoots around sharp edges float weights[12] = float[](( min((mdiff_c0/mdiff(24, 21, 2, 4, 9, 10, 1)), dW.y) ), ( dW.x ), ( min((mdiff_c0/mdiff(23, 18, 5, 2, 9, 11, 3)), dW.y) ), ( dW.x ), ( dW.x ), ( min((mdiff_c0/mdiff(4, 20, 15, 7, 10, 12, 6)), dW.y) ), ( dW.x ), ( min((mdiff_c0/mdiff(5, 7, 17, 14, 12, 11, 8)), dW.y) ), ( min((mdiff_c0/mdiff(2, 24, 23, 22, 1, 3, 9)), dW.z) ), ( min((mdiff_c0/mdiff(20, 19, 21, 4, 1, 6, 10)), dW.z) ), ( min((mdiff_c0/mdiff(17, 5, 18, 16, 3, 8, 11)), dW.z) ), ( min((mdiff_c0/mdiff(13, 15, 7, 14, 6, 8, 12)), dW.z) )); weights[0] = (max(max((weights[8] + weights[9])/4.0, weights[0]), 0.25) + weights[0])/2.0; weights[2] = (max(max((weights[8] + weights[10])/4.0, weights[2]), 0.25) + weights[2])/2.0; weights[5] = (max(max((weights[9] + weights[11])/4.0, weights[5]), 0.25) + weights[5])/2.0; weights[7] = (max(max((weights[10] + weights[11])/4.0, weights[7]), 0.25) + weights[7])/2.0; // Calculate the negative part of the laplace kernel float weightsum = 0.0; float neg_laplace = 0.0; for (int pix = 0; pix < 12; ++pix) { neg_laplace += luma[pix+1]*weights[pix]; weightsum += weights[pix]; } neg_laplace = neg_laplace / weightsum; // Compute sharpening magnitude function float sharpen_val = (curve_height/(curve_height*curveslope*pow((edge), 3.5) + 0.625)); // Calculate sharpening diff and scale float sharpdiff = (c0_Y - neg_laplace)*(sharpen_val + 0.01); // Calculate local near min & max, partial sort float temp; for (int i1 = 0; i1 < 24; i1 += 2) { temp = luma[i1]; luma[i1] = min(luma[i1], luma[i1+1]); luma[i1+1] = max(temp, luma[i1+1]); } for (int i2 = 24; i2 > 0; i2 -= 2) { temp = luma[0]; luma[0] = min(luma[0], luma[i2]); luma[i2] = max(temp, luma[i2]); temp = luma[24]; luma[24] = max(luma[24], luma[i2-1]); luma[i2-1] = min(temp, luma[i2-1]); } for (int i1 = 1; i1 < 24-1; i1 += 2) { temp = luma[i1]; luma[i1] = min(luma[i1], luma[i1+1]); luma[i1+1] = max(temp, luma[i1+1]); } for (int i2 = 24-1; i2 > 1; i2 -= 2) { temp = luma[1]; luma[1] = min(luma[1], luma[i2]); luma[i2] = max(temp, luma[i2]); temp = luma[24-1]; luma[24-1] = max(luma[24-1], luma[i2-1]); luma[i2-1] = min(temp, luma[i2-1]); } float nmax = (max(luma[23], c0_Y)*3.0 + luma[24])/4.0; float nmin = (min(luma[1], c0_Y)*3.0 + luma[0])/4.0; // Calculate tanh scale factors float min_dist = min(abs(nmax - c0_Y), abs(c0_Y - nmin)); float pos_scale = min_dist + min(L_overshoot, 1.0001 - min_dist - c0_Y); float neg_scale = min_dist + min(D_overshoot, 0.0001 + c0_Y - min_dist); pos_scale = min(pos_scale, scale_lim*(1.0 - scale_cs) + pos_scale*scale_cs); neg_scale = min(neg_scale, scale_lim*(1.0 - scale_cs) + neg_scale*scale_cs); // Soft limited anti-ringing with tanh, wpmean to control compression slope sharpdiff = wpmean(max(sharpdiff, 0.0), soft_lim( max(sharpdiff, 0.0), pos_scale ), L_compr_low ) - wpmean(min(sharpdiff, 0.0), soft_lim( min(sharpdiff, 0.0), neg_scale ), D_compr_low ); return vec4(sharpdiff, c0_Y, 0, 1); } //!HOOK SCALED //!BIND HOOKED //!BIND ASSD //!DESC adaptive-sharpen equalization #define video_level_out false // True to preserve BTB & WTW (minor summation error) // Normally it should be set to false #define SD(x,y) ASSD_texOff(vec2(x,y)).r vec4 hook() { vec4 o = HOOKED_texOff(0); float sharpdiff = SD( 0, 0) - 0.6 * 0.25 * (SD(-0.5,-0.5) + SD( 0.5,-0.5) + SD(-0.5, 0.5) + SD( 0.5, 0.5)); float c0_Y = ASSD_texOff(vec2(0)).g; float sharpdiff_lim = clamp(c0_Y + sharpdiff, 0.0, 1.0) - c0_Y; float satmul = (c0_Y + max(sharpdiff_lim*0.9, sharpdiff_lim)*1.03 + 0.03)/(c0_Y + 0.03); vec3 res = c0_Y + (sharpdiff_lim*3 + sharpdiff)/4 + (clamp(o.rgb, 0.0, 1.0) - c0_Y)*satmul; o.rgb = video_level_out == true ? res + o.rgb - clamp(o.rgb, 0.0, 1.0) : res; return o; }