/* * imdct.c * * Copyright (C) Aaron Holtzman - May 1999 * * This file is part of ac3dec, a free Dolby AC-3 stream decoder. * * ac3dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * ac3dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * */ #include #include #include #include "ac3.h" #include "ac3_internal.h" #include "downmix.h" #include "imdct.h" #include "imdct_c.h" #ifdef HAVE_KNI #include "imdct_kni.h" #endif #include "srfft.h" extern void (*downmix_3f_2r_to_2ch)(float *samples, dm_par_t * dm_par); extern void (*downmix_3f_1r_to_2ch)(float *samples, dm_par_t * dm_par); extern void (*downmix_2f_2r_to_2ch)(float *samples, dm_par_t * dm_par); extern void (*downmix_2f_1r_to_2ch)(float *samples, dm_par_t * dm_par); extern void (*downmix_3f_0r_to_2ch)(float *samples, dm_par_t * dm_par); extern void (*stream_sample_2ch_to_s16)(int16_t *s16_samples, float *left, float *right); extern void (*stream_sample_1ch_to_s16)(int16_t *s16_samples, float *center); void (*fft_64p) (complex_t *); void (*imdct_do_512) (float data[],float delay[]); void (*imdct_do_512_nol) (float data[], float delay[]); void imdct_do_256 (float data[],float delay[]); #define N 512 /* static complex_t buf[128]; */ //static complex_t buf[128] __attribute__((aligned(16))); complex_t buf[128] __attribute__((aligned(16))); /* Delay buffer for time domain interleaving */ static float delay[6][256]; static float delay1[6][256]; /* Twiddle factors for IMDCT */ static float xcos2[64]; static float xsin2[64]; /* Windowing function for Modified DCT - Thank you acroread */ //static float window[] = { float window[] = { 0.00014, 0.00024, 0.00037, 0.00051, 0.00067, 0.00086, 0.00107, 0.00130, 0.00157, 0.00187, 0.00220, 0.00256, 0.00297, 0.00341, 0.00390, 0.00443, 0.00501, 0.00564, 0.00632, 0.00706, 0.00785, 0.00871, 0.00962, 0.01061, 0.01166, 0.01279, 0.01399, 0.01526, 0.01662, 0.01806, 0.01959, 0.02121, 0.02292, 0.02472, 0.02662, 0.02863, 0.03073, 0.03294, 0.03527, 0.03770, 0.04025, 0.04292, 0.04571, 0.04862, 0.05165, 0.05481, 0.05810, 0.06153, 0.06508, 0.06878, 0.07261, 0.07658, 0.08069, 0.08495, 0.08935, 0.09389, 0.09859, 0.10343, 0.10842, 0.11356, 0.11885, 0.12429, 0.12988, 0.13563, 0.14152, 0.14757, 0.15376, 0.16011, 0.16661, 0.17325, 0.18005, 0.18699, 0.19407, 0.20130, 0.20867, 0.21618, 0.22382, 0.23161, 0.23952, 0.24757, 0.25574, 0.26404, 0.27246, 0.28100, 0.28965, 0.29841, 0.30729, 0.31626, 0.32533, 0.33450, 0.34376, 0.35311, 0.36253, 0.37204, 0.38161, 0.39126, 0.40096, 0.41072, 0.42054, 0.43040, 0.44030, 0.45023, 0.46020, 0.47019, 0.48020, 0.49022, 0.50025, 0.51028, 0.52031, 0.53033, 0.54033, 0.55031, 0.56026, 0.57019, 0.58007, 0.58991, 0.59970, 0.60944, 0.61912, 0.62873, 0.63827, 0.64774, 0.65713, 0.66643, 0.67564, 0.68476, 0.69377, 0.70269, 0.71150, 0.72019, 0.72877, 0.73723, 0.74557, 0.75378, 0.76186, 0.76981, 0.77762, 0.78530, 0.79283, 0.80022, 0.80747, 0.81457, 0.82151, 0.82831, 0.83496, 0.84145, 0.84779, 0.85398, 0.86001, 0.86588, 0.87160, 0.87716, 0.88257, 0.88782, 0.89291, 0.89785, 0.90264, 0.90728, 0.91176, 0.91610, 0.92028, 0.92432, 0.92822, 0.93197, 0.93558, 0.93906, 0.94240, 0.94560, 0.94867, 0.95162, 0.95444, 0.95713, 0.95971, 0.96217, 0.96451, 0.96674, 0.96887, 0.97089, 0.97281, 0.97463, 0.97635, 0.97799, 0.97953, 0.98099, 0.98236, 0.98366, 0.98488, 0.98602, 0.98710, 0.98811, 0.98905, 0.98994, 0.99076, 0.99153, 0.99225, 0.99291, 0.99353, 0.99411, 0.99464, 0.99513, 0.99558, 0.99600, 0.99639, 0.99674, 0.99706, 0.99736, 0.99763, 0.99788, 0.99811, 0.99831, 0.99850, 0.99867, 0.99882, 0.99895, 0.99908, 0.99919, 0.99929, 0.99938, 0.99946, 0.99953, 0.99959, 0.99965, 0.99969, 0.99974, 0.99978, 0.99981, 0.99984, 0.99986, 0.99988, 0.99990, 0.99992, 0.99993, 0.99994, 0.99995, 0.99996, 0.99997, 0.99998, 0.99998, 0.99998, 0.99999, 0.99999, 0.99999, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 }; //static const int pm128[128] = const int pm128[128] = { 0, 16, 32, 48, 64, 80, 96, 112, 8, 40, 72, 104, 24, 56, 88, 120, 4, 20, 36, 52, 68, 84, 100, 116, 12, 28, 44, 60, 76, 92, 108, 124, 2, 18, 34, 50, 66, 82, 98, 114, 10, 42, 74, 106, 26, 58, 90, 122, 6, 22, 38, 54, 70, 86, 102, 118, 14, 46, 78, 110, 30, 62, 94, 126, 1, 17, 33, 49, 65, 81, 97, 113, 9, 41, 73, 105, 25, 57, 89, 121, 5, 21, 37, 53, 69, 85, 101, 117, 13, 29, 45, 61, 77, 93, 109, 125, 3, 19, 35, 51, 67, 83, 99, 115, 11, 43, 75, 107, 27, 59, 91, 123, 7, 23, 39, 55, 71, 87, 103, 119, 15, 31, 47, 63, 79, 95, 111, 127 }; static const int pm64[64] = { 0, 8, 16, 24, 32, 40, 48, 56, 4, 20, 36, 52, 12, 28, 44, 60, 2, 10, 18, 26, 34, 42, 50, 58, 6, 14, 22, 30, 38, 46, 54, 62, 1, 9, 17, 25, 33, 41, 49, 57, 5, 21, 37, 53, 13, 29, 45, 61, 3, 11, 19, 27, 35, 43, 51, 59, 7, 23, 39, 55, 15, 31, 47, 63 }; void imdct_init (void) { int i; float scale = 255.99609372; #ifdef __i386__ #ifdef HAVE_KNI if (!imdct_init_kni ()); else #endif #endif if (!imdct_init_c ()); // More twiddle factors to turn IFFT into IMDCT */ for (i=0; i < 64; i++) { xcos2[i] = cos(2.0f * M_PI * (8*i+1)/(4*N)) * scale; xsin2[i] = sin(2.0f * M_PI * (8*i+1)/(4*N)) * scale; } } void imdct_do_256 (float data[],float delay[]) { int i, j, k; int p, q; float tmp_a_i; float tmp_a_r; float *data_ptr; float *delay_ptr; float *window_ptr; complex_t *buf1, *buf2; buf1 = &buf[0]; buf2 = &buf[64]; // Pre IFFT complex multiply plus IFFT complex conjugate for (k=0; k<64; k++) { /* X1[k] = X[2*k] */ /* X2[k] = X[2*k+1] */ j = pm64[k]; p = 2 * (128-2*j-1); q = 2 * (2 * j); /* Z1[k] = (X1[128-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */ buf1[k].re = data[p] * xcos2[j] - data[q] * xsin2[j]; buf1[k].im = -1.0f * (data[q] * xcos2[j] + data[p] * xsin2[j]); /* Z2[k] = (X2[128-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */ buf2[k].re = data[p + 1] * xcos2[j] - data[q + 1] * xsin2[j]; buf2[k].im = -1.0f * ( data[q + 1] * xcos2[j] + data[p + 1] * xsin2[j]); } fft_64p(&buf1[0]); fft_64p(&buf2[0]); #ifdef DEBUG //DEBUG FFT #if 0 printf ("Post FFT, buf1\n"); for (i=0; i < 64; i++) printf("%d %f %f\n", i, buf_1[i].re, buf_1[i].im); printf ("Post FFT, buf2\n"); for (i=0; i < 64; i++) printf("%d %f %f\n", i, buf_2[i].re, buf_2[i].im); #endif #endif // Post IFFT complex multiply for( i=0; i < 64; i++) { tmp_a_r = buf1[i].re; tmp_a_i = -buf1[i].im; buf1[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); buf1[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); tmp_a_r = buf2[i].re; tmp_a_i = -buf2[i].im; buf2[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); buf2[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); } data_ptr = data; delay_ptr = delay; window_ptr = window; /* Window and convert to real valued signal */ for(i=0; i< 64; i++) { *data_ptr++ = -buf1[i].im * *window_ptr++ + *delay_ptr++; *data_ptr++ = buf1[64-i-1].re * *window_ptr++ + *delay_ptr++; } for(i=0; i< 64; i++) { *data_ptr++ = -buf1[i].re * *window_ptr++ + *delay_ptr++; *data_ptr++ = buf1[64-i-1].im * *window_ptr++ + *delay_ptr++; } delay_ptr = delay; for(i=0; i< 64; i++) { *delay_ptr++ = -buf2[i].re * *--window_ptr; *delay_ptr++ = buf2[64-i-1].im * *--window_ptr; } for(i=0; i< 64; i++) { *delay_ptr++ = buf2[i].im * *--window_ptr; *delay_ptr++ = -buf2[64-i-1].re * *--window_ptr; } } /** * **/ void imdct_do_256_nol (float data[], float delay[]) { int i, j, k; int p, q; float tmp_a_i; float tmp_a_r; float *data_ptr; float *delay_ptr; float *window_ptr; complex_t *buf1, *buf2; buf1 = &buf[0]; buf2 = &buf[64]; /* Pre IFFT complex multiply plus IFFT cmplx conjugate */ for(k=0; k<64; k++) { /* X1[k] = X[2*k] */ /* X2[k] = X[2*k+1] */ j = pm64[k]; p = 2 * (128-2*j-1); q = 2 * (2 * j); /* Z1[k] = (X1[128-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */ buf1[k].re = data[p] * xcos2[j] - data[q] * xsin2[j]; buf1[k].im = -1.0f * (data[q] * xcos2[j] + data[p] * xsin2[j]); /* Z2[k] = (X2[128-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */ buf2[k].re = data[p + 1] * xcos2[j] - data[q + 1] * xsin2[j]; buf2[k].im = -1.0f * ( data[q + 1] * xcos2[j] + data[p + 1] * xsin2[j]); } fft_64p(&buf1[0]); fft_64p(&buf2[0]); #ifdef DEBUG //DEBUG FFT #if 0 printf("Post FFT, buf1\n"); for (i=0; i < 64; i++) printf("%d %f %f\n", i, buf_1[i].re, buf_1[i].im); printf("Post FFT, buf2\n"); for (i=0; i < 64; i++) printf("%d %f %f\n", i, buf_2[i].re, buf_2[i].im); #endif #endif /* Post IFFT complex multiply */ for( i=0; i < 64; i++) { /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */ tmp_a_r = buf1[i].re; tmp_a_i = -buf1[i].im; buf1[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); buf1[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); /* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */ tmp_a_r = buf2[i].re; tmp_a_i = -buf2[i].im; buf2[i].re =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]); buf2[i].im =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]); } data_ptr = data; delay_ptr = delay; window_ptr = window; /* Window and convert to real valued signal, no overlap */ for(i=0; i< 64; i++) { *data_ptr++ = -buf1[i].im * *window_ptr++; *data_ptr++ = buf1[64-i-1].re * *window_ptr++; } for(i=0; i< 64; i++) { *data_ptr++ = -buf1[i].re * *window_ptr++ + *delay_ptr++; *data_ptr++ = buf1[64-i-1].im * *window_ptr++ + *delay_ptr++; } delay_ptr = delay; for(i=0; i< 64; i++) { *delay_ptr++ = -buf2[i].re * *--window_ptr; *delay_ptr++ = buf2[64-i-1].im * *--window_ptr; } for(i=0; i< 64; i++) { *delay_ptr++ = buf2[i].im * *--window_ptr; *delay_ptr++ = -buf2[64-i-1].re * *--window_ptr; } } //FIXME remove - for timing code ///#include //FIXME remove void imdct (bsi_t *bsi,audblk_t *audblk, stream_samples_t samples, int16_t *s16_samples, dm_par_t* dm_par) { int i; int doable = 0; float *center=NULL, *left, *right, *left_sur, *right_sur; float *delay_left, *delay_right; float *delay1_left, *delay1_right, *delay1_center, *delay1_sr, *delay1_sl; float right_tmp, left_tmp; void (*do_imdct)(float data[], float deley[]); // test if dm in frequency is doable if (!(doable = audblk->blksw[0])) do_imdct = imdct_do_512; else do_imdct = imdct_do_256; // downmix in the frequency domain if all the channels // use the same imdct for (i=0; i < bsi->nfchans; i++) { if (doable != audblk->blksw[i]) { do_imdct = NULL; break; } } if (do_imdct) { //dowmix first and imdct switch(bsi->acmod) { case 7: // 3/2 downmix_3f_2r_to_2ch (samples[0], dm_par); break; case 6: // 2/2 downmix_2f_2r_to_2ch (samples[0], dm_par); break; case 5: // 3/1 downmix_3f_1r_to_2ch (samples[0], dm_par); break; case 4: // 2/1 downmix_2f_1r_to_2ch (samples[0], dm_par); break; case 3: // 3/0 downmix_3f_0r_to_2ch (samples[0], dm_par); break; case 2: break; default: // 1/0 if (bsi->acmod == 1) center = samples[0]; else if (bsi->acmod == 0) center = samples[ac3_config.dual_mono_ch_sel]; do_imdct(center, delay[0]); // no downmix stream_sample_1ch_to_s16 (s16_samples, center); return; //goto done; break; } do_imdct (samples[0], delay[0]); do_imdct (samples[1], delay[1]); stream_sample_2ch_to_s16(s16_samples, samples[0], samples[1]); } else { //imdct and then dowmix // delay and samples should be saved and mixed //fprintf(stderr, "time domain downmix\n"); for (i=0; infchans; i++) { if (audblk->blksw[i]) imdct_do_256_nol (samples[i],delay1[i]); else imdct_do_512_nol (samples[i],delay1[i]); } // mix the sample, overlap switch(bsi->acmod) { case 7: // 3/2 left = samples[0]; center = samples[1]; right = samples[2]; left_sur = samples[3]; right_sur = samples[4]; delay_left = delay[0]; delay_right = delay[1]; delay1_left = delay1[0]; delay1_center = delay1[1]; delay1_right = delay1[2]; delay1_sl = delay1[3]; delay1_sr = delay1[4]; for (i = 0; i < 256; i++) { left_tmp = dm_par->unit * *left++ + dm_par->clev * *center + dm_par->slev * *left_sur++; right_tmp= dm_par->unit * *right++ + dm_par->clev * *center++ + dm_par->slev * *right_sur++; *s16_samples++ = (int16_t)(left_tmp + *delay_left); *s16_samples++ = (int16_t)(right_tmp + *delay_right); *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->clev * *delay1_center + dm_par->slev * *delay1_sl++; *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->clev * *center++ + dm_par->slev * *delay1_sr++; } break; case 6: // 2/2 left = samples[0]; right = samples[1]; left_sur = samples[2]; right_sur = samples[3]; delay_left = delay[0]; delay_right = delay[1]; delay1_left = delay1[0]; delay1_right = delay1[1]; delay1_sl = delay1[2]; delay1_sr = delay1[3]; for (i = 0; i < 256; i++) { left_tmp = dm_par->unit * *left++ + dm_par->slev * *left_sur++; right_tmp= dm_par->unit * *right++ + dm_par->slev * *right_sur++; *s16_samples++ = (int16_t)(left_tmp + *delay_left); *s16_samples++ = (int16_t)(right_tmp + *delay_right); *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->slev * *delay1_sl++; *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->slev * *delay1_sr++; } break; case 5: // 3/1 left = samples[0]; center = samples[1]; right = samples[2]; right_sur = samples[3]; delay_left = delay[0]; delay_right = delay[1]; delay1_left = delay1[0]; delay1_center = delay1[1]; delay1_right = delay1[2]; delay1_sl = delay1[3]; for (i = 0; i < 256; i++) { left_tmp = dm_par->unit * *left++ + dm_par->clev * *center - dm_par->slev * *right_sur; right_tmp= dm_par->unit * *right++ + dm_par->clev * *center++ + dm_par->slev * *right_sur++; *s16_samples++ = (int16_t)(left_tmp + *delay_left); *s16_samples++ = (int16_t)(right_tmp + *delay_right); *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->clev * *delay1_center + dm_par->slev * *delay1_sl; *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->clev * *center++ + dm_par->slev * *delay1_sl++; } break; case 4: // 2/1 left = samples[0]; right = samples[1]; right_sur = samples[2]; delay_left = delay[0]; delay_right = delay[1]; delay1_left = delay1[0]; delay1_right = delay1[1]; delay1_sl = delay1[2]; for (i = 0; i < 256; i++) { left_tmp = dm_par->unit * *left++ - dm_par->slev * *right_sur; right_tmp= dm_par->unit * *right++ + dm_par->slev * *right_sur++; *s16_samples++ = (int16_t)(left_tmp + *delay_left); *s16_samples++ = (int16_t)(right_tmp + *delay_right); *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->slev * *delay1_sl; *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->slev * *delay1_sl++; } break; case 3: // 3/0 left = samples[0]; center = samples[1]; right = samples[2]; delay_left = delay[0]; delay_right = delay[1]; delay1_left = delay1[0]; delay1_center = delay1[1]; delay1_right = delay1[2]; for (i = 0; i < 256; i++) { left_tmp = dm_par->unit * *left++ + dm_par->clev * *center; right_tmp= dm_par->unit * *right++ + dm_par->clev * *center++; *s16_samples++ = (int16_t)(left_tmp + *delay_left); *s16_samples++ = (int16_t)(right_tmp + *delay_right); *delay_left++ = dm_par->unit * *delay1_left++ + dm_par->clev * *delay1_center; *delay_right++ = dm_par->unit * *delay1_right++ + dm_par->clev * *center++; } break; case 2: // copy to output for (i = 0; i < 256; i++) { *s16_samples++ = (int16_t)samples[0][i]; *s16_samples++ = (int16_t)samples[1][i]; } break; } } }