vdr/remux.h

553 lines
21 KiB
C++

/*
* remux.h: Tools for detecting frames and handling PAT/PMT
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: remux.h 5.2 2021/12/25 14:11:39 kls Exp $
*/
#ifndef __REMUX_H
#define __REMUX_H
#include "channels.h"
#include "tools.h"
enum ePesHeader {
phNeedMoreData = -1,
phInvalid = 0,
phMPEG1 = 1,
phMPEG2 = 2
};
ePesHeader AnalyzePesHeader(const uchar *Data, int Count, int &PesPayloadOffset, bool *ContinuationHeader = NULL);
class cRemux {
public:
static void SetBrokenLink(uchar *Data, int Length);
};
// Some TS handling tools.
// The following functions all take a pointer to one complete TS packet.
#define TS_SYNC_BYTE 0x47
#define TS_SIZE 188
#define TS_ERROR 0x80
#define TS_PAYLOAD_START 0x40
#define TS_TRANSPORT_PRIORITY 0x20
#define TS_PID_MASK_HI 0x1F
#define TS_SCRAMBLING_CONTROL 0xC0
#define TS_ADAPT_FIELD_EXISTS 0x20
#define TS_PAYLOAD_EXISTS 0x10
#define TS_CONT_CNT_MASK 0x0F
#define TS_ADAPT_DISCONT 0x80
#define TS_ADAPT_RANDOM_ACC 0x40 // would be perfect for detecting independent frames, but unfortunately not used by all broadcasters
#define TS_ADAPT_ELEM_PRIO 0x20
#define TS_ADAPT_PCR 0x10
#define TS_ADAPT_OPCR 0x08
#define TS_ADAPT_SPLICING 0x04
#define TS_ADAPT_TP_PRIVATE 0x02
#define TS_ADAPT_EXTENSION 0x01
#define PATPID 0x0000 // PAT PID (constant 0)
#define CATPID 0x0001 // CAT PID (constant 1)
#define EITPID 0x0012 // EIT PID (constant 18)
#define MAXPID 0x2000 // for arrays that use a PID as the index
#define PTSTICKS 90000 // number of PTS ticks per second
#define PCRFACTOR 300 // conversion from 27MHz PCR extension to 90kHz PCR base
#define MAX33BIT 0x00000001FFFFFFFFLL // max. possible value with 33 bit
#define MAX27MHZ ((MAX33BIT + 1) * PCRFACTOR - 1) // max. possible PCR value
inline bool TsHasPayload(const uchar *p)
{
return p[3] & TS_PAYLOAD_EXISTS;
}
inline bool TsHasAdaptationField(const uchar *p)
{
return p[3] & TS_ADAPT_FIELD_EXISTS;
}
inline bool TsPayloadStart(const uchar *p)
{
return p[1] & TS_PAYLOAD_START;
}
inline bool TsError(const uchar *p)
{
return p[1] & TS_ERROR;
}
inline int TsPid(const uchar *p)
{
return (p[1] & TS_PID_MASK_HI) * 256 + p[2];
}
inline void TsSetPid(uchar *p, int Pid)
{
p[1] = (p[1] & ~TS_PID_MASK_HI) | ((Pid >> 8) & TS_PID_MASK_HI);
p[2] = Pid & 0x00FF;
}
inline bool TsIsScrambled(const uchar *p)
{
return p[3] & TS_SCRAMBLING_CONTROL;
}
inline uchar TsContinuityCounter(const uchar *p)
{
return p[3] & TS_CONT_CNT_MASK;
}
inline void TsSetContinuityCounter(uchar *p, uchar Counter)
{
p[3] = (p[3] & ~TS_CONT_CNT_MASK) | (Counter & TS_CONT_CNT_MASK);
}
inline int TsPayloadOffset(const uchar *p)
{
int o = TsHasAdaptationField(p) ? p[4] + 5 : 4;
return o <= TS_SIZE ? o : TS_SIZE;
}
inline int TsGetPayload(const uchar **p)
{
if (TsHasPayload(*p)) {
int o = TsPayloadOffset(*p);
*p += o;
return TS_SIZE - o;
}
return 0;
}
inline int64_t TsGetPcr(const uchar *p)
{
if (TsHasAdaptationField(p)) {
if (p[4] >= 7 && (p[5] & TS_ADAPT_PCR)) {
return ((((int64_t)p[ 6]) << 25) |
(((int64_t)p[ 7]) << 17) |
(((int64_t)p[ 8]) << 9) |
(((int64_t)p[ 9]) << 1) |
(((int64_t)p[10]) >> 7)) * PCRFACTOR +
(((((int)p[10]) & 0x01) << 8) |
( ((int)p[11])));
}
}
return -1;
}
void TsHidePayload(uchar *p);
void TsSetPcr(uchar *p, int64_t Pcr);
// Helper macro and function to quickly check whether Data points to the beginning
// of a TS packet. The return value is the number of bytes that need to be skipped
// to synchronize on the next TS packet (zero if already sync'd). TsSync() can be
// called directly, the macro just performs the initial check inline and adds some
// debug information for logging.
#define TS_SYNC(Data, Length) (*Data == TS_SYNC_BYTE ? 0 : TsSync(Data, Length, __FILE__, __FUNCTION__, __LINE__))
int TsSync(const uchar *Data, int Length, const char *File = NULL, const char *Function = NULL, int Line = 0);
// The following functions all take a pointer to a sequence of complete TS packets.
int64_t TsGetPts(const uchar *p, int l);
int64_t TsGetDts(const uchar *p, int l);
void TsSetPts(uchar *p, int l, int64_t Pts);
void TsSetDts(uchar *p, int l, int64_t Dts);
// Some PES handling tools:
// The following functions that take a pointer to PES data all assume that
// there is enough data so that PesLongEnough() returns true.
inline bool PesLongEnough(int Length)
{
return Length >= 6;
}
inline bool PesHasLength(const uchar *p)
{
return p[4] | p[5];
}
inline int PesLength(const uchar *p)
{
return 6 + p[4] * 256 + p[5];
}
inline int PesPayloadOffset(const uchar *p)
{
return 9 + p[8];
}
inline bool PesHasPts(const uchar *p)
{
return (p[7] & 0x80) && p[8] >= 5;
}
inline bool PesHasDts(const uchar *p)
{
return (p[7] & 0x40) && p[8] >= 10;
}
inline int64_t PesGetPts(const uchar *p)
{
return ((((int64_t)p[ 9]) & 0x0E) << 29) |
(( (int64_t)p[10]) << 22) |
((((int64_t)p[11]) & 0xFE) << 14) |
(( (int64_t)p[12]) << 7) |
((((int64_t)p[13]) & 0xFE) >> 1);
}
inline int64_t PesGetDts(const uchar *p)
{
return ((((int64_t)p[14]) & 0x0E) << 29) |
(( (int64_t)p[15]) << 22) |
((((int64_t)p[16]) & 0xFE) << 14) |
(( (int64_t)p[17]) << 7) |
((((int64_t)p[18]) & 0xFE) >> 1);
}
void PesSetPts(uchar *p, int64_t Pts);
void PesSetDts(uchar *p, int64_t Dts);
// PTS handling:
inline int64_t PtsAdd(int64_t Pts1, int64_t Pts2) { return (Pts1 + Pts2) & MAX33BIT; }
///< Adds the given PTS values, taking into account the 33bit wrap around.
int64_t PtsDiff(int64_t Pts1, int64_t Pts2);
///< Returns the difference between two PTS values. The result of Pts2 - Pts1
///< is the actual number of 90kHz time ticks that pass from Pts1 to Pts2,
///< properly taking into account the 33bit wrap around. If Pts2 is "before"
///< Pts1, the result is negative.
// A transparent TS payload handler:
class cTsPayload {
private:
uchar *data;
int length;
int pid;
int index; // points to the next byte to process
int numPacketsPid; // the number of TS packets with the given PID (for statistical purposes)
int numPacketsOther; // the number of TS packets with other PIDs (for statistical purposes)
uchar SetEof(void);
protected:
void Reset(void);
public:
cTsPayload(void);
cTsPayload(uchar *Data, int Length, int Pid = -1);
///< Creates a new TS payload handler and calls Setup() with the given Data.
void Setup(uchar *Data, int Length, int Pid = -1);
///< Sets up this TS payload handler with the given Data, which points to a
///< sequence of Length bytes of complete TS packets. Any incomplete TS
///< packet at the end will be ignored.
///< If Pid is given, only TS packets with data for that PID will be processed.
///< Otherwise the PID of the first TS packet defines which payload will be
///< delivered.
///< Any intermediate TS packets with different PIDs will be skipped.
bool AtTsStart(void) { return index < length && (index % TS_SIZE) == 0; }
///< Returns true if this payload handler is currently pointing to first byte
///< of a TS packet.
bool AtPayloadStart(void) { return AtTsStart() && TsPayloadStart(data + index) && TsPid(data + index) == pid; }
///< Returns true if this payload handler is currently pointing to the first byte
///< of a TS packet that starts a new payload.
int Available(void) { return length - index; }
///< Returns the number of raw bytes (including any TS headers) still available
///< in the TS payload handler.
int Used(void) { return (index + TS_SIZE - 1) / TS_SIZE * TS_SIZE; }
///< Returns the number of raw bytes that have already been used (e.g. by calling
///< GetByte()). Any TS packet of which at least a single byte has been delivered
///< is counted with its full size.
bool Eof(void) const { return index >= length; }
///< Returns true if all available bytes of the TS payload have been processed.
void Statistics(void) const;
///< May be called after a new frame has been detected, and will log a warning
///< if the number of TS packets required to determine the frame type exceeded
///< some safety limits.
uchar GetByte(void);
///< Gets the next byte of the TS payload, skipping any intermediate TS header data.
bool SkipBytes(int Bytes);
///< Skips the given number of bytes in the payload and returns true if there
///< is still data left to read.
bool SkipPesHeader(void);
///< Skips all bytes belonging to the PES header of the payload.
int GetLastIndex(void);
///< Returns the index into the TS data of the payload byte that has most recently
///< been read. If no byte has been read yet, -1 will be returned.
void SetByte(uchar Byte, int Index);
///< Sets the TS data byte at the given Index to the value Byte.
///< Index should be one that has been retrieved by a previous call to GetIndex(),
///< otherwise the behaviour is undefined. The current read index will not be
///< altered by a call to this function.
bool Find(uint32_t Code);
///< Searches for the four byte sequence given in Code and returns true if it
///< was found within the payload data. The next call to GetByte() will return the
///< value immediately following the Code. If the code was not found, the read
///< index will remain the same as before this call, so that several calls to
///< Find() can be performed starting at the same index..
///< The special code 0xFFFFFFFF can not be searched, because this value is used
///< to initialize the scanner.
};
// PAT/PMT Generator:
#define MAX_SECTION_SIZE 4096 // maximum size of an SI section
#define MAX_PMT_TS (MAX_SECTION_SIZE / TS_SIZE + 1)
class cPatPmtGenerator {
private:
uchar pat[TS_SIZE]; // the PAT always fits into a single TS packet
uchar pmt[MAX_PMT_TS][TS_SIZE]; // the PMT may well extend over several TS packets
int numPmtPackets;
int patCounter;
int pmtCounter;
int patVersion;
int pmtVersion;
int pmtPid;
uchar *esInfoLength;
void IncCounter(int &Counter, uchar *TsPacket);
void IncVersion(int &Version);
void IncEsInfoLength(int Length);
protected:
int MakeStream(uchar *Target, uchar Type, int Pid);
int MakeAC3Descriptor(uchar *Target, uchar Type);
int MakeSubtitlingDescriptor(uchar *Target, const char *Language, uchar SubtitlingType, uint16_t CompositionPageId, uint16_t AncillaryPageId);
int MakeLanguageDescriptor(uchar *Target, const char *Language);
int MakeCRC(uchar *Target, const uchar *Data, int Length);
void GeneratePmtPid(const cChannel *Channel);
///< Generates a PMT pid that doesn't collide with any of the actual
///< pids of the Channel.
void GeneratePat(void);
///< Generates a PAT section for later use with GetPat().
void GeneratePmt(const cChannel *Channel);
///< Generates a PMT section for the given Channel, for later use
///< with GetPmt().
public:
cPatPmtGenerator(const cChannel *Channel = NULL);
void SetVersions(int PatVersion, int PmtVersion);
///< Sets the version numbers for the generated PAT and PMT, in case
///< this generator is used to, e.g., continue a previously interrupted
///< recording (in which case the numbers given should be derived from
///< the PAT/PMT versions last used in the existing recording, incremented
///< by 1. If the given numbers exceed the allowed range of 0..31, the
///< higher bits will automatically be cleared.
///< SetVersions() needs to be called before SetChannel() in order to
///< have an effect from the very start.
void SetChannel(const cChannel *Channel);
///< Sets the Channel for which the PAT/PMT shall be generated.
uchar *GetPat(void);
///< Returns a pointer to the PAT section, which consists of exactly
///< one TS packet.
uchar *GetPmt(int &Index);
///< Returns a pointer to the Index'th TS packet of the PMT section.
///< Index must be initialized to 0 and will be incremented by each
///< call to GetPmt(). Returns NULL is all packets of the PMT section
///< have been fetched..
};
// PAT/PMT Parser:
#define MAX_PMT_PIDS 32
class cPatPmtParser {
private:
uchar pmt[MAX_SECTION_SIZE];
int pmtSize;
int patVersion;
int pmtVersion;
int pmtPids[MAX_PMT_PIDS + 1]; // list is zero-terminated
int vpid;
int ppid;
int vtype;
int apids[MAXAPIDS + 1]; // list is zero-terminated
int atypes[MAXAPIDS + 1]; // list is zero-terminated
char alangs[MAXAPIDS][MAXLANGCODE2];
int dpids[MAXDPIDS + 1]; // list is zero-terminated
int dtypes[MAXDPIDS + 1]; // list is zero-terminated
char dlangs[MAXDPIDS][MAXLANGCODE2];
int spids[MAXSPIDS + 1]; // list is zero-terminated
char slangs[MAXSPIDS][MAXLANGCODE2];
uchar subtitlingTypes[MAXSPIDS];
uint16_t compositionPageIds[MAXSPIDS];
uint16_t ancillaryPageIds[MAXSPIDS];
bool updatePrimaryDevice;
bool completed;
protected:
int SectionLength(const uchar *Data, int Length) { return (Length >= 3) ? ((int(Data[1]) & 0x0F) << 8)| Data[2] : 0; }
public:
cPatPmtParser(bool UpdatePrimaryDevice = false);
void Reset(void);
///< Resets the parser. This function must be called whenever a new
///< stream is parsed.
void ParsePat(const uchar *Data, int Length);
///< Parses the PAT data from the single TS packet in Data.
///< Length is always TS_SIZE.
void ParsePmt(const uchar *Data, int Length);
///< Parses the PMT data from the single TS packet in Data.
///< Length is always TS_SIZE.
///< The PMT may consist of several TS packets, which
///< are delivered to the parser through several subsequent calls to
///< ParsePmt(). The whole PMT data will be processed once the last packet
///< has been received.
bool ParsePatPmt(const uchar *Data, int Length);
///< Parses the given Data (which may consist of several TS packets, typically
///< an entire frame) and extracts the PAT and PMT.
///< Returns true if a valid PAT/PMT has been detected.
bool GetVersions(int &PatVersion, int &PmtVersion) const;
///< Returns true if a valid PAT/PMT has been parsed and stores
///< the current version numbers in the given variables.
bool IsPmtPid(int Pid) const { for (int i = 0; pmtPids[i]; i++) if (pmtPids[i] == Pid) return true; return false; }
///< Returns true if Pid the one of the PMT pids as defined by the current PAT.
///< If no PAT has been received yet, false will be returned.
int Vpid(void) const { return vpid; }
///< Returns the video pid as defined by the current PMT, or 0 if no video
///< pid has been detected, yet.
int Ppid(void) const { return ppid; }
///< Returns the PCR pid as defined by the current PMT, or 0 if no PCR
///< pid has been detected, yet.
int Vtype(void) const { return vtype; }
///< Returns the video stream type as defined by the current PMT, or 0 if no video
///< stream type has been detected, yet.
bool Completed(void) { return completed; }
///< Returns true if the PMT has been completely parsed.
const int *Apids(void) const { return apids; }
const int *Dpids(void) const { return dpids; }
const int *Spids(void) const { return spids; }
int Apid(int i) const { return (0 <= i && i < MAXAPIDS) ? apids[i] : 0; }
int Dpid(int i) const { return (0 <= i && i < MAXDPIDS) ? dpids[i] : 0; }
int Spid(int i) const { return (0 <= i && i < MAXSPIDS) ? spids[i] : 0; }
int Atype(int i) const { return (0 <= i && i < MAXAPIDS) ? atypes[i] : 0; }
int Dtype(int i) const { return (0 <= i && i < MAXDPIDS) ? dtypes[i] : 0; }
const char *Alang(int i) const { return (0 <= i && i < MAXAPIDS) ? alangs[i] : ""; }
const char *Dlang(int i) const { return (0 <= i && i < MAXDPIDS) ? dlangs[i] : ""; }
const char *Slang(int i) const { return (0 <= i && i < MAXSPIDS) ? slangs[i] : ""; }
uchar SubtitlingType(int i) const { return (0 <= i && i < MAXSPIDS) ? subtitlingTypes[i] : uchar(0); }
uint16_t CompositionPageId(int i) const { return (0 <= i && i < MAXSPIDS) ? compositionPageIds[i] : uint16_t(0); }
uint16_t AncillaryPageId(int i) const { return (0 <= i && i < MAXSPIDS) ? ancillaryPageIds[i] : uint16_t(0); }
};
// EIT Generator:
class cEitGenerator {
private:
uchar eit[TS_SIZE];
int counter;
int version;
uint16_t YMDtoMJD(int Y, int M, int D);
uchar *AddParentalRatingDescriptor(uchar *p, uchar ParentalRating = 0);
public:
cEitGenerator(int Sid = 0);
uchar *Generate(int Sid);
uchar *Data(void) { return eit; }
int Length(void) { return sizeof(eit); }
};
// TS to PES converter:
// Puts together the payload of several TS packets that form one PES
// packet.
class cTsToPes {
private:
uchar *data;
int size;
int length;
int offset;
uchar *lastData;
int lastLength;
bool repeatLast;
public:
cTsToPes(void);
~cTsToPes();
void PutTs(const uchar *Data, int Length);
///< Puts the payload data of the single TS packet at Data into the converter.
///< Length is always TS_SIZE.
///< If the given TS packet starts a new PES payload packet, the converter
///< will be automatically reset. Any packets before the first one that starts
///< a new PES payload packet will be ignored.
///< Once a TS packet has been put into a cTsToPes converter, all subsequent
///< packets until the next call to Reset() must belong to the same PID as
///< the first packet. There is no check whether this actually is the case, so
///< the caller is responsible for making sure this condition is met.
const uchar *GetPes(int &Length);
///< Gets a pointer to the complete PES packet, or NULL if the packet
///< is not complete yet. If the packet is complete, Length will contain
///< the total packet length. The returned pointer is only valid until
///< the next call to PutTs() or Reset(), or until this object is destroyed.
///< Once GetPes() has returned a non-NULL value, it must be called
///< repeatedly, and the data processed, until it returns NULL. This
///< is because video packets may be larger than the data a single
///< PES packet with an actual length field can hold, and are therefore
///< split into several PES packets with smaller sizes.
///< Note that for video data GetPes() may only be called if the next
///< TS packet that will be given to PutTs() has the "payload start" flag
///< set, because this is the only way to determine the end of a video PES
///< packet.
void SetRepeatLast(void);
///< Makes the next call to GetPes() return exactly the same data as the
///< last one (provided there was no call to Reset() in the meantime).
void Reset(void);
///< Resets the converter. This needs to be called after a PES packet has
///< been fetched by a call to GetPes(), and before the next call to
///< PutTs().
};
// Some helper functions for debugging:
void BlockDump(const char *Name, const u_char *Data, int Length);
void TsDump(const char *Name, const u_char *Data, int Length);
void PesDump(const char *Name, const u_char *Data, int Length);
// Frame detector:
#define MIN_TS_PACKETS_FOR_FRAME_DETECTOR 100
class cFrameParser;
class cFrameDetector {
private:
enum { MaxPtsValues = 150 };
int pid;
int type;
bool synced;
bool newFrame;
bool independentFrame;
uint32_t ptsValues[MaxPtsValues]; // 32 bit is enough - we only need the delta
int numPtsValues;
int numIFrames;
bool isVideo;
double framesPerSecond;
int framesInPayloadUnit;
int framesPerPayloadUnit; // Some broadcasters send one frame per payload unit (== 1),
// while others put an entire GOP into one payload unit (> 1).
bool scanning;
cFrameParser *parser;
public:
cFrameDetector(int Pid = 0, int Type = 0);
///< Sets up a frame detector for the given Pid and stream Type.
///< If no Pid and Type is given, they need to be set by a separate
///< call to SetPid().
void SetPid(int Pid, int Type);
///< Sets the Pid and stream Type to detect frames for.
int Analyze(const uchar *Data, int Length);
///< Analyzes the TS packets pointed to by Data. Length is the number of
///< bytes Data points to, and must be a multiple of TS_SIZE.
///< Returns the number of bytes that have been analyzed.
///< If the return value is 0, the data was not sufficient for analyzing and
///< Analyze() needs to be called again with more actual data.
bool Synced(void) { return synced; }
///< Returns true if the frame detector has synced on the data stream.
bool NewFrame(void) { return newFrame; }
///< Returns true if the data given to the last call to Analyze() started a
///< new frame.
bool IndependentFrame(void) { return independentFrame; }
///< Returns true if a new frame was detected and this is an independent frame
///< (i.e. one that can be displayed by itself, without using data from any
///< other frames).
double FramesPerSecond(void) { return framesPerSecond; }
///< Returns the number of frames per second, or 0 if this information is not
///< available.
};
#endif // __REMUX_H