vdr-plugin-streamdev/remux/ts2pes.c
schmirl 412c6982b6 - added namespace to remuxers
- increased WRITERBUFSIZE - buffer was too small for high bandwidth content
- removed cStreamdevStreamer::m_Running
- eliminated potential busy waits in remuxers
- updated cTSRemux static helpers to code of their VDR 1.6.0 counterparts
- use a copy of VDR 1.6.0's cRemux for TS to PES remuxing.
- make sure that only complete TS packets are written to ringbuffers
- use signaling instead of sleeps when writing to ringbuffers
- optimized cStreamdevPatFilter PAT packet initialization
- fixed cStreamdevPatFilter not processing PATs with length > TS_SIZE - 5
- use a small ringbuffer for cStreamdevPatFilter instead of writing to
  cStreamdevStreamers SendBuffer as two threads mustn't write to the same
  ringbuffer
Modified Files:
 Tag: v0_4
	CONTRIBUTORS HISTORY Makefile streamdev-server.c
	libdvbmpeg/transform.h remux/extern.c remux/extern.h
	remux/ts2es.c remux/ts2es.h remux/ts2ps.c remux/ts2ps.h
	remux/tsremux.c remux/tsremux.h server/livestreamer.c
	server/livestreamer.h server/streamer.c server/streamer.h
Added Files:
 Tag: v0_4
	remux/ts2pes.c remux/ts2pes.h
2009-06-29 06:25:27 +00:00

2012 lines
69 KiB
C

/*
* ts2pes.c: A streaming MPEG2 remultiplexer
*
* This file is based on remux.c from Klaus Schmidinger's VDR, version 1.6.0.
*
* The parts of this code that implement cTS2PES have been taken from
* the Linux DVB driver's 'tuxplayer' example and were rewritten to suit
* VDR's needs.
*
* The cRepacker family's code was originally written by Reinhard Nissl <rnissl@gmx.de>,
* and adapted to the VDR coding style by Klaus.Schmidinger@cadsoft.de.
*
* $Id: ts2pes.c,v 1.1.2.2 2009/06/29 06:25:28 schmirl Exp $
*/
#include "remux/ts2pes.h"
#include <stdlib.h>
#include <vdr/channels.h>
namespace Streamdev {
// --- cRepacker -------------------------------------------------------------
#define MIN_LOG_INTERVAL 10 // min. # of seconds between two consecutive log messages of a cRepacker
#define LOG(a...) (LogAllowed() && (esyslog(a), true))
class cRepacker {
protected:
bool initiallySyncing;
int maxPacketSize;
uint8_t subStreamId;
time_t lastLog;
int suppressedLogMessages;
bool LogAllowed(void);
void DroppedData(const char *Reason, int Count) { LOG("%s (dropped %d bytes)", Reason, Count); }
public:
static int Put(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count, int CapacityNeeded);
cRepacker(void);
virtual ~cRepacker() {}
virtual void Reset(void) { initiallySyncing = true; }
virtual void Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count) = 0;
virtual int BreakAt(const uchar *Data, int Count) = 0;
virtual int QuerySnoopSize(void) { return 0; }
void SetMaxPacketSize(int MaxPacketSize) { maxPacketSize = MaxPacketSize; }
void SetSubStreamId(uint8_t SubStreamId) { subStreamId = SubStreamId; }
};
cRepacker::cRepacker(void)
{
initiallySyncing = true;
maxPacketSize = 6 + 65535;
subStreamId = 0;
suppressedLogMessages = 0;;
lastLog = 0;
}
bool cRepacker::LogAllowed(void)
{
bool Allowed = time(NULL) - lastLog >= MIN_LOG_INTERVAL;
lastLog = time(NULL);
if (Allowed) {
if (suppressedLogMessages) {
esyslog("%d cRepacker messages suppressed", suppressedLogMessages);
suppressedLogMessages = 0;
}
}
else
suppressedLogMessages++;
return Allowed;
}
int cRepacker::Put(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count, int CapacityNeeded)
{
if (CapacityNeeded >= Count && ResultBuffer->Free() < CapacityNeeded) {
esyslog("ERROR: possible result buffer overflow, dropped %d out of %d byte", CapacityNeeded, CapacityNeeded);
return 0;
}
int n = ResultBuffer->Put(Data, Count);
if (n != Count)
esyslog("ERROR: result buffer overflow, dropped %d out of %d byte", Count - n, Count);
return n;
}
// --- cCommonRepacker -------------------------------------------------------
class cCommonRepacker : public cRepacker {
protected:
int skippedBytes;
int packetTodo;
uchar fragmentData[6 + 65535 + 3];
int fragmentLen;
uchar pesHeader[6 + 3 + 255 + 3];
int pesHeaderLen;
uchar pesHeaderBackup[6 + 3 + 255];
int pesHeaderBackupLen;
uint32_t scanner;
uint32_t localScanner;
int localStart;
bool PushOutPacket(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count);
virtual int QuerySnoopSize() { return 4; }
virtual void Reset(void);
};
void cCommonRepacker::Reset(void)
{
cRepacker::Reset();
skippedBytes = 0;
packetTodo = 0;
fragmentLen = 0;
pesHeaderLen = 0;
pesHeaderBackupLen = 0;
localStart = -1;
}
bool cCommonRepacker::PushOutPacket(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count)
{
// enter packet length into PES header ...
if (fragmentLen > 0) { // ... which is contained in the fragment buffer
// determine PES packet payload
int PacketLen = fragmentLen + Count - 6;
fragmentData[ 4 ] = PacketLen >> 8;
fragmentData[ 5 ] = PacketLen & 0xFF;
// just skip packets with no payload
int PesPayloadOffset = 0;
if (AnalyzePesHeader(fragmentData, fragmentLen, PesPayloadOffset) <= phInvalid)
LOG("cCommonRepacker: invalid PES packet encountered in fragment buffer!");
else if (6 + PacketLen <= PesPayloadOffset) {
fragmentLen = 0;
return true; // skip empty packet
}
// amount of data to put into result buffer: a negative Count value means
// to strip off any partially contained start code.
int Bite = fragmentLen + (Count >= 0 ? 0 : Count);
// put data into result buffer
int n = Put(ResultBuffer, fragmentData, Bite, 6 + PacketLen);
fragmentLen = 0;
if (n != Bite)
return false;
}
else if (pesHeaderLen > 0) { // ... which is contained in the PES header buffer
int PacketLen = pesHeaderLen + Count - 6;
pesHeader[ 4 ] = PacketLen >> 8;
pesHeader[ 5 ] = PacketLen & 0xFF;
// just skip packets with no payload
int PesPayloadOffset = 0;
if (AnalyzePesHeader(pesHeader, pesHeaderLen, PesPayloadOffset) <= phInvalid)
LOG("cCommonRepacker: invalid PES packet encountered in header buffer!");
else if (6 + PacketLen <= PesPayloadOffset) {
pesHeaderLen = 0;
return true; // skip empty packet
}
// amount of data to put into result buffer: a negative Count value means
// to strip off any partially contained start code.
int Bite = pesHeaderLen + (Count >= 0 ? 0 : Count);
// put data into result buffer
int n = Put(ResultBuffer, pesHeader, Bite, 6 + PacketLen);
pesHeaderLen = 0;
if (n != Bite)
return false;
}
// append further payload
if (Count > 0) {
// amount of data to put into result buffer
int Bite = Count;
// put data into result buffer
int n = Put(ResultBuffer, Data, Bite, Bite);
if (n != Bite)
return false;
}
// we did it ;-)
return true;
}
// --- cVideoRepacker --------------------------------------------------------
class cVideoRepacker : public cCommonRepacker {
private:
enum eState {
syncing,
findPicture,
scanPicture
};
int state;
void HandleStartCode(const uchar *const Data, cRingBufferLinear *const ResultBuffer, const uchar *&Payload, const uchar StreamID, const ePesHeader MpegLevel);
inline bool ScanDataForStartCodeSlow(const uchar *const Data);
inline bool ScanDataForStartCodeFast(const uchar *&Data, const uchar *Limit);
inline bool ScanDataForStartCode(const uchar *&Data, int &Done, int &Todo);
inline void AdjustCounters(const int Delta, int &Done, int &Todo);
inline bool ScanForEndOfPictureSlow(const uchar *&Data);
inline bool ScanForEndOfPictureFast(const uchar *&Data, const uchar *Limit);
inline bool ScanForEndOfPicture(const uchar *&Data, const uchar *Limit);
public:
cVideoRepacker(void);
virtual void Reset(void);
virtual void Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count);
virtual int BreakAt(const uchar *Data, int Count);
};
cVideoRepacker::cVideoRepacker(void)
{
Reset();
}
void cVideoRepacker::Reset(void)
{
cCommonRepacker::Reset();
scanner = 0xFFFFFFFF;
state = syncing;
}
void cVideoRepacker::HandleStartCode(const uchar *const Data, cRingBufferLinear *const ResultBuffer, const uchar *&Payload, const uchar StreamID, const ePesHeader MpegLevel)
{
// synchronisation is detected some bytes after frame start.
const int SkippedBytesLimit = 4;
// which kind of start code have we got?
switch (*Data) {
case 0xB9 ... 0xFF: // system start codes
LOG("cVideoRepacker: found system start code: stream seems to be scrambled or not demultiplexed");
break;
case 0xB0 ... 0xB1: // reserved start codes
case 0xB6:
LOG("cVideoRepacker: found reserved start code: stream seems to be scrambled");
break;
case 0xB4: // sequence error code
LOG("cVideoRepacker: found sequence error code: stream seems to be damaged");
case 0xB2: // user data start code
case 0xB5: // extension start code
break;
case 0xB7: // sequence end code
case 0xB3: // sequence header code
case 0xB8: // group start code
case 0x00: // picture start code
if (state == scanPicture) {
// the above start codes indicate that the current picture is done. So
// push out the packet to start a new packet for the next picuture. If
// the byte count get's negative then the current buffer ends in a
// partitial start code that must be stripped off, as it shall be put
// in the next packet.
PushOutPacket(ResultBuffer, Payload, Data - 3 - Payload);
// go on with syncing to the next picture
state = syncing;
}
if (state == syncing) {
if (initiallySyncing) // omit report for the typical initial case
initiallySyncing = false;
else if (skippedBytes > SkippedBytesLimit) // report that syncing dropped some bytes
LOG("cVideoRepacker: skipped %d bytes to sync on next picture", skippedBytes - SkippedBytesLimit);
skippedBytes = 0;
// if there is a PES header available, then use it ...
if (pesHeaderBackupLen > 0) {
// ISO 13818-1 says:
// In the case of video, if a PTS is present in a PES packet header
// it shall refer to the access unit containing the first picture start
// code that commences in this PES packet. A picture start code commences
// in PES packet if the first byte of the picture start code is present
// in the PES packet.
memcpy(pesHeader, pesHeaderBackup, pesHeaderBackupLen);
pesHeaderLen = pesHeaderBackupLen;
pesHeaderBackupLen = 0;
}
else {
// ... otherwise create a continuation PES header
pesHeaderLen = 0;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x01;
pesHeader[pesHeaderLen++] = StreamID; // video stream ID
pesHeader[pesHeaderLen++] = 0x00; // length still unknown
pesHeader[pesHeaderLen++] = 0x00; // length still unknown
if (MpegLevel == phMPEG2) {
pesHeader[pesHeaderLen++] = 0x80;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x00;
}
else
pesHeader[pesHeaderLen++] = 0x0F;
}
// append the first three bytes of the start code
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x01;
// the next packet's payload will begin with the fourth byte of
// the start code (= the actual code)
Payload = Data;
// as there is no length information available, assume the
// maximum we can hold in one PES packet
packetTodo = maxPacketSize - pesHeaderLen;
// go on with finding the picture data
state++;
}
break;
case 0x01 ... 0xAF: // slice start codes
if (state == findPicture) {
// go on with scanning the picture data
state++;
}
break;
}
}
bool cVideoRepacker::ScanDataForStartCodeSlow(const uchar *const Data)
{
scanner <<= 8;
bool FoundStartCode = (scanner == 0x00000100);
scanner |= *Data;
return FoundStartCode;
}
bool cVideoRepacker::ScanDataForStartCodeFast(const uchar *&Data, const uchar *Limit)
{
Limit--;
while (Data < Limit && (Data = (const uchar *)memchr(Data, 0x01, Limit - Data))) {
if (Data[-2] || Data[-1])
Data += 3;
else {
scanner = 0x00000100 | *++Data;
return true;
}
}
Data = Limit;
uint32_t *Scanner = (uint32_t *)(Data - 3);
scanner = ntohl(*Scanner);
return false;
}
bool cVideoRepacker::ScanDataForStartCode(const uchar *&Data, int &Done, int &Todo)
{
const uchar *const DataOrig = Data;
const int MinDataSize = 4;
if (Todo < MinDataSize || (state != syncing && packetTodo < MinDataSize))
return ScanDataForStartCodeSlow(Data);
int Limit = Todo;
if (state != syncing && Limit > packetTodo)
Limit = packetTodo;
if (ScanDataForStartCodeSlow(Data))
return true;
if (ScanDataForStartCodeSlow(++Data)) {
AdjustCounters(1, Done, Todo);
return true;
}
++Data;
bool FoundStartCode = ScanDataForStartCodeFast(Data, DataOrig + Limit);
AdjustCounters(Data - DataOrig, Done, Todo);
return FoundStartCode;
}
void cVideoRepacker::AdjustCounters(const int Delta, int &Done, int &Todo)
{
Done += Delta;
Todo -= Delta;
if (state <= syncing)
skippedBytes += Delta;
else
packetTodo -= Delta;
}
void cVideoRepacker::Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count)
{
// synchronisation is detected some bytes after frame start.
const int SkippedBytesLimit = 4;
// reset local scanner
localStart = -1;
int pesPayloadOffset = 0;
bool continuationHeader = false;
ePesHeader mpegLevel = AnalyzePesHeader(Data, Count, pesPayloadOffset, &continuationHeader);
if (mpegLevel <= phInvalid) {
DroppedData("cVideoRepacker: no valid PES packet header found", Count);
return;
}
if (!continuationHeader) {
// backup PES header
pesHeaderBackupLen = pesPayloadOffset;
memcpy(pesHeaderBackup, Data, pesHeaderBackupLen);
}
// skip PES header
int done = pesPayloadOffset;
int todo = Count - done;
const uchar *data = Data + done;
// remember start of the data
const uchar *payload = data;
while (todo > 0) {
// collect number of skipped bytes while syncing
if (state <= syncing)
skippedBytes++;
// did we reach a start code?
if (ScanDataForStartCode(data, done, todo))
HandleStartCode(data, ResultBuffer, payload, Data[3], mpegLevel);
// move on
data++;
done++;
todo--;
// do we have to start a new packet as there is no more space left?
if (state != syncing && --packetTodo <= 0) {
// we connot start a new packet here if the current might end in a start
// code and this start code shall possibly be put in the next packet. So
// overfill the current packet until we can safely detect that we won't
// break a start code into pieces:
//
// A) the last four bytes were a start code.
// B) the current byte introduces a start code.
// C) the last three bytes begin a start code.
//
// Todo : Data : Rule : Result
// -----:-------------------------------:------:-------
// : XX 00 00 00 01 YY|YY YY YY YY : :
// 0 : ^^| : A : push
// -----:-------------------------------:------:-------
// : XX XX 00 00 00 01|YY YY YY YY : :
// 0 : ^^| : B : wait
// -1 : |^^ : A : push
// -----:-------------------------------:------:-------
// : XX XX XX 00 00 00|01 YY YY YY : :
// 0 : ^^| : C : wait
// -1 : |^^ : B : wait
// -2 : | ^^ : A : push
// -----:-------------------------------:------:-------
// : XX XX XX XX 00 00|00 01 YY YY : :
// 0 : ^^| : C : wait
// -1 : |^^ : C : wait
// -2 : | ^^ : B : wait
// -3 : | ^^ : A : push
// -----:-------------------------------:------:-------
// : XX XX XX XX XX 00|00 00 01 YY : :
// 0 : ^^| : C : wait
// -1 : |^^ : C : wait
// -2 : | ^^ : : push
// -----:-------------------------------:------:-------
bool A = ((scanner & 0xFFFFFF00) == 0x00000100);
bool B = ((scanner & 0xFFFFFF) == 0x000001);
bool C = ((scanner & 0xFF) == 0x00) && (packetTodo >= -1);
if (A || (!B && !C)) {
// actually we cannot push out an overfull packet. So we'll have to
// adjust the byte count and payload start as necessary. If the byte
// count get's negative we'll have to append the excess from fragment's
// tail to the next PES header.
int bite = data + packetTodo - payload;
const uchar *excessData = fragmentData + fragmentLen + bite;
// a negative byte count means to drop some bytes from the current
// fragment's tail, to not exceed the maximum packet size.
PushOutPacket(ResultBuffer, payload, bite);
// create a continuation PES header
pesHeaderLen = 0;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x01;
pesHeader[pesHeaderLen++] = Data[3]; // video stream ID
pesHeader[pesHeaderLen++] = 0x00; // length still unknown
pesHeader[pesHeaderLen++] = 0x00; // length still unknown
if (mpegLevel == phMPEG2) {
pesHeader[pesHeaderLen++] = 0x80;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x00;
}
else
pesHeader[pesHeaderLen++] = 0x0F;
// copy any excess data
while (bite++ < 0) {
// append the excess data here
pesHeader[pesHeaderLen++] = *excessData++;
packetTodo++;
}
// the next packet's payload will begin here
payload = data + packetTodo;
// as there is no length information available, assume the
// maximum we can hold in one PES packet
packetTodo += maxPacketSize - pesHeaderLen;
}
}
}
// the packet is done. Now store any remaining data into fragment buffer
// if we are no longer syncing.
if (state != syncing) {
// append the PES header ...
int bite = pesHeaderLen;
pesHeaderLen = 0;
if (bite > 0) {
memcpy(fragmentData + fragmentLen, pesHeader, bite);
fragmentLen += bite;
}
// append payload. It may contain part of a start code at it's end,
// which will be removed when the next packet gets processed.
bite = data - payload;
if (bite > 0) {
memcpy(fragmentData + fragmentLen, payload, bite);
fragmentLen += bite;
}
}
// report that syncing dropped some bytes
if (skippedBytes > SkippedBytesLimit) {
if (!initiallySyncing) // omit report for the typical initial case
LOG("cVideoRepacker: skipped %d bytes while syncing on next picture", skippedBytes - SkippedBytesLimit);
skippedBytes = SkippedBytesLimit;
}
}
bool cVideoRepacker::ScanForEndOfPictureSlow(const uchar *&Data)
{
localScanner <<= 8;
localScanner |= *Data++;
// check start codes which follow picture data
switch (localScanner) {
case 0x00000100: // picture start code
case 0x000001B8: // group start code
case 0x000001B3: // sequence header code
case 0x000001B7: // sequence end code
return true;
}
return false;
}
bool cVideoRepacker::ScanForEndOfPictureFast(const uchar *&Data, const uchar *Limit)
{
Limit--;
while (Data < Limit && (Data = (const uchar *)memchr(Data, 0x01, Limit - Data))) {
if (Data[-2] || Data[-1])
Data += 3;
else {
localScanner = 0x00000100 | *++Data;
// check start codes which follow picture data
switch (localScanner) {
case 0x00000100: // picture start code
case 0x000001B8: // group start code
case 0x000001B3: // sequence header code
case 0x000001B7: // sequence end code
Data++;
return true;
default:
Data += 3;
}
}
}
Data = Limit + 1;
uint32_t *LocalScanner = (uint32_t *)(Data - 4);
localScanner = ntohl(*LocalScanner);
return false;
}
bool cVideoRepacker::ScanForEndOfPicture(const uchar *&Data, const uchar *Limit)
{
const uchar *const DataOrig = Data;
const int MinDataSize = 4;
bool FoundEndOfPicture;
if (Limit - Data <= MinDataSize) {
FoundEndOfPicture = false;
while (Data < Limit) {
if (ScanForEndOfPictureSlow(Data)) {
FoundEndOfPicture = true;
break;
}
}
}
else {
FoundEndOfPicture = true;
if (!ScanForEndOfPictureSlow(Data)) {
if (!ScanForEndOfPictureSlow(Data)) {
if (!ScanForEndOfPictureFast(Data, Limit))
FoundEndOfPicture = false;
}
}
}
localStart += (Data - DataOrig);
return FoundEndOfPicture;
}
int cVideoRepacker::BreakAt(const uchar *Data, int Count)
{
if (initiallySyncing)
return -1; // fill the packet buffer completely until we have synced once
int PesPayloadOffset = 0;
if (AnalyzePesHeader(Data, Count, PesPayloadOffset) <= phInvalid)
return -1; // not enough data for test
// just detect end of picture
if (state == scanPicture) {
// setup local scanner
if (localStart < 0) {
localScanner = scanner;
localStart = 0;
}
// start where we've stopped at the last run
const uchar *data = Data + PesPayloadOffset + localStart;
const uchar *limit = Data + Count;
// scan data
if (ScanForEndOfPicture(data, limit))
return data - Data;
}
// just fill up packet and append next start code
return PesPayloadOffset + packetTodo + 4;
}
// --- cAudioRepacker --------------------------------------------------------
class cAudioRepacker : public cCommonRepacker {
private:
static int bitRates[2][3][16];
enum eState {
syncing,
scanFrame
};
int state;
int frameTodo;
int frameSize;
int cid;
static bool IsValidAudioHeader(uint32_t Header, bool Mpeg2, int *FrameSize = NULL);
public:
cAudioRepacker(int Cid);
virtual void Reset(void);
virtual void Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count);
virtual int BreakAt(const uchar *Data, int Count);
};
int cAudioRepacker::bitRates[2][3][16] = { // all values are specified as kbits/s
{
{ 0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, -1 }, // MPEG 1, Layer I
{ 0, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, -1 }, // MPEG 1, Layer II
{ 0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, -1 } // MPEG 1, Layer III
},
{
{ 0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256, -1 }, // MPEG 2, Layer I
{ 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, -1 }, // MPEG 2, Layer II/III
{ 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, -1 } // MPEG 2, Layer II/III
}
};
cAudioRepacker::cAudioRepacker(int Cid)
{
cid = Cid;
Reset();
}
void cAudioRepacker::Reset(void)
{
cCommonRepacker::Reset();
scanner = 0;
state = syncing;
frameTodo = 0;
frameSize = 0;
}
bool cAudioRepacker::IsValidAudioHeader(uint32_t Header, bool Mpeg2, int *FrameSize)
{
int syncword = (Header & 0xFFF00000) >> 20;
int id = (Header & 0x00080000) >> 19;
int layer = (Header & 0x00060000) >> 17;
//int protection_bit = (Header & 0x00010000) >> 16;
int bitrate_index = (Header & 0x0000F000) >> 12;
int sampling_frequency = (Header & 0x00000C00) >> 10;
int padding_bit = (Header & 0x00000200) >> 9;
//int private_bit = (Header & 0x00000100) >> 8;
//int mode = (Header & 0x000000C0) >> 6;
//int mode_extension = (Header & 0x00000030) >> 4;
//int copyright = (Header & 0x00000008) >> 3;
//int orignal_copy = (Header & 0x00000004) >> 2;
int emphasis = (Header & 0x00000003);
if (syncword != 0xFFF)
return false;
if (id == 0 && !Mpeg2) // reserved in MPEG 1
return false;
if (layer == 0) // reserved
return false;
if (bitrate_index == 0xF) // forbidden
return false;
if (sampling_frequency == 3) // reserved
return false;
if (emphasis == 2) // reserved
return false;
if (FrameSize) {
if (bitrate_index == 0)
*FrameSize = 0;
else {
static int samplingFrequencies[2][4] = { // all values are specified in Hz
{ 44100, 48000, 32000, -1 }, // MPEG 1
{ 22050, 24000, 16000, -1 } // MPEG 2
};
static int slots_per_frame[2][3] = {
{ 12, 144, 144 }, // MPEG 1, Layer I, II, III
{ 12, 144, 72 } // MPEG 2, Layer I, II, III
};
int mpegIndex = 1 - id;
int layerIndex = 3 - layer;
// Layer I (i. e., layerIndex == 0) has a larger slot size
int slotSize = (layerIndex == 0) ? 4 : 1; // bytes
int br = 1000 * bitRates[mpegIndex][layerIndex][bitrate_index]; // bits/s
int sf = samplingFrequencies[mpegIndex][sampling_frequency];
int N = slots_per_frame[mpegIndex][layerIndex] * br / sf; // slots
*FrameSize = (N + padding_bit) * slotSize; // bytes
}
}
return true;
}
void cAudioRepacker::Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count)
{
// synchronisation is detected some bytes after frame start.
const int SkippedBytesLimit = 4;
// reset local scanner
localStart = -1;
int pesPayloadOffset = 0;
bool continuationHeader = false;
ePesHeader mpegLevel = AnalyzePesHeader(Data, Count, pesPayloadOffset, &continuationHeader);
if (mpegLevel <= phInvalid) {
DroppedData("cAudioRepacker: no valid PES packet header found", Count);
return;
}
if (!continuationHeader) {
// backup PES header
pesHeaderBackupLen = pesPayloadOffset;
memcpy(pesHeaderBackup, Data, pesHeaderBackupLen);
}
// skip PES header
int done = pesPayloadOffset;
int todo = Count - done;
const uchar *data = Data + done;
// remember start of the data
const uchar *payload = data;
while (todo > 0) {
// collect number of skipped bytes while syncing
if (state <= syncing)
skippedBytes++;
// did we reach an audio frame header?
scanner <<= 8;
scanner |= *data;
if ((scanner & 0xFFF00000) == 0xFFF00000) {
if (frameTodo <= 0 && (frameSize == 0 || skippedBytes >= 4) && IsValidAudioHeader(scanner, mpegLevel == phMPEG2, &frameSize)) {
if (state == scanFrame) {
// As a new audio frame starts here, the previous one is done. So push
// out the packet to start a new packet for the next audio frame. If
// the byte count gets negative then the current buffer ends in a
// partitial audio frame header that must be stripped off, as it shall
// be put in the next packet.
PushOutPacket(ResultBuffer, payload, data - 3 - payload);
// go on with syncing to the next audio frame
state = syncing;
}
if (state == syncing) {
if (initiallySyncing) // omit report for the typical initial case
initiallySyncing = false;
else if (skippedBytes > SkippedBytesLimit) // report that syncing dropped some bytes
LOG("cAudioRepacker(0x%02X): skipped %d bytes to sync on next audio frame", cid, skippedBytes - SkippedBytesLimit);
skippedBytes = 0;
// if there is a PES header available, then use it ...
if (pesHeaderBackupLen > 0) {
// ISO 13818-1 says:
// In the case of audio, if a PTS is present in a PES packet header
// it shall refer to the access unit commencing in the PES packet. An
// audio access unit commences in a PES packet if the first byte of
// the audio access unit is present in the PES packet.
memcpy(pesHeader, pesHeaderBackup, pesHeaderBackupLen);
pesHeaderLen = pesHeaderBackupLen;
pesHeaderBackupLen = 0;
}
else {
// ... otherwise create a continuation PES header
pesHeaderLen = 0;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x01;
pesHeader[pesHeaderLen++] = Data[3]; // audio stream ID
pesHeader[pesHeaderLen++] = 0x00; // length still unknown
pesHeader[pesHeaderLen++] = 0x00; // length still unknown
if (mpegLevel == phMPEG2) {
pesHeader[pesHeaderLen++] = 0x80;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x00;
}
else
pesHeader[pesHeaderLen++] = 0x0F;
}
// append the first three bytes of the audio frame header
pesHeader[pesHeaderLen++] = 0xFF;
pesHeader[pesHeaderLen++] = (scanner >> 16) & 0xFF;
pesHeader[pesHeaderLen++] = (scanner >> 8) & 0xFF;
// the next packet's payload will begin with the fourth byte of
// the audio frame header (= the actual byte)
payload = data;
// maximum we can hold in one PES packet
packetTodo = maxPacketSize - pesHeaderLen;
// expected remainder of audio frame: so far we have read 3 bytes from the frame header
frameTodo = frameSize - 3;
// go on with collecting the frame's data
state++;
}
}
}
data++;
done++;
todo--;
// do we have to start a new packet as the current is done?
if (frameTodo > 0) {
if (--frameTodo == 0) {
// the current audio frame is is done now. So push out the packet to
// start a new packet for the next audio frame.
PushOutPacket(ResultBuffer, payload, data - payload);
// go on with syncing to the next audio frame
state = syncing;
}
}
// do we have to start a new packet as there is no more space left?
if (state != syncing && --packetTodo <= 0) {
// We connot start a new packet here if the current might end in an audio
// frame header and this header shall possibly be put in the next packet. So
// overfill the current packet until we can safely detect that we won't
// break an audio frame header into pieces:
//
// A) the last four bytes were an audio frame header.
// B) the last three bytes introduce an audio frame header.
// C) the last two bytes introduce an audio frame header.
// D) the last byte introduces an audio frame header.
//
// Todo : Data : Rule : Result
// -----:-------------------------------:------:-------
// : XX XX FF Fz zz zz|YY YY YY YY : :
// 0 : ^^| : A : push
// -----:-------------------------------:------:-------
// : XX XX XX FF Fz zz|zz YY YY YY : :
// 0 : ^^| : B : wait
// -1 : |^^ : A : push
// -----:-------------------------------:------:-------
// : XX XX XX XX FF Fz|zz zz YY YY : :
// 0 : ^^| : C : wait
// -1 : |^^ : B : wait
// -2 : | ^^ : A : push
// -----:-------------------------------:------:-------
// : XX XX XX XX XX FF|Fz zz zz YY : :
// 0 : ^^| : D : wait
// -1 : |^^ : C : wait
// -2 : | ^^ : B : wait
// -3 : | ^^ : A : push
// -----:-------------------------------:------:-------
bool A = ((scanner & 0xFFF00000) == 0xFFF00000);
bool B = ((scanner & 0xFFF000) == 0xFFF000);
bool C = ((scanner & 0xFFF0) == 0xFFF0);
bool D = ((scanner & 0xFF) == 0xFF);
if (A || (!B && !C && !D)) {
// Actually we cannot push out an overfull packet. So we'll have to
// adjust the byte count and payload start as necessary. If the byte
// count gets negative we'll have to append the excess from fragment's
// tail to the next PES header.
int bite = data + packetTodo - payload;
const uchar *excessData = fragmentData + fragmentLen + bite;
// A negative byte count means to drop some bytes from the current
// fragment's tail, to not exceed the maximum packet size.
PushOutPacket(ResultBuffer, payload, bite);
// create a continuation PES header
pesHeaderLen = 0;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x01;
pesHeader[pesHeaderLen++] = Data[3]; // audio stream ID
pesHeader[pesHeaderLen++] = 0x00; // length still unknown
pesHeader[pesHeaderLen++] = 0x00; // length still unknown
if (mpegLevel == phMPEG2) {
pesHeader[pesHeaderLen++] = 0x80;
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = 0x00;
}
else
pesHeader[pesHeaderLen++] = 0x0F;
// copy any excess data
while (bite++ < 0) {
// append the excess data here
pesHeader[pesHeaderLen++] = *excessData++;
packetTodo++;
}
// the next packet's payload will begin here
payload = data + packetTodo;
// as there is no length information available, assume the
// maximum we can hold in one PES packet
packetTodo += maxPacketSize - pesHeaderLen;
}
}
}
// The packet is done. Now store any remaining data into fragment buffer
// if we are no longer syncing.
if (state != syncing) {
// append the PES header ...
int bite = pesHeaderLen;
pesHeaderLen = 0;
if (bite > 0) {
memcpy(fragmentData + fragmentLen, pesHeader, bite);
fragmentLen += bite;
}
// append payload. It may contain part of an audio frame header at it's
// end, which will be removed when the next packet gets processed.
bite = data - payload;
if (bite > 0) {
memcpy(fragmentData + fragmentLen, payload, bite);
fragmentLen += bite;
}
}
// report that syncing dropped some bytes
if (skippedBytes > SkippedBytesLimit) {
if (!initiallySyncing) // omit report for the typical initial case
LOG("cAudioRepacker(0x%02X): skipped %d bytes while syncing on next audio frame", cid, skippedBytes - SkippedBytesLimit);
skippedBytes = SkippedBytesLimit;
}
}
int cAudioRepacker::BreakAt(const uchar *Data, int Count)
{
if (initiallySyncing)
return -1; // fill the packet buffer completely until we have synced once
int PesPayloadOffset = 0;
ePesHeader MpegLevel = AnalyzePesHeader(Data, Count, PesPayloadOffset);
if (MpegLevel <= phInvalid)
return -1; // not enough data for test
// determine amount of data to fill up packet and to append next audio frame header
int packetRemainder = PesPayloadOffset + packetTodo + 4;
// just detect end of an audio frame
if (state == scanFrame) {
// when remaining audio frame size is known, then omit scanning
if (frameTodo > 0) {
// determine amount of data to fill up audio frame and to append next audio frame header
int remaining = PesPayloadOffset + frameTodo + 4;
if (remaining < packetRemainder)
return remaining;
return packetRemainder;
}
// setup local scanner
if (localStart < 0) {
localScanner = scanner;
localStart = 0;
}
// start where we've stopped at the last run
const uchar *data = Data + PesPayloadOffset + localStart;
const uchar *limit = Data + Count;
// scan data
while (data < limit) {
localStart++;
localScanner <<= 8;
localScanner |= *data++;
// check whether the next audio frame follows
if (((localScanner & 0xFFF00000) == 0xFFF00000) && IsValidAudioHeader(localScanner, MpegLevel == phMPEG2))
return data - Data;
}
}
// just fill up packet and append next audio frame header
return packetRemainder;
}
// --- cDolbyRepacker --------------------------------------------------------
class cDolbyRepacker : public cRepacker {
private:
static int frameSizes[];
uchar fragmentData[6 + 65535];
int fragmentLen;
int fragmentTodo;
uchar pesHeader[6 + 3 + 255 + 4 + 4];
int pesHeaderLen;
uchar pesHeaderBackup[6 + 3 + 255];
int pesHeaderBackupLen;
uchar chk1;
uchar chk2;
int ac3todo;
enum eState {
find_0b,
find_77,
store_chk1,
store_chk2,
get_length,
output_packet
};
int state;
int skippedBytes;
void ResetPesHeader(bool ContinuationFrame = false);
void AppendSubStreamID(bool ContinuationFrame = false);
bool FinishRemainder(cRingBufferLinear *ResultBuffer, const uchar *const Data, const int Todo, int &Bite);
bool StartNewPacket(cRingBufferLinear *ResultBuffer, const uchar *const Data, const int Todo, int &Bite);
public:
cDolbyRepacker(void);
virtual void Reset(void);
virtual void Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count);
virtual int BreakAt(const uchar *Data, int Count);
};
// frameSizes are in words, i. e. multiply them by 2 to get bytes
int cDolbyRepacker::frameSizes[] = {
// fs = 48 kHz
64, 64, 80, 80, 96, 96, 112, 112, 128, 128, 160, 160, 192, 192, 224, 224,
256, 256, 320, 320, 384, 384, 448, 448, 512, 512, 640, 640, 768, 768, 896, 896,
1024, 1024, 1152, 1152, 1280, 1280, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// fs = 44.1 kHz
69, 70, 87, 88, 104, 105, 121, 122, 139, 140, 174, 175, 208, 209, 243, 244,
278, 279, 348, 349, 417, 418, 487, 488, 557, 558, 696, 697, 835, 836, 975, 976,
1114, 1115, 1253, 1254, 1393, 1394, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// fs = 32 kHz
96, 96, 120, 120, 144, 144, 168, 168, 192, 192, 240, 240, 288, 288, 336, 336,
384, 384, 480, 480, 576, 576, 672, 672, 768, 768, 960, 960, 1152, 1152, 1344, 1344,
1536, 1536, 1728, 1728, 1920, 1920, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
//
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
cDolbyRepacker::cDolbyRepacker(void)
{
pesHeader[0] = 0x00;
pesHeader[1] = 0x00;
pesHeader[2] = 0x01;
pesHeader[3] = 0xBD;
pesHeader[4] = 0x00;
pesHeader[5] = 0x00;
Reset();
}
void cDolbyRepacker::AppendSubStreamID(bool ContinuationFrame)
{
if (subStreamId) {
pesHeader[pesHeaderLen++] = subStreamId;
// number of ac3 frames "starting" in this packet (1 by design).
pesHeader[pesHeaderLen++] = 0x01;
// offset to start of first ac3 frame (0 means "no ac3 frame starting"
// so 1 (by design) addresses the first byte after the next two bytes).
pesHeader[pesHeaderLen++] = 0x00;
pesHeader[pesHeaderLen++] = (ContinuationFrame ? 0x00 : 0x01);
}
}
void cDolbyRepacker::ResetPesHeader(bool ContinuationFrame)
{
pesHeader[6] = 0x80;
pesHeader[7] = 0x00;
pesHeader[8] = 0x00;
pesHeaderLen = 9;
AppendSubStreamID(ContinuationFrame);
}
void cDolbyRepacker::Reset(void)
{
cRepacker::Reset();
ResetPesHeader();
state = find_0b;
ac3todo = 0;
chk1 = 0;
chk2 = 0;
fragmentLen = 0;
fragmentTodo = 0;
pesHeaderBackupLen = 0;
skippedBytes = 0;
}
bool cDolbyRepacker::FinishRemainder(cRingBufferLinear *ResultBuffer, const uchar *const Data, const int Todo, int &Bite)
{
bool success = true;
// enough data available to put PES packet into buffer?
if (fragmentTodo <= Todo) {
// output a previous fragment first
if (fragmentLen > 0) {
Bite = fragmentLen;
int n = Put(ResultBuffer, fragmentData, Bite, fragmentLen + fragmentTodo);
if (Bite != n)
success = false;
fragmentLen = 0;
}
Bite = fragmentTodo;
if (success) {
int n = Put(ResultBuffer, Data, Bite, Bite);
if (Bite != n)
success = false;
}
fragmentTodo = 0;
// ac3 frame completely processed?
if (Bite >= ac3todo)
state = find_0b; // go on with finding start of next packet
}
else {
// copy the fragment into separate buffer for later processing
Bite = Todo;
memcpy(fragmentData + fragmentLen, Data, Bite);
fragmentLen += Bite;
fragmentTodo -= Bite;
}
return success;
}
bool cDolbyRepacker::StartNewPacket(cRingBufferLinear *ResultBuffer, const uchar *const Data, const int Todo, int &Bite)
{
bool success = true;
int packetLen = pesHeaderLen + ac3todo;
// limit packet to maximum size
if (packetLen > maxPacketSize)
packetLen = maxPacketSize;
pesHeader[4] = (packetLen - 6) >> 8;
pesHeader[5] = (packetLen - 6) & 0xFF;
Bite = pesHeaderLen;
// enough data available to put PES packet into buffer?
if (packetLen - pesHeaderLen <= Todo) {
int n = Put(ResultBuffer, pesHeader, Bite, packetLen);
if (Bite != n)
success = false;
Bite = packetLen - pesHeaderLen;
if (success) {
n = Put(ResultBuffer, Data, Bite, Bite);
if (Bite != n)
success = false;
}
// ac3 frame completely processed?
if (Bite >= ac3todo)
state = find_0b; // go on with finding start of next packet
}
else {
fragmentTodo = packetLen;
// copy the pesheader into separate buffer for later processing
memcpy(fragmentData + fragmentLen, pesHeader, Bite);
fragmentLen += Bite;
fragmentTodo -= Bite;
// copy the fragment into separate buffer for later processing
Bite = Todo;
memcpy(fragmentData + fragmentLen, Data, Bite);
fragmentLen += Bite;
fragmentTodo -= Bite;
}
return success;
}
void cDolbyRepacker::Repack(cRingBufferLinear *ResultBuffer, const uchar *Data, int Count)
{
// synchronisation is detected some bytes after frame start.
const int SkippedBytesLimit = 4;
// check for MPEG 2
if ((Data[6] & 0xC0) != 0x80) {
DroppedData("cDolbyRepacker: MPEG 2 PES header expected", Count);
return;
}
// backup PES header
if (Data[6] != 0x80 || Data[7] != 0x00 || Data[8] != 0x00) {
pesHeaderBackupLen = 6 + 3 + Data[8];
memcpy(pesHeaderBackup, Data, pesHeaderBackupLen);
}
// skip PES header
int done = 6 + 3 + Data[8];
int todo = Count - done;
const uchar *data = Data + done;
// look for 0x0B 0x77 <chk1> <chk2> <frameSize>
while (todo > 0) {
switch (state) {
case find_0b:
if (*data == 0x0B) {
state++;
// copy header information once for later use
if (pesHeaderBackupLen > 0) {
pesHeaderLen = pesHeaderBackupLen;
pesHeaderBackupLen = 0;
memcpy(pesHeader, pesHeaderBackup, pesHeaderLen);
AppendSubStreamID();
}
}
data++;
done++;
todo--;
skippedBytes++; // collect number of skipped bytes while syncing
continue;
case find_77:
if (*data != 0x77) {
state = find_0b;
continue;
}
data++;
done++;
todo--;
skippedBytes++; // collect number of skipped bytes while syncing
state++;
continue;
case store_chk1:
chk1 = *data++;
done++;
todo--;
skippedBytes++; // collect number of skipped bytes while syncing
state++;
continue;
case store_chk2:
chk2 = *data++;
done++;
todo--;
skippedBytes++; // collect number of skipped bytes while syncing
state++;
continue;
case get_length:
ac3todo = 2 * frameSizes[*data];
// frameSizeCode was invalid => restart searching
if (ac3todo <= 0) {
// reset PES header instead of using a wrong one
ResetPesHeader();
if (chk1 == 0x0B) {
if (chk2 == 0x77) {
state = store_chk1;
continue;
}
if (chk2 == 0x0B) {
state = find_77;
continue;
}
state = find_0b;
continue;
}
if (chk2 == 0x0B) {
state = find_77;
continue;
}
state = find_0b;
continue;
}
if (initiallySyncing) // omit report for the typical initial case
initiallySyncing = false;
else if (skippedBytes > SkippedBytesLimit) // report that syncing dropped some bytes
LOG("cDolbyRepacker: skipped %d bytes to sync on next AC3 frame", skippedBytes - SkippedBytesLimit);
skippedBytes = 0;
// append read data to header for common output processing
pesHeader[pesHeaderLen++] = 0x0B;
pesHeader[pesHeaderLen++] = 0x77;
pesHeader[pesHeaderLen++] = chk1;
pesHeader[pesHeaderLen++] = chk2;
ac3todo -= 4;
state++;
// fall through to output
case output_packet: {
int bite = 0;
// finish remainder of ac3 frame?
if (fragmentTodo > 0)
FinishRemainder(ResultBuffer, data, todo, bite);
else {
// start a new packet
StartNewPacket(ResultBuffer, data, todo, bite);
// prepare for next (continuation) packet
ResetPesHeader(state == output_packet);
}
data += bite;
done += bite;
todo -= bite;
ac3todo -= bite;
}
}
}
// report that syncing dropped some bytes
if (skippedBytes > SkippedBytesLimit) {
if (!initiallySyncing) // omit report for the typical initial case
LOG("cDolbyRepacker: skipped %d bytes while syncing on next AC3 frame", skippedBytes - 4);
skippedBytes = SkippedBytesLimit;
}
}
int cDolbyRepacker::BreakAt(const uchar *Data, int Count)
{
if (initiallySyncing)
return -1; // fill the packet buffer completely until we have synced once
// enough data for test?
if (Count < 6 + 3)
return -1;
// check for MPEG 2
if ((Data[6] & 0xC0) != 0x80)
return -1;
int headerLen = Data[8] + 6 + 3;
// break after fragment tail?
if (ac3todo > 0)
return headerLen + ac3todo;
// enough data for test?
if (Count < headerLen + 5)
return -1;
const uchar *data = Data + headerLen;
// break after ac3 frame?
if (data[0] == 0x0B && data[1] == 0x77 && frameSizes[data[4]] > 0)
return headerLen + 2 * frameSizes[data[4]];
return -1;
}
// --- cTS2PES ---------------------------------------------------------------
#include <netinet/in.h>
//XXX TODO: these should really be available in some driver header file!
#define PROG_STREAM_MAP 0xBC
#ifndef PRIVATE_STREAM1
#define PRIVATE_STREAM1 0xBD
#endif
#define PADDING_STREAM 0xBE
#ifndef PRIVATE_STREAM2
#define PRIVATE_STREAM2 0xBF
#endif
#define AUDIO_STREAM_S 0xC0
#define AUDIO_STREAM_E 0xDF
#define VIDEO_STREAM_S 0xE0
#define VIDEO_STREAM_E 0xEF
#define ECM_STREAM 0xF0
#define EMM_STREAM 0xF1
#define DSM_CC_STREAM 0xF2
#define ISO13522_STREAM 0xF3
#define PROG_STREAM_DIR 0xFF
//pts_dts flags
#define PTS_ONLY 0x80
#define TS_SIZE 188
#define PID_MASK_HI 0x1F
#define CONT_CNT_MASK 0x0F
// Flags:
#define PAY_LOAD 0x10
#define ADAPT_FIELD 0x20
#define PAY_START 0x40
#define TS_ERROR 0x80
#define MAX_PLENGTH 0xFFFF // the maximum PES packet length (theoretically)
#define MMAX_PLENGTH (64*MAX_PLENGTH) // some stations send PES packets that are extremely large, e.g. DVB-T in Finland or HDTV 1920x1080
#define IPACKS 2048
// Start codes:
#define SC_SEQUENCE 0xB3 // "sequence header code"
#define SC_GROUP 0xB8 // "group start code"
#define SC_PICTURE 0x00 // "picture start code"
#define MAXNONUSEFULDATA (10*1024*1024)
#define MAXNUMUPTERRORS 10
class cTS2PES {
private:
int pid;
int size;
int found;
int count;
uint8_t *buf;
uint8_t cid;
uint8_t rewriteCid;
uint8_t subStreamId;
int plength;
uint8_t plen[2];
uint8_t flag1;
uint8_t flag2;
uint8_t hlength;
int mpeg;
uint8_t check;
int mpeg1_required;
int mpeg1_stuffing;
bool done;
cRingBufferLinear *resultBuffer;
int tsErrors;
int ccErrors;
int ccCounter;
cRepacker *repacker;
static uint8_t headr[];
void store(uint8_t *Data, int Count);
void reset_ipack(void);
void send_ipack(void);
void write_ipack(const uint8_t *Data, int Count);
void instant_repack(const uint8_t *Buf, int Count);
public:
cTS2PES(int Pid, cRingBufferLinear *ResultBuffer, int Size, uint8_t RewriteCid = 0x00, uint8_t SubStreamId = 0x00, cRepacker *Repacker = NULL);
~cTS2PES();
int Pid(void) { return pid; }
void ts_to_pes(const uint8_t *Buf); // don't need count (=188)
void Clear(void);
};
uint8_t cTS2PES::headr[] = { 0x00, 0x00, 0x01 };
cTS2PES::cTS2PES(int Pid, cRingBufferLinear *ResultBuffer, int Size, uint8_t RewriteCid, uint8_t SubStreamId, cRepacker *Repacker)
{
pid = Pid;
resultBuffer = ResultBuffer;
size = Size;
rewriteCid = RewriteCid;
subStreamId = SubStreamId;
repacker = Repacker;
if (repacker) {
repacker->SetMaxPacketSize(size);
repacker->SetSubStreamId(subStreamId);
size += repacker->QuerySnoopSize();
}
tsErrors = 0;
ccErrors = 0;
ccCounter = -1;
if (!(buf = MALLOC(uint8_t, size)))
esyslog("Not enough memory for ts_transform");
reset_ipack();
}
cTS2PES::~cTS2PES()
{
if (tsErrors || ccErrors)
dsyslog("cTS2PES got %d TS errors, %d TS continuity errors", tsErrors, ccErrors);
free(buf);
delete repacker;
}
void cTS2PES::Clear(void)
{
reset_ipack();
if (repacker)
repacker->Reset();
}
void cTS2PES::store(uint8_t *Data, int Count)
{
if (repacker)
repacker->Repack(resultBuffer, Data, Count);
else
cRepacker::Put(resultBuffer, Data, Count, Count);
}
void cTS2PES::reset_ipack(void)
{
found = 0;
cid = 0;
plength = 0;
flag1 = 0;
flag2 = 0;
hlength = 0;
mpeg = 0;
check = 0;
mpeg1_required = 0;
mpeg1_stuffing = 0;
done = false;
count = 0;
}
void cTS2PES::send_ipack(void)
{
if (count <= ((mpeg == 2) ? 9 : 7)) // skip empty packets
return;
buf[3] = rewriteCid ? rewriteCid : cid;
buf[4] = (uint8_t)(((count - 6) & 0xFF00) >> 8);
buf[5] = (uint8_t)((count - 6) & 0x00FF);
store(buf, count);
switch (mpeg) {
case 2:
buf[6] = 0x80;
buf[7] = 0x00;
buf[8] = 0x00;
count = 9;
if (!repacker && subStreamId) {
buf[9] = subStreamId;
buf[10] = 1;
buf[11] = 0;
buf[12] = 1;
count = 13;
}
break;
case 1:
buf[6] = 0x0F;
count = 7;
break;
}
}
void cTS2PES::write_ipack(const uint8_t *Data, int Count)
{
if (count < 6) {
memcpy(buf, headr, 3);
count = 6;
}
// determine amount of data to process
int bite = Count;
if (count + bite > size)
bite = size - count;
if (repacker) {
int breakAt = repacker->BreakAt(buf, count);
// avoid memcpy of data after break location
if (0 <= breakAt && breakAt < count + bite) {
bite = breakAt - count;
if (bite < 0) // should never happen
bite = 0;
}
}
memcpy(buf + count, Data, bite);
count += bite;
if (repacker) {
// determine break location
int breakAt = repacker->BreakAt(buf, count);
if (breakAt > size) // won't fit into packet?
breakAt = -1;
if (breakAt > count) // not enough data?
breakAt = -1;
// push out data before break location
if (breakAt > 0) {
// adjust bite if above memcpy was to large
bite -= count - breakAt;
count = breakAt;
send_ipack();
// recurse for data after break location
if (Count - bite > 0)
write_ipack(Data + bite, Count - bite);
}
}
// push out data when buffer is full
if (count >= size) {
send_ipack();
// recurse for remaining data
if (Count - bite > 0)
write_ipack(Data + bite, Count - bite);
}
}
void cTS2PES::instant_repack(const uint8_t *Buf, int Count)
{
int c = 0;
while (c < Count && (mpeg == 0 || (mpeg == 1 && found < mpeg1_required) || (mpeg == 2 && found < 9)) && (found < 5 || !done)) {
switch (found ) {
case 0:
case 1:
if (Buf[c] == 0x00)
found++;
else
found = 0;
c++;
break;
case 2:
if (Buf[c] == 0x01)
found++;
else if (Buf[c] != 0)
found = 0;
c++;
break;
case 3:
cid = 0;
switch (Buf[c]) {
case PROG_STREAM_MAP:
case PRIVATE_STREAM2:
case PROG_STREAM_DIR:
case ECM_STREAM :
case EMM_STREAM :
case PADDING_STREAM :
case DSM_CC_STREAM :
case ISO13522_STREAM:
done = true;
case PRIVATE_STREAM1:
case VIDEO_STREAM_S ... VIDEO_STREAM_E:
case AUDIO_STREAM_S ... AUDIO_STREAM_E:
found++;
cid = Buf[c++];
break;
default:
found = 0;
break;
}
break;
case 4:
if (Count - c > 1) {
unsigned short *pl = (unsigned short *)(Buf + c);
plength = ntohs(*pl);
c += 2;
found += 2;
mpeg1_stuffing = 0;
}
else {
plen[0] = Buf[c];
found++;
return;
}
break;
case 5: {
plen[1] = Buf[c++];
unsigned short *pl = (unsigned short *)plen;
plength = ntohs(*pl);
found++;
mpeg1_stuffing = 0;
}
break;
case 6:
if (!done) {
flag1 = Buf[c++];
found++;
if (mpeg1_stuffing == 0) { // first stuffing iteration: determine MPEG level
if ((flag1 & 0xC0) == 0x80)
mpeg = 2;
else {
mpeg = 1;
mpeg1_required = 7;
}
}
if (mpeg == 1) {
if (flag1 == 0xFF) { // MPEG1 stuffing
if (++mpeg1_stuffing > 16)
found = 0; // invalid MPEG1 header
else { // ignore stuffing
found--;
if (plength > 0)
plength--;
}
}
else if ((flag1 & 0xC0) == 0x40) // STD_buffer_scale/size
mpeg1_required += 2;
else if (flag1 != 0x0F && (flag1 & 0xF0) != 0x20 && (flag1 & 0xF0) != 0x30)
found = 0; // invalid MPEG1 header
else {
flag2 = 0;
hlength = 0;
}
}
}
break;
case 7:
if (!done && (mpeg == 2 || mpeg1_required > 7)) {
flag2 = Buf[c++];
found++;
}
break;
case 8:
if (!done && (mpeg == 2 || mpeg1_required > 7)) {
hlength = Buf[c++];
found++;
if (mpeg == 1 && hlength != 0x0F && (hlength & 0xF0) != 0x20 && (hlength & 0xF0) != 0x30)
found = 0; // invalid MPEG1 header
}
break;
default:
break;
}
}
if (!plength)
plength = MMAX_PLENGTH - 6;
if (done || ((mpeg == 2 && found >= 9) || (mpeg == 1 && found >= mpeg1_required))) {
switch (cid) {
case AUDIO_STREAM_S ... AUDIO_STREAM_E:
case VIDEO_STREAM_S ... VIDEO_STREAM_E:
case PRIVATE_STREAM1:
if (mpeg == 2 && found == 9 && count < found) { // make sure to not write the data twice by looking at count
write_ipack(&flag1, 1);
write_ipack(&flag2, 1);
write_ipack(&hlength, 1);
}
if (mpeg == 1 && found == mpeg1_required && count < found) { // make sure to not write the data twice by looking at count
write_ipack(&flag1, 1);
if (mpeg1_required > 7) {
write_ipack(&flag2, 1);
write_ipack(&hlength, 1);
}
}
if (mpeg == 2 && (flag2 & PTS_ONLY) && found < 14) {
while (c < Count && found < 14) {
write_ipack(Buf + c, 1);
c++;
found++;
}
if (c == Count)
return;
}
if (!repacker && subStreamId) {
while (c < Count && found < (hlength + 9) && found < plength + 6) {
write_ipack(Buf + c, 1);
c++;
found++;
}
if (found == (hlength + 9)) {
uchar sbuf[] = { 0x01, 0x00, 0x00 };
write_ipack(&subStreamId, 1);
write_ipack(sbuf, 3);
}
}
while (c < Count && found < plength + 6) {
int l = Count - c;
if (l + found > plength + 6)
l = plength + 6 - found;
write_ipack(Buf + c, l);
found += l;
c += l;
}
break;
}
if (done) {
if (found + Count - c < plength + 6) {
found += Count - c;
c = Count;
}
else {
c += plength + 6 - found;
found = plength + 6;
}
}
if (plength && found == plength + 6) {
if (plength == MMAX_PLENGTH - 6)
esyslog("ERROR: PES packet length overflow in remuxer (stream corruption)");
send_ipack();
reset_ipack();
if (c < Count)
instant_repack(Buf + c, Count - c);
}
}
return;
}
void cTS2PES::ts_to_pes(const uint8_t *Buf) // don't need count (=188)
{
if (!Buf)
return;
if (Buf[1] & TS_ERROR)
tsErrors++;
if (!(Buf[3] & (ADAPT_FIELD | PAY_LOAD)))
return; // discard TS packet with adaption_field_control set to '00'.
if ((Buf[3] & PAY_LOAD) && ((Buf[3] ^ ccCounter) & CONT_CNT_MASK)) {
// This should check duplicates and packets which do not increase the counter.
// But as the errors usually come in bursts this should be enough to
// show you there is something wrong with signal quality.
if (ccCounter != -1 && ((Buf[3] ^ (ccCounter + 1)) & CONT_CNT_MASK)) {
ccErrors++;
// Enable this if you are having problems with signal quality.
// These are the errors I used to get with Nova-T when antenna
// was not positioned correcly (not transport errors). //tvr
//dsyslog("TS continuity error (%d)", ccCounter);
}
ccCounter = Buf[3] & CONT_CNT_MASK;
}
if (Buf[1] & PAY_START) {
if (found > 6) {
if (plength != MMAX_PLENGTH - 6 && plength != found - 6)
dsyslog("PES packet shortened to %d bytes (expected: %d bytes)", found, plength + 6);
plength = found - 6;
send_ipack();
reset_ipack();
}
found = 0;
}
uint8_t off = 0;
if (Buf[3] & ADAPT_FIELD) { // adaptation field?
off = Buf[4] + 1;
if (off + 4 > 187)
return;
}
if (Buf[3] & PAY_LOAD)
instant_repack(Buf + 4 + off, TS_SIZE - 4 - off);
}
// --- cTS2PESRemux ----------------------------------------------------------------
#define RESULTBUFFERSIZE KILOBYTE(256)
cTS2PESRemux::cTS2PESRemux(int VPid, const int *APids, const int *DPids, const int *SPids)
{
noVideo = VPid == 0 || VPid == 1 || VPid == 0x1FFF;
synced = false;
skipped = 0;
numTracks = 0;
resultSkipped = 0;
resultBuffer = new cStreamdevBuffer(RESULTBUFFERSIZE, IPACKS, false, "Result");
resultBuffer->SetTimeouts(100, 100);
if (VPid)
#define TEST_cVideoRepacker
#ifdef TEST_cVideoRepacker
ts2pes[numTracks++] = new cTS2PES(VPid, resultBuffer, IPACKS, 0xE0, 0x00, new cVideoRepacker);
#else
ts2pes[numTracks++] = new cTS2PES(VPid, resultBuffer, IPACKS, 0xE0);
#endif
if (APids) {
int n = 0;
while (*APids && numTracks < MAXTRACKS && n < MAXAPIDS) {
#define TEST_cAudioRepacker
#ifdef TEST_cAudioRepacker
ts2pes[numTracks++] = new cTS2PES(*APids++, resultBuffer, IPACKS, 0xC0 + n, 0x00, new cAudioRepacker(0xC0 + n));
n++;
#else
ts2pes[numTracks++] = new cTS2PES(*APids++, resultBuffer, IPACKS, 0xC0 + n++);
#endif
}
}
if (DPids) {
int n = 0;
while (*DPids && numTracks < MAXTRACKS && n < MAXDPIDS)
ts2pes[numTracks++] = new cTS2PES(*DPids++, resultBuffer, IPACKS, 0x00, 0x80 + n++, new cDolbyRepacker);
}
if (SPids) {
int n = 0;
while (*SPids && numTracks < MAXTRACKS && n < MAXSPIDS)
ts2pes[numTracks++] = new cTS2PES(*SPids++, resultBuffer, IPACKS, 0x00, 0x20 + n++);
}
}
cTS2PESRemux::~cTS2PESRemux()
{
for (int t = 0; t < numTracks; t++)
delete ts2pes[t];
delete resultBuffer;
}
#define TS_SYNC_BYTE 0x47
int cTS2PESRemux::Put(const uchar *Data, int Count)
{
int used = 0;
// Make sure we are looking at a TS packet:
while (Count > TS_SIZE) {
if (Data[0] == TS_SYNC_BYTE && Data[TS_SIZE] == TS_SYNC_BYTE)
break;
Data++;
Count--;
used++;
}
if (used)
esyslog("ERROR: skipped %d byte to sync on TS packet", used);
// Convert incoming TS data into multiplexed PES:
for (int i = 0; i < Count; i += TS_SIZE) {
if (Count - i < TS_SIZE)
break;
if (Data[i] != TS_SYNC_BYTE)
break;
if (resultBuffer->Free() < 2 * IPACKS) {
resultBuffer->WaitForPut();
break; // A cTS2PES might write one full packet and also a small rest
}
int pid = cTSRemux::GetPid(Data + i + 1);
if (Data[i + 3] & 0x10) { // got payload
for (int t = 0; t < numTracks; t++) {
if (ts2pes[t]->Pid() == pid) {
ts2pes[t]->ts_to_pes(Data + i);
break;
}
}
}
used += TS_SIZE;
}
// Check if we're getting anywhere here:
if (!synced && skipped >= 0) {
if (skipped > MAXNONUSEFULDATA) {
esyslog("ERROR: no useful data seen within %d byte of video stream", skipped);
skipped = -1;
}
else
skipped += used;
}
return used;
}
uchar *cTS2PESRemux::Get(int &Count, uchar *PictureType)
{
// Remove any previously skipped data from the result buffer:
if (resultSkipped > 0) {
resultBuffer->Del(resultSkipped);
resultSkipped = 0;
}
#if 0
// Test recording without determining the real frame borders:
if (PictureType)
*PictureType = I_FRAME;
return resultBuffer->Get(Count);
#endif
// Check for frame borders:
if (PictureType)
*PictureType = NO_PICTURE;
Count = 0;
uchar *resultData = NULL;
int resultCount = 0;
uchar *data = resultBuffer->Get(resultCount);
if (data) {
for (int i = 0; i < resultCount - 3; i++) {
if (data[i] == 0 && data[i + 1] == 0 && data[i + 2] == 1) {
int l = 0;
uchar StreamType = data[i + 3];
if (VIDEO_STREAM_S <= StreamType && StreamType <= VIDEO_STREAM_E) {
uchar pt = NO_PICTURE;
l = cTSRemux::ScanVideoPacket(data, resultCount, i, pt);
if (l < 0)
return resultData;
if (pt != NO_PICTURE) {
if (pt < I_FRAME || B_FRAME < pt) {
esyslog("ERROR: unknown picture type '%d'", pt);
}
else if (!synced) {
if (pt == I_FRAME) {
if (PictureType)
*PictureType = pt;
resultSkipped = i; // will drop everything before this position
cTSRemux::SetBrokenLink(data + i, l);
synced = true;
}
}
else if (Count)
return resultData;
else if (PictureType)
*PictureType = pt;
}
}
else { //if (AUDIO_STREAM_S <= StreamType && StreamType <= AUDIO_STREAM_E || StreamType == PRIVATE_STREAM1) {
l = cTSRemux::GetPacketLength(data, resultCount, i);
if (l < 0)
return resultData;
if (noVideo) {
if (!synced) {
if (PictureType)
*PictureType = I_FRAME;
resultSkipped = i; // will drop everything before this position
synced = true;
}
else if (Count)
return resultData;
else if (PictureType)
*PictureType = I_FRAME;
}
}
if (synced) {
if (!Count)
resultData = data + i;
Count += l;
}
else
resultSkipped = i + l;
if (l > 0)
i += l - 1; // the loop increments, too
}
}
}
return resultData;
}
void cTS2PESRemux::Del(int Count)
{
resultBuffer->Del(Count);
}
void cTS2PESRemux::Clear(void)
{
for (int t = 0; t < numTracks; t++)
ts2pes[t]->Clear();
resultBuffer->Clear();
synced = false;
skipped = 0;
resultSkipped = 0;
}
} // namespace Streamdev