1
0
mirror of https://github.com/VDR4Arch/vdr.git synced 2023-10-10 13:36:52 +02:00
vdr/tools.h

860 lines
33 KiB
C
Raw Normal View History

2000-02-19 13:36:48 +01:00
/*
* tools.h: Various tools
*
2000-04-24 09:46:05 +02:00
* See the main source file 'vdr.c' for copyright information and
2000-02-19 13:36:48 +01:00
* how to reach the author.
*
* $Id: tools.h 4.10 2017/05/22 20:21:08 kls Exp $
2000-02-19 13:36:48 +01:00
*/
#ifndef __TOOLS_H
#define __TOOLS_H
2004-12-19 16:33:34 +01:00
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <float.h>
#include <iconv.h>
#include <math.h>
2002-08-16 09:22:29 +02:00
#include <poll.h>
2010-12-24 11:34:11 +01:00
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
2000-10-03 10:34:48 +02:00
#include <string.h>
2000-02-19 13:36:48 +01:00
#include <syslog.h>
#include <sys/stat.h>
2000-04-24 13:54:23 +02:00
#include <sys/types.h>
#include "thread.h"
2000-02-19 13:36:48 +01:00
typedef unsigned char uchar;
extern int SysLogLevel;
#define esyslog(a...) void( (SysLogLevel > 0) ? syslog_with_tid(LOG_ERR, a) : void() )
#define isyslog(a...) void( (SysLogLevel > 1) ? syslog_with_tid(LOG_INFO, a) : void() )
#define dsyslog(a...) void( (SysLogLevel > 2) ? syslog_with_tid(LOG_DEBUG, a) : void() )
2002-05-13 16:35:49 +02:00
#define LOG_ERROR esyslog("ERROR (%s,%d): %m", __FILE__, __LINE__)
#define LOG_ERROR_STR(s) esyslog("ERROR (%s,%d): %s: %m", __FILE__, __LINE__, s)
2000-02-19 13:36:48 +01:00
#define SECSINDAY 86400
#define KILOBYTE(n) ((n) * 1024)
#define MEGABYTE(n) ((n) * 1024LL * 1024LL)
#define MALLOC(type, size) (type *)malloc(sizeof(type) * (size))
2013-02-17 13:19:36 +01:00
template<class T> inline void DELETENULL(T *&p) { T *q = p; p = NULL; delete q; }
#define CHECK(s) { if ((s) < 0) LOG_ERROR; } // used for 'ioctl()' calls
#define FATALERRNO (errno && errno != EAGAIN && errno != EINTR)
#ifndef _STL_ALGOBASE_H // in case some plugin needs to use the STL
2001-09-14 14:06:43 +02:00
template<class T> inline T min(T a, T b) { return a <= b ? a : b; }
template<class T> inline T max(T a, T b) { return a >= b ? a : b; }
#endif
#ifndef __STL_CONFIG_H // in case some plugin needs to use the STL
template<class T> inline int sgn(T a) { return a < 0 ? -1 : a > 0 ? 1 : 0; }
#endif
#ifndef _MOVE_H // in case some plugin needs to use the STL
2001-09-14 14:06:43 +02:00
template<class T> inline void swap(T &a, T &b) { T t = a; a = b; b = t; }
#endif
2000-12-28 12:57:16 +01:00
template<class T> inline T constrain(T v, T l, T h) { return v < l ? l : v > h ? h : v; }
void syslog_with_tid(int priority, const char *format, ...) __attribute__ ((format (printf, 2, 3)));
#define BCDCHARTOINT(x) (10 * ((x & 0xF0) >> 4) + (x & 0xF))
int BCD2INT(int x);
#define IsBitSet(v, b) ((v) & (1 << (b))) // checks if the bit at index b is set in v, where the least significant bit has index 0
// Unfortunately there are no platform independent macros for unaligned
// access, so we do it this way:
template<class T> inline T get_unaligned(T *p)
{
struct s { T v; } __attribute__((packed));
return ((s *)p)->v;
}
template<class T> inline void put_unaligned(unsigned int v, T* p)
{
struct s { T v; } __attribute__((packed));
((s *)p)->v = v;
}
// Comparing doubles for equality is unsafe, but unfortunately we can't
// overwrite operator==(double, double), so this will have to do:
inline bool DoubleEqual(double a, double b)
{
return fabs(a - b) <= DBL_EPSILON;
}
// When handling strings that might contain UTF-8 characters, it may be necessary
// to process a "symbol" that consists of several actual character bytes. The
// following functions allow transparently accessing a "char *" string without
// having to worry about what character set is actually used.
int Utf8CharLen(const char *s);
///< Returns the number of character bytes at the beginning of the given
///< string that form a UTF-8 symbol.
uint Utf8CharGet(const char *s, int Length = 0);
///< Returns the UTF-8 symbol at the beginning of the given string.
///< Length can be given from a previous call to Utf8CharLen() to avoid calculating
///< it again. If no Length is given, Utf8CharLen() will be called.
int Utf8CharSet(uint c, char *s = NULL);
///< Converts the given UTF-8 symbol to a sequence of character bytes and copies
///< them to the given string. Returns the number of bytes written. If no string
///< is given, only the number of bytes is returned and nothing is copied.
int Utf8SymChars(const char *s, int Symbols);
///< Returns the number of character bytes at the beginning of the given
///< string that form at most the given number of UTF-8 symbols.
2007-06-16 09:05:22 +02:00
int Utf8StrLen(const char *s);
///< Returns the number of UTF-8 symbols formed by the given string of
///< character bytes.
char *Utf8Strn0Cpy(char *Dest, const char *Src, int n);
2011-12-04 13:40:52 +01:00
///< Copies at most n character bytes from Src to Dest, making sure that the
///< resulting copy ends with a complete UTF-8 symbol. The copy is guaranteed
///< to be zero terminated.
///< Returns a pointer to Dest.
int Utf8ToArray(const char *s, uint *a, int Size);
///< Converts the given character bytes (including the terminating 0) into an
///< array of UTF-8 symbols of the given Size. Returns the number of symbols
///< in the array (without the terminating 0).
int Utf8FromArray(const uint *a, char *s, int Size, int Max = -1);
///< Converts the given array of UTF-8 symbols (including the terminating 0)
///< into a sequence of character bytes of at most Size length. Returns the
///< number of character bytes written (without the terminating 0).
///< If Max is given, only that many symbols will be converted.
///< The resulting string is always zero-terminated if Size is big enough.
// When allocating buffer space, make sure we reserve enough space to hold
// a string in UTF-8 representation:
#define Utf8BufSize(s) ((s) * 4)
// The following macros automatically use the correct versions of the character
// class functions:
#define Utf8to(conv, c) (cCharSetConv::SystemCharacterTable() ? to##conv(c) : tow##conv(c))
#define Utf8is(ccls, c) (cCharSetConv::SystemCharacterTable() ? is##ccls(c) : isw##ccls(c))
class cCharSetConv {
private:
iconv_t cd;
char *result;
size_t length;
static char *systemCharacterTable;
public:
cCharSetConv(const char *FromCode = NULL, const char *ToCode = NULL);
///< Sets up a character set converter to convert from FromCode to ToCode.
///< If FromCode is NULL, the previously set systemCharacterTable is used
///< (or "UTF-8" if no systemCharacterTable has been set).
///< If ToCode is NULL, "UTF-8" is used.
~cCharSetConv();
const char *Convert(const char *From, char *To = NULL, size_t ToLength = 0);
2008-05-22 10:26:57 +02:00
///< Converts the given Text from FromCode to ToCode (as set in the constructor).
///< If To is given, it is used to copy at most ToLength bytes of the result
///< (including the terminating 0) into that buffer. If To is not given,
///< the result is copied into a dynamically allocated buffer and is valid as
///< long as this object lives, or until the next call to Convert(). The
///< return value always points to the result if the conversion was successful
///< (even if a fixed size To buffer was given and the result didn't fit into
///< it). If the string could not be converted, the result points to the
///< original From string.
static const char *SystemCharacterTable(void) { return systemCharacterTable; }
static void SetSystemCharacterTable(const char *CharacterTable);
};
class cString {
private:
char *s;
public:
cString(const char *S = NULL, bool TakePointer = false);
cString(const char *S, const char *To); ///< Copies S up to To (exclusive). To must be a valid pointer into S. If To is NULL, everything is copied.
cString(const cString &String);
virtual ~cString();
operator const void * () const { return s; } // to catch cases where operator*() should be used
operator const char * () const { return s; } // for use in (const char *) context
const char * operator*() const { return s; } // for use in (const void *) context (printf() etc.)
cString &operator=(const cString &String);
cString &operator=(const char *String);
2015-05-22 13:44:43 +02:00
cString &Append(const char *String);
2008-01-13 11:26:30 +01:00
cString &Truncate(int Index); ///< Truncate the string at the given Index (if Index is < 0 it is counted from the end of the string).
cString &CompactChars(char c); ///< Compact any sequence of characters 'c' to a single character, and strip all of them from the beginning and end of this string.
static cString sprintf(const char *fmt, ...) __attribute__ ((format (printf, 1, 2)));
static cString vsprintf(const char *fmt, va_list &ap);
};
2001-08-12 15:22:48 +02:00
ssize_t safe_read(int filedes, void *buffer, size_t size);
ssize_t safe_write(int filedes, const void *buffer, size_t size);
void writechar(int filedes, char c);
int WriteAllOrNothing(int fd, const uchar *Data, int Length, int TimeoutMs = 0, int RetryMs = 0);
///< Writes either all Data to the given file descriptor, or nothing at all.
///< If TimeoutMs is greater than 0, it will only retry for that long, otherwise
///< it will retry forever. RetryMs defines the time between two retries.
char *strcpyrealloc(char *dest, const char *src);
2000-09-09 14:57:43 +02:00
char *strn0cpy(char *dest, const char *src, size_t n);
char *strreplace(char *s, char c1, char c2);
char *strreplace(char *s, const char *s1, const char *s2); ///< re-allocates 's' and deletes the original string if necessary!
const char *strchrn(const char *s, char c, size_t n); ///< returns a pointer to the n'th occurrence (counting from 1) of c in s, or NULL if no such character was found. If n is 0, s is returned.
int strcountchr(const char *s, char c); ///< returns the number of occurrences of 'c' in 's'.
inline char *skipspace(const char *s)
{
if ((uchar)*s > ' ') // most strings don't have any leading space, so handle this case as fast as possible
return (char *)s;
while (*s && (uchar)*s <= ' ') // avoiding isspace() here, because it is much slower
s++;
return (char *)s;
}
2000-11-11 16:38:41 +01:00
char *stripspace(char *s);
2001-08-17 13:19:10 +02:00
char *compactspace(char *s);
char *compactchars(char *s, char c); ///< removes all occurrences of 'c' from the beginning an end of 's' and replaces sequences of multiple 'c's with a single 'c'.
cString strescape(const char *s, const char *chars);
2015-05-22 13:44:43 +02:00
cString strgetval(const char *s, const char *name, char d = '=');
///< Returns the value part of a 'name=value' pair in s.
///< name must either be at the beginning of s, or has to be preceded by white space.
///< There may be any number of white space around the '=' sign. The value is
///< everyting up to (and excluding) the next white space, or the end of s.
///< If an other delimiter shall be used (like, e.g., ':'), it can be given
///< as the third parameter.
///< If name occurs more than once in s, only the first occurrence is taken.
2001-08-17 13:19:10 +02:00
bool startswith(const char *s, const char *p);
bool endswith(const char *s, const char *p);
2000-10-29 13:17:22 +01:00
bool isempty(const char *s);
2002-10-19 15:33:37 +02:00
int numdigits(int n);
2000-07-23 15:01:31 +02:00
bool isnumber(const char *s);
int64_t StrToNum(const char *s);
///< Converts the given string to a number.
///< The numerical part of the string may be followed by one of the letters
///< K, M, G or T to abbreviate Kilo-, Mega-, Giga- or Terabyte, respectively
///< (based on 1024). Everything after the first non-numeric character is
2011-12-04 13:40:52 +01:00
///< silently ignored, as are any characters other than the ones mentioned here.
bool StrInArray(const char *a[], const char *s);
///< Returns true if the string s is equal to one of the strings pointed
///< to by the (NULL terminated) array a.
double atod(const char *s);
///< Converts the given string, which is a floating point number using a '.' as
///< the decimal point, to a double value, independent of the currently selected
///< locale.
cString dtoa(double d, const char *Format = "%f");
///< Converts the given double value to a string, making sure it uses a '.' as
///< the decimal point, independent of the currently selected locale.
///< If Format is given, it will be used instead of the default.
cString itoa(int n);
2017-03-18 16:33:59 +01:00
inline uint16_t Peek13(const uchar *p)
{
uint16_t v = uint16_t(*p++ & 0x1F) << 8;
return v + (*p & 0xFF);
}
inline void Poke13(uchar *p, uint16_t v)
{
v |= uint16_t(*p & ~0x1F) << 8;
*p++ = v >> 8;
*p = v & 0xFF;
}
cString AddDirectory(const char *DirName, const char *FileName);
bool EntriesOnSameFileSystem(const char *File1, const char *File2);
///< Checks whether the given files are on the same file system. If either of the
///< files doesn't exist, this function returns *true* to avoid any actions that might be
///< triggered if files are on different file system.
int FreeDiskSpaceMB(const char *Directory, int *UsedMB = NULL);
bool DirectoryOk(const char *DirName, bool LogErrors = false);
bool MakeDirs(const char *FileName, bool IsDirectory = false);
bool RemoveFileOrDir(const char *FileName, bool FollowSymlinks = false);
bool RemoveEmptyDirectories(const char *DirName, bool RemoveThis = false, const char *IgnoreFiles[] = NULL);
///< Removes all empty directories under the given directory DirName.
///< If RemoveThis is true, DirName will also be removed if it is empty.
///< IgnoreFiles can be set to an array of file names that will be ignored when
///< considering whether a directory is empty. If IgnoreFiles is given, the array
///< must end with a NULL pointer.
int DirSizeMB(const char *DirName); ///< returns the total size of the files in the given directory, or -1 in case of an error
2005-09-18 09:33:40 +02:00
char *ReadLink(const char *FileName); ///< returns a new string allocated on the heap, which the caller must delete (or NULL in case of an error)
2001-08-11 11:15:41 +02:00
bool SpinUpDisk(const char *FileName);
void TouchFile(const char *FileName);
time_t LastModifiedTime(const char *FileName);
off_t FileSize(const char *FileName); ///< returns the size of the given file, or -1 in case of an error (e.g. if the file doesn't exist)
cString WeekDayName(int WeekDay);
2012-04-01 11:36:10 +02:00
///< Converts the given WeekDay (0=Sunday, 1=Monday, ...) to a three letter
///< day name.
cString WeekDayName(time_t t);
2012-04-01 11:36:10 +02:00
///< Converts the week day of the given time to a three letter day name.
2007-06-23 13:40:04 +02:00
cString WeekDayNameFull(int WeekDay);
2012-04-01 11:36:10 +02:00
///< Converts the given WeekDay (0=Sunday, 1=Monday, ...) to a full
///< day name.
2007-06-23 13:40:04 +02:00
cString WeekDayNameFull(time_t t);
2012-04-01 11:36:10 +02:00
///< Converts the week day of the given time to a full day name.
cString DayDateTime(time_t t = 0);
2012-04-01 11:36:10 +02:00
///< Converts the given time to a string of the form "www dd.mm. hh:mm".
///< If no time is given, the current time is taken.
cString TimeToString(time_t t);
2012-04-01 11:36:10 +02:00
///< Converts the given time to a string of the form "www mmm dd hh:mm:ss yyyy".
cString DateString(time_t t);
2012-04-01 11:36:10 +02:00
///< Converts the given time to a string of the form "www dd.mm.yyyy".
cString ShortDateString(time_t t);
///< Converts the given time to a string of the form "dd.mm.yy".
cString TimeString(time_t t);
2012-04-01 11:36:10 +02:00
///< Converts the given time to a string of the form "hh:mm".
uchar *RgbToJpeg(uchar *Mem, int Width, int Height, int &Size, int Quality = 100);
///< Converts the given Memory to a JPEG image and returns a pointer
///< to the resulting image. Mem must point to a data block of exactly
///< (Width * Height) triplets of RGB image data bytes. Upon return, Size
///< will hold the number of bytes of the resulting JPEG data.
///< Quality can be in the range 0..100 and controls the quality of the
///< resulting image, where 100 is "best". The caller takes ownership of
///< the result and has to delete it once it is no longer needed.
///< The result may be NULL in case of an error.
const char *GetHostName(void);
///< Gets the host name of this machine.
2004-12-19 16:33:34 +01:00
2005-12-29 16:02:37 +01:00
class cBase64Encoder {
private:
const uchar *data;
int length;
int maxResult;
int i;
char *result;
static const char *b64;
public:
cBase64Encoder(const uchar *Data, int Length, int MaxResult = 64);
///< Sets up a new base 64 encoder for the given Data, with the given Length.
2005-12-30 11:27:23 +01:00
///< Data will not be copied and must be valid as long as NextLine() will be
///< called. MaxResult defines the maximum number of characters in any
2005-12-29 16:02:37 +01:00
///< result line. The resulting lines may be shorter than MaxResult in case
///< its value is not a multiple of 4.
~cBase64Encoder();
const char *NextLine(void);
///< Returns the next line of encoded data (terminated by '\0'), or NULL if
///< there is no more encoded data. The caller must call NextLine() and process
///< each returned line until NULL is returned, in order to get the entire
2005-12-30 11:27:23 +01:00
///< data encoded. The returned data is only valid until the next time NextLine()
///< is called, or until the object is destroyed.
2005-12-29 16:02:37 +01:00
};
class cBitStream {
private:
const uint8_t *data;
int length; // in bits
int index; // in bits
public:
cBitStream(const uint8_t *Data, int Length) : data(Data), length(Length), index(0) {}
~cBitStream() {}
int GetBit(void);
uint32_t GetBits(int n);
void ByteAlign(void);
void WordAlign(void);
bool SetLength(int Length);
void SkipBits(int n) { index += n; }
void SkipBit(void) { SkipBits(1); }
bool IsEOF(void) const { return index >= length; }
void Reset(void) { index = 0; }
int Length(void) const { return length; }
int Index(void) const { return (IsEOF() ? length : index); }
const uint8_t *GetData(void) const { return (IsEOF() ? NULL : data + (index / 8)); }
};
class cTimeMs {
private:
uint64_t begin;
public:
cTimeMs(int Ms = 0);
///< Creates a timer with ms resolution and an initial timeout of Ms.
///< If Ms is negative the timer is not initialized with the current
///< time.
static uint64_t Now(void);
void Set(int Ms = 0);
bool TimedOut(void) const;
uint64_t Elapsed(void) const;
};
2004-12-19 16:33:34 +01:00
class cReadLine {
private:
size_t size;
char *buffer;
2004-12-19 16:33:34 +01:00
public:
cReadLine(void);
~cReadLine();
2004-12-19 16:33:34 +01:00
char *Read(FILE *f);
};
2002-08-16 09:22:29 +02:00
class cPoller {
private:
2015-05-22 13:44:43 +02:00
enum { MaxPollFiles = 64 };
2002-08-16 09:22:29 +02:00
pollfd pfd[MaxPollFiles];
int numFileHandles;
public:
cPoller(int FileHandle = -1, bool Out = false);
bool Add(int FileHandle, bool Out);
2015-05-22 13:44:43 +02:00
void Del(int FileHandle, bool Out);
2002-08-16 09:22:29 +02:00
bool Poll(int TimeoutMs = 0);
};
2006-01-08 11:44:37 +01:00
2004-12-19 16:33:34 +01:00
class cReadDir {
private:
DIR *directory;
struct dirent *result;
union { // according to "The GNU C Library Reference Manual"
struct dirent d;
char b[offsetof(struct dirent, d_name) + NAME_MAX + 1];
} u;
public:
cReadDir(const char *Directory);
~cReadDir();
bool Ok(void) { return directory != NULL; }
struct dirent *Next(void);
};
class cFile {
private:
static bool files[];
static int maxFiles;
int f;
public:
cFile(void);
~cFile();
operator int () { return f; }
bool Open(const char *FileName, int Flags, mode_t Mode = DEFFILEMODE);
bool Open(int FileDes);
void Close(void);
bool IsOpen(void) { return f >= 0; }
bool Ready(bool Wait = true);
static bool AnyFileReady(int FileDes = -1, int TimeoutMs = 1000);
2000-10-08 09:25:20 +02:00
static bool FileReady(int FileDes, int TimeoutMs = 1000);
static bool FileReadyForWriting(int FileDes, int TimeoutMs = 1000);
};
class cSafeFile {
private:
FILE *f;
char *fileName;
char *tempName;
public:
cSafeFile(const char *FileName);
~cSafeFile();
operator FILE* () { return f; }
bool Open(void);
bool Close(void);
};
/// cUnbufferedFile is used for large files that are mainly written or read
/// in a streaming manner, and thus should not be cached.
class cUnbufferedFile {
private:
int fd;
2006-02-04 14:12:17 +01:00
off_t curpos;
off_t cachedstart;
off_t cachedend;
off_t begin;
2006-02-04 14:12:17 +01:00
off_t lastpos;
off_t ahead;
2006-02-04 14:12:17 +01:00
size_t readahead;
size_t written;
size_t totwritten;
2006-02-04 14:21:08 +01:00
int FadviseDrop(off_t Offset, off_t Len);
public:
cUnbufferedFile(void);
~cUnbufferedFile();
int Open(const char *FileName, int Flags, mode_t Mode = DEFFILEMODE);
int Close(void);
2006-02-04 14:12:17 +01:00
void SetReadAhead(size_t ra);
off_t Seek(off_t Offset, int Whence);
ssize_t Read(void *Data, size_t Size);
ssize_t Write(const void *Data, size_t Size);
static cUnbufferedFile *Create(const char *FileName, int Flags, mode_t Mode = DEFFILEMODE);
};
class cLockFile {
private:
char *fileName;
int f;
public:
cLockFile(const char *Directory);
~cLockFile();
bool Lock(int WaitSeconds = 0);
void Unlock(void);
};
2000-02-19 13:36:48 +01:00
class cListObject {
friend class cListGarbageCollector;
2000-02-19 13:36:48 +01:00
private:
cListObject *prev, *next;
cListObject(const cListObject &ListObject) { abort(); } // no copy constructor!
cListObject& operator= (const cListObject &ListObject) { abort(); return *this; } // no assignment operator!
2000-02-19 13:36:48 +01:00
public:
cListObject(void);
virtual ~cListObject();
virtual int Compare(const cListObject &ListObject) const { return 0; }
///< Must return 0 if this object is equal to ListObject, a positive value
///< if it is "greater", and a negative value if it is "smaller".
2000-02-19 13:36:48 +01:00
void Append(cListObject *Object);
2002-05-12 14:46:46 +02:00
void Insert(cListObject *Object);
2000-02-19 13:36:48 +01:00
void Unlink(void);
int Index(void) const;
2000-10-29 13:17:22 +01:00
cListObject *Prev(void) const { return prev; }
cListObject *Next(void) const { return next; }
2000-02-19 13:36:48 +01:00
};
class cListGarbageCollector {
private:
cMutex mutex;
cListObject *objects;
time_t lastPut;
public:
cListGarbageCollector(void);
~cListGarbageCollector();
void Put(cListObject *Object);
void Purge(bool Force = false);
};
extern cListGarbageCollector ListGarbageCollector;
2000-02-19 13:36:48 +01:00
class cListBase {
protected:
cListObject *objects, *lastObject;
int count;
mutable cStateLock stateLock;
const char *needsLocking;
bool useGarbageCollector;
cListBase(const char *NeedsLocking = NULL);
2000-02-19 13:36:48 +01:00
public:
virtual ~cListBase();
bool Lock(cStateKey &StateKey, bool Write = false, int TimeoutMs = 0) const;
///< Tries to get a lock on this list and returns true if successful.
///< By default a read lock is requested. Set Write to true to obtain
///< a write lock. If TimeoutMs is not zero, it waits for the given
///< number of milliseconds before giving up.
///< If you need to lock more than one list at the same time, make sure
///< you set TimeoutMs to a suitable value in all of the calls to
///< Lock(), and be prepared to handle situations where you do not get all
///< of the requested locks. In such cases you should release all the locks
///< you have obtained so far and try again. StateKey.TimedOut() tells you
///< whether the lock attempt failed due to a timeout or because the state
///< of the lock hasn't changed since the previous locking attempt.
///< To implicitly avoid deadlocks when locking more than one of the global
///< lists of VDR at the same time, make sure you always lock Timers, Channels,
///< Recordings and Schedules in this sequence.
///< You may keep pointers to objects in this list, even after releasing
///< the lock. However, you may only access such objects if you are
///< holding a proper lock again. If an object has been deleted from the list
///< while you did not hold a lock (for instance by an other thread), the
///< object will still be there, but no longer within this list (it is then
///< stored in the ListGarbageCollector). That way even if you access the object
///< after it has been deleted, you won't cause a segfault. You can call the
///< Contains() function to check whether an object you are holding a pointer
///< to is still in the list. Note that the garbage collector is purged when
///< the usual housekeeping is done.
void SetUseGarbageCollector(void) { useGarbageCollector = true; }
void SetExplicitModify(void);
///< If you have obtained a write lock on this list, and you don't want it to
///< be automatically marked as modified when the lock is released, a call to
///< this function will disable this, and you can explicitly call SetModified()
///< to have the list marked as modified.
void SetModified(void);
///< Unconditionally marks this list as modified.
2002-05-12 14:46:46 +02:00
void Add(cListObject *Object, cListObject *After = NULL);
void Ins(cListObject *Object, cListObject *Before = NULL);
void Del(cListObject *Object, bool DeleteObject = true);
virtual void Move(int From, int To);
void Move(cListObject *From, cListObject *To);
virtual void Clear(void);
bool Contains(const cListObject *Object) const;
///< If a pointer to an object contained in this list has been obtained while
///< holding a lock, and that lock has been released, but the pointer is kept for
///< later use (after obtaining a new lock), Contains() can be called with that
///< pointer to make sure the object it points to is still part of this list
///< (it may have been deleted or otherwise removed from the list after the lock
///< during which the pointer was initially retrieved has been released).
const cListObject *Get(int Index) const;
cListObject *Get(int Index) { return const_cast<cListObject *>(static_cast<const cListBase *>(this)->Get(Index)); }
int Count(void) const { return count; }
2001-08-26 14:17:20 +02:00
void Sort(void);
2000-02-19 13:36:48 +01:00
};
template<class T> class cList : public cListBase {
public:
cList(const char *NeedsLocking = NULL): cListBase(NeedsLocking) {}
///< Sets up a new cList of the given type T. If NeedsLocking is given, the list
///< and any of its elements may only be accessed if the caller holds a lock
///< obtained by a call to Lock() (see cListBase::Lock() for details).
///< NeedsLocking is used as both a boolean flag to enable locking, and as
///< a name to identify this list in debug output. It must be a static string
///< and should be no longer than 10 characters. The string will not be copied!
const T *Get(int Index) const { return (T *)cListBase::Get(Index); }
///< Returns the list element at the given Index, or NULL if no such element
///< exists.
const T *First(void) const { return (T *)objects; }
///< Returns the first element in this list, or NULL if the list is empty.
const T *Last(void) const { return (T *)lastObject; }
///< Returns the last element in this list, or NULL if the list is empty.
const T *Prev(const T *Object) const { return (T *)Object->cListObject::Prev(); } // need to call cListObject's members to
///< Returns the element immediately before Object in this list, or NULL
///< if Object is the first element in the list. Object must not be NULL!
const T *Next(const T *Object) const { return (T *)Object->cListObject::Next(); } // avoid ambiguities in case of a "list of lists"
///< Returns the element immediately following Object in this list, or NULL
///< if Object is the last element in the list. Object must not be NULL!
T *Get(int Index) { return const_cast<T *>(static_cast<const cList<T> *>(this)->Get(Index)); }
///< Non-const version of Get().
T *First(void) { return const_cast<T *>(static_cast<const cList<T> *>(this)->First()); }
///< Non-const version of First().
T *Last(void) { return const_cast<T *>(static_cast<const cList<T> *>(this)->Last()); }
///< Non-const version of Last().
T *Prev(const T *Object) { return const_cast<T *>(static_cast<const cList<T> *>(this)->Prev(Object)); }
///< Non-const version of Prev().
T *Next(const T *Object) { return const_cast<T *>(static_cast<const cList<T> *>(this)->Next(Object)); }
///< Non-const version of Next().
2000-02-19 13:36:48 +01:00
};
// The DEF_LIST_LOCK macro defines a convenience class that can be used to obtain
// a lock on a cList and make sure the lock is released when the current scope
// is left:
#define DEF_LIST_LOCK2(Class, Name) \
class c##Name##Lock { \
private: \
cStateKey stateKey; \
const c##Class *list; \
public: \
c##Name##Lock(bool Write = false) \
{ \
if (Write) \
list = c##Class::Get##Name##Write(stateKey); \
else \
list = c##Class::Get##Name##Read(stateKey); \
} \
~c##Name##Lock() { if (list) stateKey.Remove(); } \
const c##Class *Name(void) const { return list; } \
c##Class *Name(void) { return const_cast<c##Class *>(list); } \
}
#define DEF_LIST_LOCK(Class) DEF_LIST_LOCK2(Class, Class)
// The USE_LIST_LOCK macro sets up a local variable of a class defined by
// a suitable DEF_LIST_LOCK, and also a pointer to the provided list:
#define USE_LIST_LOCK_READ2(Class, Name) \
c##Name##Lock Name##Lock(false); \
const c##Class *Name __attribute__((unused)) = Name##Lock.Name();
#define USE_LIST_LOCK_READ(Class) USE_LIST_LOCK_READ2(Class, Class)
#define USE_LIST_LOCK_WRITE2(Class, Name) \
c##Name##Lock Name##Lock(true); \
c##Class *Name __attribute__((unused)) = Name##Lock.Name();
#define USE_LIST_LOCK_WRITE(Class) USE_LIST_LOCK_WRITE2(Class, Class)
template<class T> class cVector {
///< cVector may only be used for *simple* types, like int or pointers - not for class objects that allocate additional memory!
private:
mutable int allocated;
mutable int size;
mutable T *data;
cVector(const cVector &Vector) {} // don't copy...
cVector &operator=(const cVector &Vector) { return *this; } // ...or assign this!
void Realloc(int Index) const
{
if (++Index > allocated) {
data = (T *)realloc(data, Index * sizeof(T));
if (!data) {
esyslog("ERROR: out of memory - abort!");
abort();
}
for (int i = allocated; i < Index; i++)
data[i] = T(0);
allocated = Index;
}
}
public:
cVector(int Allocated = 10)
{
allocated = 0;
size = 0;
data = NULL;
Realloc(Allocated);
}
virtual ~cVector() { free(data); }
T& At(int Index) const
{
Realloc(Index);
if (Index >= size)
size = Index + 1;
return data[Index];
}
const T& operator[](int Index) const
{
return At(Index);
}
T& operator[](int Index)
{
return At(Index);
}
int IndexOf(const T &Data) // returns the index of Data, or -1 if not found
{
for (int i = 0; i < size; i++) {
if (data[i] == Data)
return i;
}
return -1;
}
int Size(void) const { return size; }
virtual void Insert(T Data, int Before = 0)
{
if (Before < size) {
Realloc(size);
memmove(&data[Before + 1], &data[Before], (size - Before) * sizeof(T));
size++;
data[Before] = Data;
}
else
Append(Data);
}
bool InsertUnique(T Data, int Before = 0)
{
if (IndexOf(Data) < 0) {
Insert(Data, Before);
return true;
}
return false;
}
virtual void Append(T Data)
{
if (size >= allocated)
Realloc(allocated * 3 / 2); // increase size by 50%
data[size++] = Data;
}
bool AppendUnique(T Data)
{
if (IndexOf(Data) < 0) {
Append(Data);
return true;
}
return false;
}
virtual void Remove(int Index)
{
if (Index < 0)
return; // prevents out-of-bounds access
if (Index < size - 1)
memmove(&data[Index], &data[Index + 1], (size - Index) * sizeof(T));
size--;
}
bool RemoveElement(const T &Data)
{
int i = IndexOf(Data);
if (i >= 0) {
Remove(i);
return true;
}
return false;
}
virtual void Clear(void)
{
for (int i = 0; i < size; i++)
data[i] = T(0);
size = 0;
}
void Sort(__compar_fn_t Compare)
{
qsort(data, size, sizeof(T), Compare);
}
};
2017-03-18 16:33:59 +01:00
inline int CompareInts(const void *a, const void *b)
{
return *(const int *)a > *(const int *)b;
}
inline int CompareStrings(const void *a, const void *b)
{
return strcmp(*(const char **)a, *(const char **)b);
}
inline int CompareStringsIgnoreCase(const void *a, const void *b)
{
return strcasecmp(*(const char **)a, *(const char **)b);
}
class cStringList : public cVector<char *> {
public:
cStringList(int Allocated = 10): cVector<char *>(Allocated) {}
virtual ~cStringList();
int Find(const char *s) const;
void Sort(bool IgnoreCase = false)
{
if (IgnoreCase)
cVector<char *>::Sort(CompareStringsIgnoreCase);
else
cVector<char *>::Sort(CompareStrings);
}
virtual void Clear(void);
};
class cFileNameList : public cStringList {
public:
2007-08-11 12:39:06 +02:00
cFileNameList(const char *Directory = NULL, bool DirsOnly = false);
bool Load(const char *Directory, bool DirsOnly = false);
};
class cDynamicBuffer {
private:
uchar *buffer;
int initialSize;
int size; // the total size of the buffer (bytes in memory)
int used; // the number of used bytes, starting at the beginning of the buffer
bool Realloc(int NewSize);
bool Assert(int NewSize) { return size < NewSize ? Realloc(NewSize) : true; } // inline for performance!
public:
cDynamicBuffer(int InitialSize = 1024);
~cDynamicBuffer();
void Append(const uchar *Data, int Length);
void Append(uchar Data) { if (Assert(used + 1)) buffer[used++] = Data; }
void Set(int Index, uchar Data) { if (Assert(Index + 1)) buffer[Index] = Data; }
uchar Get(int Index) { return Index < used ? buffer[Index] : 0; }
void Clear(void) { used = 0; }
uchar *Data(void) { return buffer; }
int Length(void) { return used; }
};
class cHashObject : public cListObject {
friend class cHashBase;
private:
unsigned int id;
cListObject *object;
public:
cHashObject(cListObject *Object, unsigned int Id) { object = Object; id = Id; }
cListObject *Object(void) { return object; }
};
class cHashBase {
private:
cList<cHashObject> **hashTable;
int size;
bool ownObjects;
unsigned int hashfn(unsigned int Id) const { return Id % size; }
protected:
cHashBase(int Size, bool OwnObjects);
///< Creates a new hash of the given Size. If OwnObjects is true, the
///< hash takes ownership of the objects given in the calls to Add(),
///< and deletes them when Clear() is called or the hash is destroyed
///< (unless the object has been removed from the hash by calling Del()).
public:
virtual ~cHashBase();
void Add(cListObject *Object, unsigned int Id);
void Del(cListObject *Object, unsigned int Id);
void Clear(void);
cListObject *Get(unsigned int Id) const;
cList<cHashObject> *GetList(unsigned int Id) const;
};
#define HASHSIZE 512
template<class T> class cHash : public cHashBase {
public:
cHash(int Size = HASHSIZE, bool OwnObjects = false) : cHashBase(Size, OwnObjects) {}
T *Get(unsigned int Id) const { return (T *)cHashBase::Get(Id); }
};
2000-02-19 13:36:48 +01:00
#endif //__TOOLS_H