1
0
mirror of https://github.com/VDR4Arch/vdr.git synced 2023-10-10 13:36:52 +02:00
vdr/device.h
2004-01-04 12:30:00 +01:00

461 lines
21 KiB
C++

/*
* device.h: The basic device interface
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: device.h 1.37 2004/01/04 11:52:00 kls Exp $
*/
#ifndef __DEVICE_H
#define __DEVICE_H
#include "ci.h"
#include "eit.h"
#include "filter.h"
#include "pat.h"
#include "sdt.h"
#include "sections.h"
#include "thread.h"
#include "tools.h"
#define MAXDEVICES 16 // the maximum number of devices in the system
#define MAXCACAPS 16 // the maximum number of different CA values per device
#define MAXPIDHANDLES 16 // the maximum number of different PIDs per device
#define MAXRECEIVERS 16 // the maximum number of receivers per device
#define MAXVOLUME 255
#define VOLUMEDELTA 5 // used to increase/decrease the volume
#define TS_SIZE 188
#define TS_SYNC_BYTE 0x47
#define PID_MASK_HI 0x1F
enum eSetChannelResult { scrOk, scrNotAvailable, scrNoTransfer, scrFailed };
enum ePlayMode { pmNone, // audio/video from decoder
pmAudioVideo, // audio/video from player
pmAudioOnly, // audio only from player, video from decoder
pmAudioOnlyBlack, // audio only from player, no video (black screen)
pmExtern_THIS_SHOULD_BE_AVOIDED
// external player (e.g. MPlayer), release the device
// WARNING: USE THIS MODE ONLY AS A LAST RESORT, IF YOU
// ABSOLUTELY, POSITIVELY CAN'T IMPLEMENT YOUR PLAYER
// THE WAY IT IS SUPPOSED TO WORK. FORCING THE DEVICE
// TO RELEASE ITS FILES HANDLES (OR WHATEVER RESOURCES
// IT MAY USE) TO ALLOW AN EXTERNAL PLAYER TO ACCESS
// THEM MEANS THAT SUCH A PLAYER WILL NEED TO HAVE
// DETAILED KNOWLEDGE ABOUT THE INTERNALS OF THE DEVICE
// IN USE. AS A CONSEQUENCE, YOUR PLAYER MAY NOT WORK
// IF A PARTICULAR VDR INSTALLATION USES A DEVICE NOT
// KNOWN TO YOUR PLAYER.
};
enum eVideoSystem { vsPAL,
vsNTSC
};
class cOsdBase;
class cChannel;
class cPlayer;
class cReceiver;
class cSpuDecoder;
/// The cDevice class is the base from which actual devices can be derived.
class cDevice : public cThread {
private:
static int numDevices;
static int useDevice;
static cDevice *device[MAXDEVICES];
static cDevice *primaryDevice;
public:
static int NumDevices(void) { return numDevices; }
///< Returns the total number of devices.
static void SetUseDevice(int n);
///< Sets the 'useDevice' flag of the given device.
///< If this function is not called before initializing, all devices
///< will be used.
static bool UseDevice(int n) { return useDevice == 0 || (useDevice & (1 << n)) != 0; }
///< Tells whether the device with the given card index shall be used in
///< this instance of VDR.
static bool SetPrimaryDevice(int n);
///< Sets the primary device to 'n'.
///< \param n must be in the range 1...numDevices.
///< \return true if this was possible.
static cDevice *PrimaryDevice(void) { return primaryDevice; }
///< Returns the primary device.
static cDevice *ActualDevice(void);
///< Returns the actual receiving device in case of Transfer Mode, or the
///< primary device otherwise.
static cDevice *GetDevice(int Index);
///< Gets the device with the given Index.
///< \param Index must be in the range 0..numDevices-1.
///< \return A pointer to the device, or NULL if the Index was invalid.
static cDevice *GetDevice(const cChannel *Channel, int Priority = -1, bool *NeedsDetachReceivers = NULL);
///< Returns a device that is able to receive the given Channel at the
///< given Priority.
///< See ProvidesChannel() for more information on how
///< priorities are handled, and the meaning of NeedsDetachReceivers.
static void SetCaCaps(int Index = -1);
///< Sets the CaCaps of the given device according to the Setup data.
///< By default the CaCaps of all devices are set.
static void Shutdown(void);
///< Closes down all devices.
///< Must be called at the end of the program.
private:
static int nextCardIndex;
int cardIndex;
int caCaps[MAXCACAPS];
protected:
cDevice(void);
virtual ~cDevice();
static int NextCardIndex(int n = 0);
///< Calculates the next card index.
///< Each device in a given machine must have a unique card index, which
///< will be used to identify the device for assigning Ca parameters and
///< deciding whether to actually use that device in this particular
///< instance of VDR. Every time a new cDevice is created, it will be
///< given the current nextCardIndex, and then nextCardIndex will be
///< automatically incremented by 1. A derived class can determine whether
///< a given device shall be used by checking UseDevice(NextCardIndex()).
///< If a device is skipped, or if there are possible device indexes left
///< after a derived class has set up all its devices, NextCardIndex(n)
///< must be called, where n is the number of card indexes to skip.
virtual void MakePrimaryDevice(bool On);
///< Informs a device that it will be the primary device. If there is
///< anything the device needs to set up when it becomes the primary
///< device (On = true) or to shut down when it no longer is the primary
///< device (On = false), it should do so in this function.
public:
bool IsPrimaryDevice(void) const { return this == primaryDevice; }
int CardIndex(void) const { return cardIndex; }
///< Returns the card index of this device (0 ... MAXDEVICES - 1).
int DeviceNumber(void) const;
///< Returns the number of this device (0 ... MAXDEVICES - 1).
virtual int ProvidesCa(const cChannel *Channel) const;//XXX PLUGINS.html!!!
//XXX describe changed functionality!!!
///< Checks whether this device provides the given value in its
///< caCaps. Returns 0 if the value is not provided, 1 if only this
///< value is provided, and > 1 if this and other values are provided.
///< If the given value is equal to the number of this device,
///< 1 is returned. If it is 0 (FTA), 1 plus the number of other values
///< in caCaps is returned.
virtual bool HasDecoder(void) const;
///< Tells whether this device has an MPEG decoder.
// OSD facilities
public:
virtual cOsdBase *NewOsd(int x, int y);
///< Creates a new cOsdBase object that can be used by the cOsd class
///< to display information on the screen, with the upper left corner
///< of the OSD at the given coordinates. If a derived cDevice doesn't
///< implement this function, NULL will be returned by default (which
///< means the device has no OSD capabilities).
virtual cSpuDecoder *GetSpuDecoder(void);
///< Returns a pointer to the device's SPU decoder (or NULL, if this
///< device doesn't have an SPU decoder).
// Channel facilities
protected:
static int currentChannel;
public:
virtual bool ProvidesSource(int Source) const;
///< Returns true if this device can provide the given source.
virtual bool ProvidesTransponder(const cChannel *Channel) const;
///< XXX -> PLUGINS.html!
virtual bool ProvidesChannel(const cChannel *Channel, int Priority = -1, bool *NeedsDetachReceivers = NULL) const;
///< Returns true if this device can provide the given channel.
///< In case the device has cReceivers attached to it or it is the primary
///< device, Priority is used to decide whether the caller's request can
///< be honored.
///< The special Priority value -1 will tell the caller whether this device
///< is principally able to provide the given Channel, regardless of any
///< attached cReceivers.
///< If NeedsDetachReceivers is given, the resulting value in it will tell the
///< caller whether or not it will have to detach any currently attached
///< receivers from this device before calling SwitchChannel. Note
///< that the return value in NeedsDetachReceivers is only meaningful if the
///< function itself actually returns true.
///< The default implementation always returns false, so a derived cDevice
///< class that can provide channels must implement this function.
bool SwitchChannel(const cChannel *Channel, bool LiveView);
///< Switches the device to the given Channel, initiating transfer mode
///< if necessary.
static bool SwitchChannel(int Direction);
///< Switches the primary device to the next available channel in the given
///< Direction (only the sign of Direction is evaluated, positive values
///< switch to higher channel numbers).
private:
eSetChannelResult SetChannel(const cChannel *Channel, bool LiveView);
///< Sets the device to the given channel (general setup).
protected:
virtual bool SetChannelDevice(const cChannel *Channel, bool LiveView);
///< Sets the device to the given channel (actual physical setup).
public:
static int CurrentChannel(void) { return primaryDevice ? currentChannel : 0; }
///< Returns the number of the current channel on the primary device.
virtual bool HasLock(void);//XXX PLUGINS.html
///< Returns true if the device has a lock on the requested transponder.
///< Default is true, a specific device implementation may return false
///< to indicate that it is not ready yet.
virtual bool HasProgramme(void);
///< Returns true if the device is currently showing any programme to
///< the user, either through replaying or live.
// PID handle facilities
private:
bool active;
virtual void Action(void);
protected:
enum ePidType { ptAudio, ptVideo, ptPcr, ptTeletext, ptDolby, ptOther };
class cPidHandle {
public:
int pid;
int handle;
int used;
cPidHandle(void) { pid = used = 0; handle = -1; }
};
cPidHandle pidHandles[MAXPIDHANDLES];
bool HasPid(int Pid) const;
///< Returns true if this device is currently receiving the given PID.
bool AddPid(int Pid, ePidType PidType = ptOther);
///< Adds a PID to the set of PIDs this device shall receive.
void DelPid(int Pid, ePidType PidType = ptOther);
///< Deletes a PID from the set of PIDs this device shall receive.
virtual bool SetPid(cPidHandle *Handle, int Type, bool On);
///< Does the actual PID setting on this device.
///< On indicates whether the PID shall be added or deleted.
///< Handle->handle can be used by the device to store information it
///< needs to receive this PID (for instance a file handle).
///< Handle->used indicated how many receivers are using this PID.
///< Type indicates some special types of PIDs, which the device may
///< need to set in a specific way.
// Section filter facilities
private:
cSectionHandler *sectionHandler;
cEitFilter *eitFilter;
cPatFilter *patFilter;
cSdtFilter *sdtFilter;
protected:
void StartSectionHandler(void);
///< A derived device that provides section data must call
///< this function to actually set up the section handler.
public:
virtual int OpenFilter(u_short Pid, u_char Tid, u_char Mask);
///< Opens a file handle for the given filter data.
///< A derived device that provides section data must
///< implement this function.
void AttachFilter(cFilter *Filter);
///< Attaches the given filter to this device.
void Detach(cFilter *Filter);
///< Detaches the given filter from this device.
// Common Interface facilities:
protected:
cCiHandler *ciHandler;
public:
cCiHandler *CiHandler(void) { return ciHandler; }
// Image Grab facilities
public:
virtual bool GrabImage(const char *FileName, bool Jpeg = true, int Quality = -1, int SizeX = -1, int SizeY = -1);
///< Capture a single frame as an image.
///< Grabs the currently visible screen image into the given file, with the
///< given parameters.
///< \param FileName The name of the file to write. Should include the proper extension.
///< \param Jpeg If true will write a JPEG file. Otherwise a PNM file will be written.
///< \param Quality The compression factor for JPEG. 1 will create a very blocky
///< and small image, 70..80 will yield reasonable quality images while keeping the
///< image file size around 50 KB for a full frame. The default will create a big
///< but very high quality image.
///< \param SizeX The number of horizontal pixels in the frame (default is the current screen width).
///< \param SizeY The number of vertical pixels in the frame (default is the current screen height).
///< \return True if all went well. */
// Video format facilities
public:
virtual void SetVideoFormat(bool VideoFormat16_9);
///< Sets the output video format to either 16:9 or 4:3 (only useful
///< if this device has an MPEG decoder).
virtual eVideoSystem GetVideoSystem(void);
///< Returns the video system of the currently displayed material
///< (default is PAL).
// Audio facilities
private:
bool mute;
int volume;
protected:
virtual void SetVolumeDevice(int Volume);
///< Sets the audio volume on this device (Volume = 0...255).
virtual int NumAudioTracksDevice(void) const;
///< Returns the number of audio tracks that are currently available on this
///< device. The default return value is 0, meaning that this device
///< doesn't have multiple audio track capabilities. The return value may
///< change with every call and need not necessarily be the number of list
///< entries returned by GetAudioTracksDevice(). This function is mainly called to
///< decide whether there should be an "Audio" button in a menu.
virtual const char **GetAudioTracksDevice(int *CurrentTrack = NULL) const;
///< Returns a list of currently available audio tracks. The last entry in the
///< list must be NULL. The number of entries does not necessarily have to be
///< the same as returned by a previous call to NumAudioTracksDevice().
///< If CurrentTrack is given, it will be set to the index of the current track
///< in the returned list. Note that the list must not be changed after it has
///< been returned by a call to GetAudioTracksDevice()! The only time the list may
///< change is *inside* the GetAudioTracksDevice() function.
///< By default the return value is NULL and CurrentTrack, if given, will not
///< have any meaning.
virtual void SetAudioTrackDevice(int Index);
///< Sets the current audio track to the given value, which should be within the
///< range of the list returned by a previous call to GetAudioTracksDevice()
///< (otherwise nothing will happen).
public:
bool IsMute(void) const { return mute; }
bool ToggleMute(void);
///< Turns the volume off or on and returns the new mute state.
void SetVolume(int Volume, bool Absolute = false);
///< Sets the volume to the given value, either absolutely or relative to
///< the current volume.
static int CurrentVolume(void) { return primaryDevice ? primaryDevice->volume : 0; }//XXX???
int NumAudioTracks(void) const;
///< Returns the number of audio tracks that are currently available on this
///< device or a player attached to it.
const char **GetAudioTracks(int *CurrentTrack = NULL) const;
///< Returns a list of currently available audio tracks. The last entry in the
///< list is NULL. The number of entries does not necessarily have to be
///< the same as returned by a previous call to NumAudioTracks().
///< If CurrentTrack is given, it will be set to the index of the current track
///< in the returned list.
///< By default the return value is NULL and CurrentTrack, if given, will not
///< have any meaning.
void SetAudioTrack(int Index);
///< Sets the current audio track to the given value, which should be within the
///< range of the list returned by a previous call to GetAudioTracks() (otherwise
///< nothing will happen).
// Player facilities
private:
cPlayer *player;
protected:
virtual bool CanReplay(void) const;
///< Returns true if this device can currently start a replay session.
virtual bool SetPlayMode(ePlayMode PlayMode);
///< Sets the device into the given play mode.
///< \return true if the operation was successful.
public:
virtual int64_t GetSTC(void);
///< Gets the current System Time Counter, which can be used to
///< synchronize audio and video. If this device is unable to
///< provide the STC, -1 will be returned.
virtual void TrickSpeed(int Speed);
///< Sets the device into a mode where replay is done slower.
///< Every single frame shall then be displayed the given number of
///< times.
virtual void Clear(void);
///< Clears all video and audio data from the device.
///< A derived class must call the base class function to make sure
///< all registered cAudio objects are notified.
virtual void Play(void);
///< Sets the device into play mode (after a previous trick
///< mode).
virtual void Freeze(void);
///< Puts the device into "freeze frame" mode.
virtual void Mute(void);
///< Turns off audio while replaying.
///< A derived class must call the base class function to make sure
///< all registered cAudio objects are notified.
virtual void StillPicture(const uchar *Data, int Length);
///< Displays the given I-frame as a still picture.
virtual bool Poll(cPoller &Poller, int TimeoutMs = 0);
///< Returns true if the device itself or any of the file handles in
///< Poller is ready for further action.
///< If TimeoutMs is not zero, the device will wait up to the given number
///< of milleseconds before returning in case there is no immediate
///< need for data.
virtual int PlayVideo(const uchar *Data, int Length);
///< Actually plays the given data block as video. The data must be
///< part of a PES (Packetized Elementary Stream) which can contain
///< one video and one audio strem.
virtual void PlayAudio(const uchar *Data, int Length);
///< Plays additional audio streams, like Dolby Digital.
///< A derived class must call the base class function to make sure data
///< is distributed to all registered cAudio objects.
bool Replaying(void) const;
///< Returns true if we are currently replaying.
void StopReplay(void);
///< Stops the current replay session (if any).
bool AttachPlayer(cPlayer *Player);
///< Attaches the given player to this device.
void Detach(cPlayer *Player);
///< Detaches the given player from this device.
// Receiver facilities
private:
cReceiver *receiver[MAXRECEIVERS];
int CanShift(int Ca, int Priority, int UsedCards = 0) const;
protected:
int Priority(void) const;
///< Returns the priority of the current receiving session (0..MAXPRIORITY),
///< or -1 if no receiver is currently active. The primary device will
///< always return at least Setup.PrimaryLimit-1.
virtual bool OpenDvr(void);
///< Opens the DVR of this device and prepares it to deliver a Transport
///< Stream for use in a cReceiver.
virtual void CloseDvr(void);
///< Shuts down the DVR.
virtual bool GetTSPacket(uchar *&Data);
///< Gets exactly one TS packet from the DVR of this device and returns
///< a pointer to it in Data. Only the first 188 bytes (TS_SIZE) Data
///< points to are valid and may be accessed. If there is currently no
///< new data available, Data will be set to NULL. The function returns
///< false in case of a non recoverable error, otherwise it returns true,
///< even if Data is NULL.
public:
int Ca(void) const;
///< Returns the ca of the current receiving session(s).
bool Receiving(bool CheckAny = false) const;
///< Returns true if we are currently receiving.
bool AttachReceiver(cReceiver *Receiver);
///< Attaches the given receiver to this device.
void Detach(cReceiver *Receiver);
///< Detaches the given receiver from this device.
};
/// Derived cDevice classes that can receive channels will have to provide
/// Transport Stream (TS) packets one at a time. cTSBuffer implements a
/// simple buffer that allows the device to read a larger amount of data
/// from the driver with each call to Read(), thus avoiding the overhead
/// of getting each TS packet separately from the driver. It also makes
/// sure the returned data points to a TS packet and automatically
/// re-synchronizes after broken packet.
class cTSBuffer {
private:
int f;
int size;
int cardIndex;
int tsRead;
int tsWrite;
uchar *buf;
bool firstRead;
int Used(void) { return tsRead <= tsWrite ? tsWrite - tsRead : size - tsRead + tsWrite; }
public:
cTSBuffer(int File, int Size, int CardIndex);
~cTSBuffer();
int Read(void);
uchar *Get(void);
};
#endif //__DEVICE_H