mirror of
https://github.com/vdr-projects/vdr.git
synced 2025-03-01 10:50:46 +00:00
Improvements from Matjaz Thaler
This commit is contained in:
736
ac3dec/imdct.c
736
ac3dec/imdct.c
@@ -28,75 +28,48 @@
|
||||
#include "ac3.h"
|
||||
#include "ac3_internal.h"
|
||||
|
||||
|
||||
#include "decode.h"
|
||||
#include "downmix.h"
|
||||
#include "imdct.h"
|
||||
#include "imdct_c.h"
|
||||
#ifdef HAVE_KNI
|
||||
#include "imdct_kni.h"
|
||||
#endif
|
||||
#include "srfft.h"
|
||||
|
||||
void imdct_do_256(float data[],float delay[]);
|
||||
void imdct_do_512(float data[],float delay[]);
|
||||
|
||||
typedef struct complex_s
|
||||
{
|
||||
float real;
|
||||
float imag;
|
||||
} complex_t;
|
||||
extern void (*downmix_3f_2r_to_2ch)(float *samples, dm_par_t * dm_par);
|
||||
extern void (*downmix_3f_1r_to_2ch)(float *samples, dm_par_t * dm_par);
|
||||
extern void (*downmix_2f_2r_to_2ch)(float *samples, dm_par_t * dm_par);
|
||||
extern void (*downmix_2f_1r_to_2ch)(float *samples, dm_par_t * dm_par);
|
||||
extern void (*downmix_3f_0r_to_2ch)(float *samples, dm_par_t * dm_par);
|
||||
|
||||
|
||||
extern void (*stream_sample_2ch_to_s16)(int16_t *s16_samples, float *left, float *right);
|
||||
extern void (*stream_sample_1ch_to_s16)(int16_t *s16_samples, float *center);
|
||||
|
||||
void (*fft_64p) (complex_t *);
|
||||
void (*imdct_do_512) (float data[],float delay[]);
|
||||
void (*imdct_do_512_nol) (float data[], float delay[]);
|
||||
|
||||
void imdct_do_256 (float data[],float delay[]);
|
||||
|
||||
#define N 512
|
||||
|
||||
|
||||
/* 128 point bit-reverse LUT */
|
||||
static uint_8 bit_reverse_512[128] = {
|
||||
0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70,
|
||||
0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78,
|
||||
0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74,
|
||||
0x0c, 0x4c, 0x2c, 0x6c, 0x1c, 0x5c, 0x3c, 0x7c,
|
||||
0x02, 0x42, 0x22, 0x62, 0x12, 0x52, 0x32, 0x72,
|
||||
0x0a, 0x4a, 0x2a, 0x6a, 0x1a, 0x5a, 0x3a, 0x7a,
|
||||
0x06, 0x46, 0x26, 0x66, 0x16, 0x56, 0x36, 0x76,
|
||||
0x0e, 0x4e, 0x2e, 0x6e, 0x1e, 0x5e, 0x3e, 0x7e,
|
||||
0x01, 0x41, 0x21, 0x61, 0x11, 0x51, 0x31, 0x71,
|
||||
0x09, 0x49, 0x29, 0x69, 0x19, 0x59, 0x39, 0x79,
|
||||
0x05, 0x45, 0x25, 0x65, 0x15, 0x55, 0x35, 0x75,
|
||||
0x0d, 0x4d, 0x2d, 0x6d, 0x1d, 0x5d, 0x3d, 0x7d,
|
||||
0x03, 0x43, 0x23, 0x63, 0x13, 0x53, 0x33, 0x73,
|
||||
0x0b, 0x4b, 0x2b, 0x6b, 0x1b, 0x5b, 0x3b, 0x7b,
|
||||
0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77,
|
||||
0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f};
|
||||
|
||||
static uint_8 bit_reverse_256[64] = {
|
||||
0x00, 0x20, 0x10, 0x30, 0x08, 0x28, 0x18, 0x38,
|
||||
0x04, 0x24, 0x14, 0x34, 0x0c, 0x2c, 0x1c, 0x3c,
|
||||
0x02, 0x22, 0x12, 0x32, 0x0a, 0x2a, 0x1a, 0x3a,
|
||||
0x06, 0x26, 0x16, 0x36, 0x0e, 0x2e, 0x1e, 0x3e,
|
||||
0x01, 0x21, 0x11, 0x31, 0x09, 0x29, 0x19, 0x39,
|
||||
0x05, 0x25, 0x15, 0x35, 0x0d, 0x2d, 0x1d, 0x3d,
|
||||
0x03, 0x23, 0x13, 0x33, 0x0b, 0x2b, 0x1b, 0x3b,
|
||||
0x07, 0x27, 0x17, 0x37, 0x0f, 0x2f, 0x1f, 0x3f};
|
||||
|
||||
static complex_t buf[128];
|
||||
|
||||
/* Twiddle factor LUT */
|
||||
static complex_t *w[7];
|
||||
static complex_t w_1[1];
|
||||
static complex_t w_2[2];
|
||||
static complex_t w_4[4];
|
||||
static complex_t w_8[8];
|
||||
static complex_t w_16[16];
|
||||
static complex_t w_32[32];
|
||||
static complex_t w_64[64];
|
||||
|
||||
/* Twiddle factors for IMDCT */
|
||||
static float xcos1[128];
|
||||
static float xsin1[128];
|
||||
static float xcos2[64];
|
||||
static float xsin2[64];
|
||||
/* static complex_t buf[128]; */
|
||||
//static complex_t buf[128] __attribute__((aligned(16)));
|
||||
complex_t buf[128] __attribute__((aligned(16)));
|
||||
|
||||
/* Delay buffer for time domain interleaving */
|
||||
static float delay[6][256];
|
||||
static float delay1[6][256];
|
||||
|
||||
/* Twiddle factors for IMDCT */
|
||||
static float xcos2[64];
|
||||
static float xsin2[64];
|
||||
|
||||
/* Windowing function for Modified DCT - Thank you acroread */
|
||||
static float window[] = {
|
||||
//static float window[] = {
|
||||
float window[] = {
|
||||
0.00014, 0.00024, 0.00037, 0.00051, 0.00067, 0.00086, 0.00107, 0.00130,
|
||||
0.00157, 0.00187, 0.00220, 0.00256, 0.00297, 0.00341, 0.00390, 0.00443,
|
||||
0.00501, 0.00564, 0.00632, 0.00706, 0.00785, 0.00871, 0.00962, 0.01061,
|
||||
@@ -128,280 +101,116 @@ static float window[] = {
|
||||
0.99978, 0.99981, 0.99984, 0.99986, 0.99988, 0.99990, 0.99992, 0.99993,
|
||||
0.99994, 0.99995, 0.99996, 0.99997, 0.99998, 0.99998, 0.99998, 0.99999,
|
||||
0.99999, 0.99999, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
|
||||
1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 };
|
||||
1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000
|
||||
};
|
||||
|
||||
|
||||
static inline void swap_cmplx(complex_t *a, complex_t *b)
|
||||
//static const int pm128[128] =
|
||||
const int pm128[128] =
|
||||
{
|
||||
complex_t tmp;
|
||||
0, 16, 32, 48, 64, 80, 96, 112, 8, 40, 72, 104, 24, 56, 88, 120,
|
||||
4, 20, 36, 52, 68, 84, 100, 116, 12, 28, 44, 60, 76, 92, 108, 124,
|
||||
2, 18, 34, 50, 66, 82, 98, 114, 10, 42, 74, 106, 26, 58, 90, 122,
|
||||
6, 22, 38, 54, 70, 86, 102, 118, 14, 46, 78, 110, 30, 62, 94, 126,
|
||||
1, 17, 33, 49, 65, 81, 97, 113, 9, 41, 73, 105, 25, 57, 89, 121,
|
||||
5, 21, 37, 53, 69, 85, 101, 117, 13, 29, 45, 61, 77, 93, 109, 125,
|
||||
3, 19, 35, 51, 67, 83, 99, 115, 11, 43, 75, 107, 27, 59, 91, 123,
|
||||
7, 23, 39, 55, 71, 87, 103, 119, 15, 31, 47, 63, 79, 95, 111, 127
|
||||
};
|
||||
|
||||
tmp = *a;
|
||||
*a = *b;
|
||||
*b = tmp;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static inline complex_t cmplx_mult(complex_t a, complex_t b)
|
||||
static const int pm64[64] =
|
||||
{
|
||||
complex_t ret;
|
||||
0, 8, 16, 24, 32, 40, 48, 56,
|
||||
4, 20, 36, 52, 12, 28, 44, 60,
|
||||
2, 10, 18, 26, 34, 42, 50, 58,
|
||||
6, 14, 22, 30, 38, 46, 54, 62,
|
||||
1, 9, 17, 25, 33, 41, 49, 57,
|
||||
5, 21, 37, 53, 13, 29, 45, 61,
|
||||
3, 11, 19, 27, 35, 43, 51, 59,
|
||||
7, 23, 39, 55, 15, 31, 47, 63
|
||||
};
|
||||
|
||||
ret.real = a.real * b.real - a.imag * b.imag;
|
||||
ret.imag = a.real * b.imag + a.imag * b.real;
|
||||
|
||||
return ret;
|
||||
}
|
||||
void imdct_init (void)
|
||||
{
|
||||
int i;
|
||||
float scale = 255.99609372;
|
||||
|
||||
void imdct_init(void)
|
||||
{
|
||||
int i,k;
|
||||
complex_t angle_step;
|
||||
complex_t current_angle;
|
||||
#ifdef __i386__
|
||||
#ifdef HAVE_KNI
|
||||
if (!imdct_init_kni ());
|
||||
else
|
||||
#endif
|
||||
#endif
|
||||
if (!imdct_init_c ());
|
||||
|
||||
/* Twiddle factors to turn IFFT into IMDCT */
|
||||
for( i=0; i < 128; i++)
|
||||
{
|
||||
xcos1[i] = -cos(2.0f * M_PI * (8*i+1)/(8*N)) ;
|
||||
xsin1[i] = -sin(2.0f * M_PI * (8*i+1)/(8*N)) ;
|
||||
}
|
||||
|
||||
/* More twiddle factors to turn IFFT into IMDCT */
|
||||
for( i=0; i < 64; i++)
|
||||
{
|
||||
xcos2[i] = -cos(2.0f * M_PI * (8*i+1)/(4*N)) ;
|
||||
xsin2[i] = -sin(2.0f * M_PI * (8*i+1)/(4*N)) ;
|
||||
}
|
||||
|
||||
/* Canonical twiddle factors for FFT */
|
||||
w[0] = w_1;
|
||||
w[1] = w_2;
|
||||
w[2] = w_4;
|
||||
w[3] = w_8;
|
||||
w[4] = w_16;
|
||||
w[5] = w_32;
|
||||
w[6] = w_64;
|
||||
|
||||
for( i = 0; i < 7; i++)
|
||||
{
|
||||
angle_step.real = cos(-2.0 * M_PI / (1 << (i+1)));
|
||||
angle_step.imag = sin(-2.0 * M_PI / (1 << (i+1)));
|
||||
|
||||
current_angle.real = 1.0;
|
||||
current_angle.imag = 0.0;
|
||||
|
||||
for (k = 0; k < 1 << i; k++)
|
||||
{
|
||||
w[i][k] = current_angle;
|
||||
current_angle = cmplx_mult(current_angle,angle_step);
|
||||
}
|
||||
// More twiddle factors to turn IFFT into IMDCT */
|
||||
for (i=0; i < 64; i++) {
|
||||
xcos2[i] = cos(2.0f * M_PI * (8*i+1)/(4*N)) * scale;
|
||||
xsin2[i] = sin(2.0f * M_PI * (8*i+1)/(4*N)) * scale;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
imdct_do_512(float data[],float delay[])
|
||||
|
||||
void imdct_do_256 (float data[],float delay[])
|
||||
{
|
||||
int i,k;
|
||||
int p,q;
|
||||
int m;
|
||||
int two_m;
|
||||
int two_m_plus_one;
|
||||
int i, j, k;
|
||||
int p, q;
|
||||
|
||||
float tmp_a_i;
|
||||
float tmp_a_r;
|
||||
float tmp_b_i;
|
||||
float tmp_b_r;
|
||||
|
||||
float *data_ptr;
|
||||
float *delay_ptr;
|
||||
float *window_ptr;
|
||||
|
||||
//
|
||||
// 512 IMDCT with source and dest data in 'data'
|
||||
//
|
||||
|
||||
// Pre IFFT complex multiply plus IFFT cmplx conjugate and bit reverse
|
||||
// permutation
|
||||
for( i=0; i < 128; i++)
|
||||
{
|
||||
k = bit_reverse_512[i];
|
||||
|
||||
/* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */
|
||||
buf[k].real = (data[256-2*i-1] * xcos1[i]) - (data[2*i] * xsin1[i]);
|
||||
buf[k].imag = -1.0 * ((data[2*i] * xcos1[i]) + (data[256-2*i-1] * xsin1[i]));
|
||||
}
|
||||
|
||||
// FFT Merge
|
||||
for (m=0; m < 7; m++)
|
||||
{
|
||||
if(m)
|
||||
two_m = (1 << m);
|
||||
else
|
||||
two_m = 1;
|
||||
|
||||
two_m_plus_one = (1 << (m+1));
|
||||
|
||||
for(k = 0; k < two_m; k++)
|
||||
{
|
||||
for(i = 0; i < 128; i += two_m_plus_one)
|
||||
{
|
||||
p = k + i;
|
||||
q = p + two_m;
|
||||
tmp_a_r = buf[p].real;
|
||||
tmp_a_i = buf[p].imag;
|
||||
tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
|
||||
tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
|
||||
buf[p].real = tmp_a_r + tmp_b_r;
|
||||
buf[p].imag = tmp_a_i + tmp_b_i;
|
||||
buf[q].real = tmp_a_r - tmp_b_r;
|
||||
buf[q].imag = tmp_a_i - tmp_b_i;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Post IFFT complex multiply plus IFFT complex conjugate*/
|
||||
for( i=0; i < 128; i++)
|
||||
{
|
||||
/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
|
||||
tmp_a_r = buf[i].real;
|
||||
tmp_a_i = buf[i].imag;
|
||||
//Note that I flipped the signs on the imaginary ops to do the complex conj
|
||||
buf[i].real =(tmp_a_r * xcos1[i]) + (tmp_a_i * xsin1[i]);
|
||||
buf[i].imag =(tmp_a_r * xsin1[i]) - (tmp_a_i * xcos1[i]);
|
||||
}
|
||||
|
||||
data_ptr = data;
|
||||
delay_ptr = delay;
|
||||
window_ptr = window;
|
||||
|
||||
/* Window and convert to real valued signal */
|
||||
for(i=0; i< 64; i++)
|
||||
{
|
||||
*data_ptr++ = 2.0f * (-buf[64+i].imag * *window_ptr++ + *delay_ptr++);
|
||||
*data_ptr++ = 2.0f * ( buf[64-i-1].real * *window_ptr++ + *delay_ptr++);
|
||||
}
|
||||
|
||||
for(i=0; i< 64; i++)
|
||||
{
|
||||
*data_ptr++ = 2.0f * (-buf[i].real * *window_ptr++ + *delay_ptr++);
|
||||
*data_ptr++ = 2.0f * ( buf[128-i-1].imag * *window_ptr++ + *delay_ptr++);
|
||||
}
|
||||
|
||||
/* The trailing edge of the window goes into the delay line */
|
||||
delay_ptr = delay;
|
||||
|
||||
for(i=0; i< 64; i++)
|
||||
{
|
||||
*delay_ptr++ = -buf[64+i].real * *--window_ptr;
|
||||
*delay_ptr++ = buf[64-i-1].imag * *--window_ptr;
|
||||
}
|
||||
|
||||
for(i=0; i<64; i++)
|
||||
{
|
||||
*delay_ptr++ = buf[i].imag * *--window_ptr;
|
||||
*delay_ptr++ = -buf[128-i-1].real * *--window_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
imdct_do_256(float data[],float delay[])
|
||||
{
|
||||
int i,k;
|
||||
int p,q;
|
||||
int m;
|
||||
int two_m;
|
||||
int two_m_plus_one;
|
||||
|
||||
float tmp_a_i;
|
||||
float tmp_a_r;
|
||||
float tmp_b_i;
|
||||
float tmp_b_r;
|
||||
|
||||
float *data_ptr;
|
||||
float *delay_ptr;
|
||||
float *window_ptr;
|
||||
|
||||
complex_t *buf_1, *buf_2;
|
||||
complex_t *buf1, *buf2;
|
||||
|
||||
buf_1 = &buf[0];
|
||||
buf_2 = &buf[64];
|
||||
buf1 = &buf[0];
|
||||
buf2 = &buf[64];
|
||||
|
||||
// Pre IFFT complex multiply plus IFFT cmplx conjugate and bit reverse
|
||||
// permutation
|
||||
for(i=0; i<64; i++)
|
||||
{
|
||||
/* X1[i] = X[2*i] */
|
||||
/* X2[i] = X[2*i+1] */
|
||||
// Pre IFFT complex multiply plus IFFT complex conjugate
|
||||
for (k=0; k<64; k++) {
|
||||
/* X1[k] = X[2*k] */
|
||||
/* X2[k] = X[2*k+1] */
|
||||
|
||||
k = bit_reverse_256[i];
|
||||
j = pm64[k];
|
||||
p = 2 * (128-2*j-1);
|
||||
q = 2 * (2 * j);
|
||||
|
||||
p = 2 * (128-2*i-1);
|
||||
q = 2 * (2 * i);
|
||||
|
||||
/* Z1[i] = (X1[128-2*i-1] + j * X1[2*i]) * (xcos2[i] + j * xsin2[i]); */
|
||||
buf_1[k].real = data[p] * xcos2[i] - data[q] * xsin2[i];
|
||||
buf_1[k].imag = -1.0f * (data[q] * xcos2[i] + data[p] * xsin2[i]);
|
||||
/* Z2[i] = (X2[128-2*i-1] + j * X2[2*i]) * (xcos2[i] + j * xsin2[i]); */
|
||||
buf_2[k].real = data[p + 1] * xcos2[i] - data[q + 1] * xsin2[i];
|
||||
buf_2[k].imag = -1.0f * ( data[q + 1] * xcos2[i] + data[p + 1] * xsin2[i]);
|
||||
/* Z1[k] = (X1[128-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */
|
||||
buf1[k].re = data[p] * xcos2[j] - data[q] * xsin2[j];
|
||||
buf1[k].im = -1.0f * (data[q] * xcos2[j] + data[p] * xsin2[j]);
|
||||
/* Z2[k] = (X2[128-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */
|
||||
buf2[k].re = data[p + 1] * xcos2[j] - data[q + 1] * xsin2[j];
|
||||
buf2[k].im = -1.0f * ( data[q + 1] * xcos2[j] + data[p + 1] * xsin2[j]);
|
||||
}
|
||||
|
||||
// FFT Merge
|
||||
for (m=0; m < 6; m++)
|
||||
{
|
||||
two_m = (1 << m);
|
||||
two_m_plus_one = (1 << (m+1));
|
||||
fft_64p(&buf1[0]);
|
||||
fft_64p(&buf2[0]);
|
||||
|
||||
if(m)
|
||||
two_m = (1 << m);
|
||||
else
|
||||
two_m = 1;
|
||||
#ifdef DEBUG
|
||||
//DEBUG FFT
|
||||
#if 0
|
||||
printf ("Post FFT, buf1\n");
|
||||
for (i=0; i < 64; i++)
|
||||
printf("%d %f %f\n", i, buf_1[i].re, buf_1[i].im);
|
||||
printf ("Post FFT, buf2\n");
|
||||
for (i=0; i < 64; i++)
|
||||
printf("%d %f %f\n", i, buf_2[i].re, buf_2[i].im);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
for(k = 0; k < two_m; k++)
|
||||
{
|
||||
for(i = 0; i < 64; i += two_m_plus_one)
|
||||
{
|
||||
p = k + i;
|
||||
q = p + two_m;
|
||||
//Do block 1
|
||||
tmp_a_r = buf_1[p].real;
|
||||
tmp_a_i = buf_1[p].imag;
|
||||
tmp_b_r = buf_1[q].real * w[m][k].real - buf_1[q].imag * w[m][k].imag;
|
||||
tmp_b_i = buf_1[q].imag * w[m][k].real + buf_1[q].real * w[m][k].imag;
|
||||
buf_1[p].real = tmp_a_r + tmp_b_r;
|
||||
buf_1[p].imag = tmp_a_i + tmp_b_i;
|
||||
buf_1[q].real = tmp_a_r - tmp_b_r;
|
||||
buf_1[q].imag = tmp_a_i - tmp_b_i;
|
||||
|
||||
//Do block 2
|
||||
tmp_a_r = buf_2[p].real;
|
||||
tmp_a_i = buf_2[p].imag;
|
||||
tmp_b_r = buf_2[q].real * w[m][k].real - buf_2[q].imag * w[m][k].imag;
|
||||
tmp_b_i = buf_2[q].imag * w[m][k].real + buf_2[q].real * w[m][k].imag;
|
||||
buf_2[p].real = tmp_a_r + tmp_b_r;
|
||||
buf_2[p].imag = tmp_a_i + tmp_b_i;
|
||||
buf_2[q].real = tmp_a_r - tmp_b_r;
|
||||
buf_2[q].imag = tmp_a_i - tmp_b_i;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Post IFFT complex multiply
|
||||
for( i=0; i < 64; i++)
|
||||
{
|
||||
//Note that I flipped the signs on the imaginary ops to do the complex conj
|
||||
|
||||
/* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
|
||||
tmp_a_r = buf_1[i].real;
|
||||
tmp_a_i = buf_1[i].imag;
|
||||
buf_1[i].real =(tmp_a_r * xcos2[i]) + (tmp_a_i * xsin2[i]);
|
||||
buf_1[i].imag =(tmp_a_r * xsin2[i]) - (tmp_a_i * xcos2[i]);
|
||||
/* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */
|
||||
tmp_a_r = buf_2[i].real;
|
||||
tmp_a_i = buf_2[i].imag;
|
||||
buf_2[i].real =(tmp_a_r * xcos2[i]) + (tmp_a_i * xsin2[i]);
|
||||
buf_2[i].imag =(tmp_a_r * xsin2[i]) - (tmp_a_i * xcos2[i]);
|
||||
for( i=0; i < 64; i++) {
|
||||
tmp_a_r = buf1[i].re;
|
||||
tmp_a_i = -buf1[i].im;
|
||||
buf1[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
|
||||
buf1[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
|
||||
tmp_a_r = buf2[i].re;
|
||||
tmp_a_i = -buf2[i].im;
|
||||
buf2[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
|
||||
buf2[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
|
||||
}
|
||||
|
||||
data_ptr = data;
|
||||
@@ -409,30 +218,122 @@ imdct_do_256(float data[],float delay[])
|
||||
window_ptr = window;
|
||||
|
||||
/* Window and convert to real valued signal */
|
||||
for(i=0; i< 64; i++)
|
||||
{
|
||||
*data_ptr++ = 2.0f * (-buf_1[i].imag * *window_ptr++ + *delay_ptr++);
|
||||
*data_ptr++ = 2.0f * ( buf_1[64-i-1].real * *window_ptr++ + *delay_ptr++);
|
||||
for(i=0; i< 64; i++) {
|
||||
*data_ptr++ = -buf1[i].im * *window_ptr++ + *delay_ptr++;
|
||||
*data_ptr++ = buf1[64-i-1].re * *window_ptr++ + *delay_ptr++;
|
||||
}
|
||||
|
||||
for(i=0; i< 64; i++)
|
||||
{
|
||||
*data_ptr++ = 2.0f * (-buf_1[i].real * *window_ptr++ + *delay_ptr++);
|
||||
*data_ptr++ = 2.0f * ( buf_1[64-i-1].imag * *window_ptr++ + *delay_ptr++);
|
||||
for(i=0; i< 64; i++) {
|
||||
*data_ptr++ = -buf1[i].re * *window_ptr++ + *delay_ptr++;
|
||||
*data_ptr++ = buf1[64-i-1].im * *window_ptr++ + *delay_ptr++;
|
||||
}
|
||||
|
||||
delay_ptr = delay;
|
||||
|
||||
for(i=0; i< 64; i++)
|
||||
{
|
||||
*delay_ptr++ = -buf_2[i].real * *--window_ptr;
|
||||
*delay_ptr++ = buf_2[64-i-1].imag * *--window_ptr;
|
||||
for(i=0; i< 64; i++) {
|
||||
*delay_ptr++ = -buf2[i].re * *--window_ptr;
|
||||
*delay_ptr++ = buf2[64-i-1].im * *--window_ptr;
|
||||
}
|
||||
|
||||
for(i=0; i< 64; i++)
|
||||
{
|
||||
*delay_ptr++ = buf_2[i].imag * *--window_ptr;
|
||||
*delay_ptr++ = -buf_2[64-i-1].real * *--window_ptr;
|
||||
for(i=0; i< 64; i++) {
|
||||
*delay_ptr++ = buf2[i].im * *--window_ptr;
|
||||
*delay_ptr++ = -buf2[64-i-1].re * *--window_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
**/
|
||||
|
||||
void imdct_do_256_nol (float data[], float delay[])
|
||||
{
|
||||
int i, j, k;
|
||||
int p, q;
|
||||
|
||||
float tmp_a_i;
|
||||
float tmp_a_r;
|
||||
|
||||
float *data_ptr;
|
||||
float *delay_ptr;
|
||||
float *window_ptr;
|
||||
|
||||
complex_t *buf1, *buf2;
|
||||
|
||||
buf1 = &buf[0];
|
||||
buf2 = &buf[64];
|
||||
|
||||
/* Pre IFFT complex multiply plus IFFT cmplx conjugate */
|
||||
for(k=0; k<64; k++) {
|
||||
/* X1[k] = X[2*k] */
|
||||
/* X2[k] = X[2*k+1] */
|
||||
j = pm64[k];
|
||||
p = 2 * (128-2*j-1);
|
||||
q = 2 * (2 * j);
|
||||
|
||||
/* Z1[k] = (X1[128-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */
|
||||
buf1[k].re = data[p] * xcos2[j] - data[q] * xsin2[j];
|
||||
buf1[k].im = -1.0f * (data[q] * xcos2[j] + data[p] * xsin2[j]);
|
||||
/* Z2[k] = (X2[128-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */
|
||||
buf2[k].re = data[p + 1] * xcos2[j] - data[q + 1] * xsin2[j];
|
||||
buf2[k].im = -1.0f * ( data[q + 1] * xcos2[j] + data[p + 1] * xsin2[j]);
|
||||
}
|
||||
|
||||
|
||||
fft_64p(&buf1[0]);
|
||||
fft_64p(&buf2[0]);
|
||||
|
||||
#ifdef DEBUG
|
||||
//DEBUG FFT
|
||||
#if 0
|
||||
printf("Post FFT, buf1\n");
|
||||
for (i=0; i < 64; i++)
|
||||
printf("%d %f %f\n", i, buf_1[i].re, buf_1[i].im);
|
||||
printf("Post FFT, buf2\n");
|
||||
for (i=0; i < 64; i++)
|
||||
printf("%d %f %f\n", i, buf_2[i].re, buf_2[i].im);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Post IFFT complex multiply */
|
||||
for( i=0; i < 64; i++) {
|
||||
/* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
|
||||
tmp_a_r = buf1[i].re;
|
||||
tmp_a_i = -buf1[i].im;
|
||||
buf1[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
|
||||
buf1[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
|
||||
/* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */
|
||||
tmp_a_r = buf2[i].re;
|
||||
tmp_a_i = -buf2[i].im;
|
||||
buf2[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
|
||||
buf2[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
|
||||
}
|
||||
|
||||
data_ptr = data;
|
||||
delay_ptr = delay;
|
||||
window_ptr = window;
|
||||
|
||||
/* Window and convert to real valued signal, no overlap */
|
||||
for(i=0; i< 64; i++) {
|
||||
*data_ptr++ = -buf1[i].im * *window_ptr++;
|
||||
*data_ptr++ = buf1[64-i-1].re * *window_ptr++;
|
||||
}
|
||||
|
||||
for(i=0; i< 64; i++) {
|
||||
*data_ptr++ = -buf1[i].re * *window_ptr++ + *delay_ptr++;
|
||||
*data_ptr++ = buf1[64-i-1].im * *window_ptr++ + *delay_ptr++;
|
||||
}
|
||||
|
||||
delay_ptr = delay;
|
||||
|
||||
for(i=0; i< 64; i++) {
|
||||
*delay_ptr++ = -buf2[i].re * *--window_ptr;
|
||||
*delay_ptr++ = buf2[64-i-1].im * *--window_ptr;
|
||||
}
|
||||
|
||||
for(i=0; i< 64; i++) {
|
||||
*delay_ptr++ = buf2[i].im * *--window_ptr;
|
||||
*delay_ptr++ = -buf2[64-i-1].re * *--window_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -440,29 +341,190 @@ imdct_do_256(float data[],float delay[])
|
||||
///#include <sys/time.h>
|
||||
//FIXME remove
|
||||
|
||||
void
|
||||
imdct(bsi_t *bsi,audblk_t *audblk, stream_samples_t samples) {
|
||||
void imdct (bsi_t *bsi,audblk_t *audblk, stream_samples_t samples, int16_t *s16_samples, dm_par_t* dm_par)
|
||||
{
|
||||
int i;
|
||||
int doable = 0;
|
||||
float *center=NULL, *left, *right, *left_sur, *right_sur;
|
||||
float *delay_left, *delay_right;
|
||||
float *delay1_left, *delay1_right, *delay1_center, *delay1_sr, *delay1_sl;
|
||||
float right_tmp, left_tmp;
|
||||
void (*do_imdct)(float data[], float deley[]);
|
||||
|
||||
//handy timing code
|
||||
//struct timeval start,end;
|
||||
// test if dm in frequency is doable
|
||||
if (!(doable = audblk->blksw[0]))
|
||||
do_imdct = imdct_do_512;
|
||||
else
|
||||
do_imdct = imdct_do_256;
|
||||
|
||||
//gettimeofday(&start,0);
|
||||
|
||||
for(i=0; i<bsi->nfchans;i++)
|
||||
{
|
||||
if(audblk->blksw[i])
|
||||
imdct_do_256(samples[i],delay[i]);
|
||||
else
|
||||
imdct_do_512(samples[i],delay[i]);
|
||||
// downmix in the frequency domain if all the channels
|
||||
// use the same imdct
|
||||
for (i=0; i < bsi->nfchans; i++) {
|
||||
if (doable != audblk->blksw[i]) {
|
||||
do_imdct = NULL;
|
||||
break;
|
||||
}
|
||||
}
|
||||
//gettimeofday(&end,0);
|
||||
//printf("imdct %ld us\n",(end.tv_sec - start.tv_sec) * 1000000 +
|
||||
//end.tv_usec - start.tv_usec);
|
||||
|
||||
//XXX We don't bother with the IMDCT for the LFE as it's currently
|
||||
//unused.
|
||||
//if (bsi->lfeon)
|
||||
// imdct_do_512(coeffs->lfe,samples->channel[5],delay[5]);
|
||||
//
|
||||
if (do_imdct) {
|
||||
//dowmix first and imdct
|
||||
switch(bsi->acmod) {
|
||||
case 7: // 3/2
|
||||
downmix_3f_2r_to_2ch (samples[0], dm_par);
|
||||
break;
|
||||
case 6: // 2/2
|
||||
downmix_2f_2r_to_2ch (samples[0], dm_par);
|
||||
break;
|
||||
case 5: // 3/1
|
||||
downmix_3f_1r_to_2ch (samples[0], dm_par);
|
||||
break;
|
||||
case 4: // 2/1
|
||||
downmix_2f_1r_to_2ch (samples[0], dm_par);
|
||||
break;
|
||||
case 3: // 3/0
|
||||
downmix_3f_0r_to_2ch (samples[0], dm_par);
|
||||
break;
|
||||
case 2:
|
||||
break;
|
||||
default: // 1/0
|
||||
if (bsi->acmod == 1)
|
||||
center = samples[0];
|
||||
else if (bsi->acmod == 0)
|
||||
center = samples[ac3_config.dual_mono_ch_sel];
|
||||
do_imdct(center, delay[0]); // no downmix
|
||||
|
||||
stream_sample_1ch_to_s16 (s16_samples, center);
|
||||
|
||||
return;
|
||||
//goto done;
|
||||
break;
|
||||
}
|
||||
|
||||
do_imdct (samples[0], delay[0]);
|
||||
do_imdct (samples[1], delay[1]);
|
||||
stream_sample_2ch_to_s16(s16_samples, samples[0], samples[1]);
|
||||
|
||||
} else { //imdct and then dowmix
|
||||
// delay and samples should be saved and mixed
|
||||
//fprintf(stderr, "time domain downmix\n");
|
||||
for (i=0; i<bsi->nfchans; i++) {
|
||||
if (audblk->blksw[i])
|
||||
imdct_do_256_nol (samples[i],delay1[i]);
|
||||
else
|
||||
imdct_do_512_nol (samples[i],delay1[i]);
|
||||
}
|
||||
|
||||
// mix the sample, overlap
|
||||
switch(bsi->acmod) {
|
||||
case 7: // 3/2
|
||||
left = samples[0];
|
||||
center = samples[1];
|
||||
right = samples[2];
|
||||
left_sur = samples[3];
|
||||
right_sur = samples[4];
|
||||
delay_left = delay[0];
|
||||
delay_right = delay[1];
|
||||
delay1_left = delay1[0];
|
||||
delay1_center = delay1[1];
|
||||
delay1_right = delay1[2];
|
||||
delay1_sl = delay1[3];
|
||||
delay1_sr = delay1[4];
|
||||
|
||||
for (i = 0; i < 256; i++) {
|
||||
left_tmp = dm_par->unit * *left++ + dm_par->clev * *center + dm_par->slev * *left_sur++;
|
||||
right_tmp= dm_par->unit * *right++ + dm_par->clev * *center++ + dm_par->slev * *right_sur++;
|
||||
*s16_samples++ = (int16_t)(left_tmp + *delay_left);
|
||||
*s16_samples++ = (int16_t)(right_tmp + *delay_right);
|
||||
*delay_left++ = dm_par->unit * *delay1_left++ + dm_par->clev * *delay1_center + dm_par->slev * *delay1_sl++;
|
||||
*delay_right++ = dm_par->unit * *delay1_right++ + dm_par->clev * *center++ + dm_par->slev * *delay1_sr++;
|
||||
}
|
||||
break;
|
||||
case 6: // 2/2
|
||||
left = samples[0];
|
||||
right = samples[1];
|
||||
left_sur = samples[2];
|
||||
right_sur = samples[3];
|
||||
delay_left = delay[0];
|
||||
delay_right = delay[1];
|
||||
delay1_left = delay1[0];
|
||||
delay1_right = delay1[1];
|
||||
delay1_sl = delay1[2];
|
||||
delay1_sr = delay1[3];
|
||||
|
||||
for (i = 0; i < 256; i++) {
|
||||
left_tmp = dm_par->unit * *left++ + dm_par->slev * *left_sur++;
|
||||
right_tmp= dm_par->unit * *right++ + dm_par->slev * *right_sur++;
|
||||
*s16_samples++ = (int16_t)(left_tmp + *delay_left);
|
||||
*s16_samples++ = (int16_t)(right_tmp + *delay_right);
|
||||
*delay_left++ = dm_par->unit * *delay1_left++ + dm_par->slev * *delay1_sl++;
|
||||
*delay_right++ = dm_par->unit * *delay1_right++ + dm_par->slev * *delay1_sr++;
|
||||
}
|
||||
break;
|
||||
case 5: // 3/1
|
||||
left = samples[0];
|
||||
center = samples[1];
|
||||
right = samples[2];
|
||||
right_sur = samples[3];
|
||||
delay_left = delay[0];
|
||||
delay_right = delay[1];
|
||||
delay1_left = delay1[0];
|
||||
delay1_center = delay1[1];
|
||||
delay1_right = delay1[2];
|
||||
delay1_sl = delay1[3];
|
||||
|
||||
for (i = 0; i < 256; i++) {
|
||||
left_tmp = dm_par->unit * *left++ + dm_par->clev * *center - dm_par->slev * *right_sur;
|
||||
right_tmp= dm_par->unit * *right++ + dm_par->clev * *center++ + dm_par->slev * *right_sur++;
|
||||
*s16_samples++ = (int16_t)(left_tmp + *delay_left);
|
||||
*s16_samples++ = (int16_t)(right_tmp + *delay_right);
|
||||
*delay_left++ = dm_par->unit * *delay1_left++ + dm_par->clev * *delay1_center + dm_par->slev * *delay1_sl;
|
||||
*delay_right++ = dm_par->unit * *delay1_right++ + dm_par->clev * *center++ + dm_par->slev * *delay1_sl++;
|
||||
}
|
||||
break;
|
||||
case 4: // 2/1
|
||||
left = samples[0];
|
||||
right = samples[1];
|
||||
right_sur = samples[2];
|
||||
delay_left = delay[0];
|
||||
delay_right = delay[1];
|
||||
delay1_left = delay1[0];
|
||||
delay1_right = delay1[1];
|
||||
delay1_sl = delay1[2];
|
||||
|
||||
for (i = 0; i < 256; i++) {
|
||||
left_tmp = dm_par->unit * *left++ - dm_par->slev * *right_sur;
|
||||
right_tmp= dm_par->unit * *right++ + dm_par->slev * *right_sur++;
|
||||
*s16_samples++ = (int16_t)(left_tmp + *delay_left);
|
||||
*s16_samples++ = (int16_t)(right_tmp + *delay_right);
|
||||
*delay_left++ = dm_par->unit * *delay1_left++ + dm_par->slev * *delay1_sl;
|
||||
*delay_right++ = dm_par->unit * *delay1_right++ + dm_par->slev * *delay1_sl++;
|
||||
}
|
||||
break;
|
||||
case 3: // 3/0
|
||||
left = samples[0];
|
||||
center = samples[1];
|
||||
right = samples[2];
|
||||
delay_left = delay[0];
|
||||
delay_right = delay[1];
|
||||
delay1_left = delay1[0];
|
||||
delay1_center = delay1[1];
|
||||
delay1_right = delay1[2];
|
||||
|
||||
for (i = 0; i < 256; i++) {
|
||||
left_tmp = dm_par->unit * *left++ + dm_par->clev * *center;
|
||||
right_tmp= dm_par->unit * *right++ + dm_par->clev * *center++;
|
||||
*s16_samples++ = (int16_t)(left_tmp + *delay_left);
|
||||
*s16_samples++ = (int16_t)(right_tmp + *delay_right);
|
||||
*delay_left++ = dm_par->unit * *delay1_left++ + dm_par->clev * *delay1_center;
|
||||
*delay_right++ = dm_par->unit * *delay1_right++ + dm_par->clev * *center++;
|
||||
}
|
||||
break;
|
||||
case 2: // copy to output
|
||||
for (i = 0; i < 256; i++) {
|
||||
*s16_samples++ = (int16_t)samples[0][i];
|
||||
*s16_samples++ = (int16_t)samples[1][i];
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user