/* * coeff.c * * Copyright (C) Aaron Holtzman - May 1999 * * This file is part of ac3dec, a free Dolby AC-3 stream decoder. * * ac3dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * ac3dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include "ac3.h" #include "ac3_internal.h" #include "decode.h" #include "bitstream.h" #include "dither.h" #include "coeff.h" // //Lookup tables of 0.15 two's complement quantization values // static const uint_16 q_1[3] = { ( -2 << 15)/3, 0,( 2 << 15)/3 }; static const uint_16 q_2[5] = { ( -4 << 15)/5,( -2 << 15)/5, 0, ( 2 << 15)/5,( 4 << 15)/5 }; static const uint_16 q_3[7] = { ( -6 << 15)/7,( -4 << 15)/7,( -2 << 15)/7, 0, ( 2 << 15)/7,( 4 << 15)/7,( 6 << 15)/7 }; static const uint_16 q_4[11] = { (-10 << 15)/11,(-8 << 15)/11,(-6 << 15)/11, ( -4 << 15)/11,(-2 << 15)/11, 0, ( 2 << 15)/11,( 4 << 15)/11,( 6 << 15)/11, ( 8 << 15)/11,(10 << 15)/11 }; static const uint_16 q_5[15] = { (-14 << 15)/15,(-12 << 15)/15,(-10 << 15)/15, ( -8 << 15)/15,( -6 << 15)/15,( -4 << 15)/15, ( -2 << 15)/15, 0 ,( 2 << 15)/15, ( 4 << 15)/15,( 6 << 15)/15,( 8 << 15)/15, ( 10 << 15)/15,( 12 << 15)/15,( 14 << 15)/15 }; // // Scale factors for convert_to_float // static const uint_32 u32_scale_factors[25] = { 0x38000000, //2 ^ -(0 + 15) 0x37800000, //2 ^ -(1 + 15) 0x37000000, //2 ^ -(2 + 15) 0x36800000, //2 ^ -(3 + 15) 0x36000000, //2 ^ -(4 + 15) 0x35800000, //2 ^ -(5 + 15) 0x35000000, //2 ^ -(6 + 15) 0x34800000, //2 ^ -(7 + 15) 0x34000000, //2 ^ -(8 + 15) 0x33800000, //2 ^ -(9 + 15) 0x33000000, //2 ^ -(10 + 15) 0x32800000, //2 ^ -(11 + 15) 0x32000000, //2 ^ -(12 + 15) 0x31800000, //2 ^ -(13 + 15) 0x31000000, //2 ^ -(14 + 15) 0x30800000, //2 ^ -(15 + 15) 0x30000000, //2 ^ -(16 + 15) 0x2f800000, //2 ^ -(17 + 15) 0x2f000000, //2 ^ -(18 + 15) 0x2e800000, //2 ^ -(19 + 15) 0x2e000000, //2 ^ -(20 + 15) 0x2d800000, //2 ^ -(21 + 15) 0x2d000000, //2 ^ -(22 + 15) 0x2c800000, //2 ^ -(23 + 15) 0x2c000000 //2 ^ -(24 + 15) }; static float *scale_factor = (float*)u32_scale_factors; //These store the persistent state of the packed mantissas static uint_16 m_1[3]; static uint_16 m_2[3]; static uint_16 m_4[2]; static uint_16 m_1_pointer; static uint_16 m_2_pointer; static uint_16 m_4_pointer; //Conversion from bap to number of bits in the mantissas //zeros account for cases 0,1,2,4 which are special cased static uint_16 qnttztab[16] = { 0, 0, 0, 3, 0 , 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16}; static void coeff_reset(void); static sint_16 coeff_get_mantissa(uint_16 bap, uint_16 dithflag); static void coeff_uncouple_ch(float samples[],bsi_t *bsi,audblk_t *audblk,uint_32 ch); // // Convert a 0.15 fixed point number into IEEE single // precision floating point and scale by 2^-exp // static inline float convert_to_float(uint_16 exp, sint_16 mantissa) { float x; //the scale by 2^-15 is built into the scale factor table x = mantissa * scale_factor[exp]; return x; } void coeff_unpack(bsi_t *bsi, audblk_t *audblk, stream_samples_t samples) { uint_16 i,j; uint_32 done_cpl = 0; sint_16 mantissa; coeff_reset(); for(i=0; i< bsi->nfchans; i++) { for(j=0; j < audblk->endmant[i]; j++) { mantissa = coeff_get_mantissa(audblk->fbw_bap[i][j],audblk->dithflag[i]); samples[i][j] = convert_to_float(audblk->fbw_exp[i][j],mantissa); } if(audblk->cplinu && audblk->chincpl[i] && !(done_cpl)) { // ncplmant is equal to 12 * ncplsubnd // Don't dither coupling channel until channel separation so that // interchannel noise is uncorrelated for(j=audblk->cplstrtmant; j < audblk->cplendmant; j++) audblk->cplmant[j] = coeff_get_mantissa(audblk->cpl_bap[j],0); done_cpl = 1; } } //uncouple the channel if necessary if(audblk->cplinu) { for(i=0; i< bsi->nfchans; i++) { if(audblk->chincpl[i]) coeff_uncouple_ch(samples[i],bsi,audblk,i); } } if(bsi->lfeon) { // There are always 7 mantissas for lfe, no dither for lfe for(j=0; j < 7 ; j++) { mantissa = coeff_get_mantissa(audblk->lfe_bap[j],0); samples[5][j] = convert_to_float(audblk->lfe_exp[j],mantissa); } } } // //Fetch a mantissa from the bitstream // //The mantissa returned is a signed 0.15 fixed point number // static sint_16 coeff_get_mantissa(uint_16 bap, uint_16 dithflag) { uint_16 mantissa; uint_16 group_code; //If the bap is 0-5 then we have special cases to take care of switch(bap) { case 0: if(dithflag) mantissa = dither_gen(); else mantissa = 0; break; case 1: if(m_1_pointer > 2) { group_code = bitstream_get(5); if(group_code > 26) goto error; m_1[0] = group_code / 9; m_1[1] = (group_code % 9) / 3; m_1[2] = (group_code % 9) % 3; m_1_pointer = 0; } mantissa = m_1[m_1_pointer++]; mantissa = q_1[mantissa]; break; case 2: if(m_2_pointer > 2) { group_code = bitstream_get(7); if(group_code > 124) goto error; m_2[0] = group_code / 25; m_2[1] = (group_code % 25) / 5 ; m_2[2] = (group_code % 25) % 5 ; m_2_pointer = 0; } mantissa = m_2[m_2_pointer++]; mantissa = q_2[mantissa]; break; case 3: mantissa = bitstream_get(3); if(mantissa > 6) goto error; mantissa = q_3[mantissa]; break; case 4: if(m_4_pointer > 1) { group_code = bitstream_get(7); if(group_code > 120) goto error; m_4[0] = group_code / 11; m_4[1] = group_code % 11; m_4_pointer = 0; } mantissa = m_4[m_4_pointer++]; mantissa = q_4[mantissa]; break; case 5: mantissa = bitstream_get(4); if(mantissa > 14) goto error; mantissa = q_5[mantissa]; break; default: mantissa = bitstream_get(qnttztab[bap]); mantissa <<= 16 - qnttztab[bap]; } return mantissa; error: if(!error_flag) fprintf(stderr,"** Invalid mantissa - skipping frame **\n"); error_flag = 1; return 0; } // // Reset the mantissa state // static void coeff_reset(void) { m_1[2] = m_1[1] = m_1[0] = 0; m_2[2] = m_2[1] = m_2[0] = 0; m_4[1] = m_4[0] = 0; m_1_pointer = m_2_pointer = m_4_pointer = 3; } // // Uncouple the coupling channel into a fbw channel // static void coeff_uncouple_ch(float samples[],bsi_t *bsi,audblk_t *audblk,uint_32 ch) { uint_32 bnd = 0; uint_32 sub_bnd = 0; uint_32 i,j; float cpl_coord = 1.0; uint_32 cpl_exp_tmp; uint_32 cpl_mant_tmp; sint_16 mantissa; for(i=audblk->cplstrtmant;icplendmant;) { if(!audblk->cplbndstrc[sub_bnd++]) { cpl_exp_tmp = audblk->cplcoexp[ch][bnd] + 3 * audblk->mstrcplco[ch]; if(audblk->cplcoexp[ch][bnd] == 15) cpl_mant_tmp = (audblk->cplcomant[ch][bnd]) << 11; else cpl_mant_tmp = ((0x10) | audblk->cplcomant[ch][bnd]) << 10; cpl_coord = convert_to_float(cpl_exp_tmp,cpl_mant_tmp) * 8.0f; //Invert the phase for the right channel if necessary if(bsi->acmod == 0x2 && audblk->phsflginu && ch == 1 && audblk->phsflg[bnd]) cpl_coord *= -1; bnd++; } for(j=0;j < 12; j++) { //Get new dither values for each channel if necessary, so //the channels are uncorrelated if(audblk->dithflag[ch] && audblk->cpl_bap[i] == 0) mantissa = dither_gen(); else mantissa = audblk->cplmant[i]; samples[i] = cpl_coord * convert_to_float(audblk->cpl_exp[i],mantissa); i++; } } }