vdr/ringbuffer.h
Klaus Schmidinger fa6845328c Version 1.7.31
VDR developer version 1.7.31 is now available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-1.7.31.tar.bz2

A 'diff' against the previous version is available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-1.7.30-1.7.31.diff

MD5 checksums:

a3edd18a352465dd26c97c1990f7bcfd  vdr-1.7.31.tar.bz2
32ff98697d1b383478a6e1932e4afc9c  vdr-1.7.30-1.7.31.diff

WARNING:
========

This is a developer version. Even though I use it in my productive
environment. I strongly recommend that you only use it under controlled
conditions and for testing and debugging.

The default skin "LCARS" displays the signal strengths and qualities of
all devices in its main menu. For devices that have an stb0899 frontend chip
(like the TT-budget S2-3200) retrieving this information from the driver is
rather slow, which results in a sluggish response to user input in the main
menu. To speed this up you may want to apply the patches from

   ftp://ftp.tvdr.de/vdr/Developer/Driver-Patches

to the LinuxDVB driver source.

The changes since version 1.7.30:

- If regenerating an index file fails and no data is written to the file, VDR now
   reports this error and removes the empty index file.
- The setup parameter "Recording/Instant rec. time (min)" can now be set to '0',
   which means to record only the currently running event (based on a patch from Matti
   Lehtimäki).
- Decreased the ring buffer put/get trigger sizes from 1/3 to 1/10.
- The script given to VDR with the '-r' option is now also called whenever a
   recording is deleted (thanks to Alexander Wenzel).
- Improved detecting frames in MPEG 4 video (reported by Andrey Pridvorov).
- cPatPmtParser::ParsePmt() now also recognizes stream type 0x81 as "AC3", so that
   recordings that have been converted from the old PES format to TS can be played
   (suggested by Jens Vogel).
- Fixed a leftover frame counter in the LCARS skin's replay display after jumping to
   an editing mark and resuming replay.
- The new class cIoThrottle is used to allow I/O intense threads to temporarily
   suspend their activities in case buffers run full (suggested by Torsten Lang).
   Currently the cutter thread is suspended if the TS or Recorder buffer use more
   than 50% of their capacity. Plugin authors may want to participate in this
   mechanism if they use intense background I/O.
- Increased the size of the TS buffer to 5MB and that of the Recorder buffer to
   20MB to better handle HD recordings (suggested by Torsten Lang).
- Moved cleaning up the EPG data and writing the epg.data file into a separate
   thread to avoid sluggish response to user input on slow systems (based on a patch from
   Sören Moch).
- Fixed sorting folders before recordings in case of UTF-8 (thanks to Sören Moch).
- Reactivated stripping control characters from EPG texts and adapted it to UTF-8.
- Added missing decrementing of 'len' in libsi/si.c's String::decodeText() functions.
- When checking whether a video directory is empty, file names that start with a
   dot ('.') are no longer automatically ignored and implicitly removed if the directory
   contains no other files. Instead, RemoveEmptyDirectories() now has an additional
   parameter that can be given a list of files that shall be ignored when considering
   whether a directory is empty. This allows users to continue to use files such as
   ".keep" to prevent a directory from being deleted when it is empty. Currently the
   only file name that is ignored is ".sort".
2012-09-30 16:05:19 +02:00

154 lines
5.1 KiB
C++

/*
* ringbuffer.h: A ring buffer
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: ringbuffer.h 2.4 2012/09/20 09:29:32 kls Exp $
*/
#ifndef __RINGBUFFER_H
#define __RINGBUFFER_H
#include "thread.h"
#include "tools.h"
class cRingBuffer {
private:
cCondWait readyForPut, readyForGet;
int putTimeout;
int getTimeout;
int size;
time_t lastOverflowReport;
int overflowCount;
int overflowBytes;
cIoThrottle *ioThrottle;
protected:
tThreadId getThreadTid;
int maxFill;//XXX
int lastPercent;
bool statistics;//XXX
void UpdatePercentage(int Fill);
void WaitForPut(void);
void WaitForGet(void);
void EnablePut(void);
void EnableGet(void);
virtual void Clear(void) = 0;
virtual int Available(void) = 0;
virtual int Free(void) { return Size() - Available() - 1; }
int Size(void) { return size; }
public:
cRingBuffer(int Size, bool Statistics = false);
virtual ~cRingBuffer();
void SetTimeouts(int PutTimeout, int GetTimeout);
void SetIoThrottle(void);
void ReportOverflow(int Bytes);
};
class cRingBufferLinear : public cRingBuffer {
//#define DEBUGRINGBUFFERS
#ifdef DEBUGRINGBUFFERS
private:
int lastHead, lastTail;
int lastPut, lastGet;
static cRingBufferLinear *RBLS[];
static void AddDebugRBL(cRingBufferLinear *RBL);
static void DelDebugRBL(cRingBufferLinear *RBL);
public:
static void PrintDebugRBL(void);
#endif
private:
int margin, head, tail;
int gotten;
uchar *buffer;
char *description;
protected:
virtual int DataReady(const uchar *Data, int Count);
///< By default a ring buffer has data ready as soon as there are at least
///< 'margin' bytes available. A derived class can reimplement this function
///< if it has other conditions that define when data is ready.
///< The return value is either 0 if there is not yet enough data available,
///< or the number of bytes from the beginning of Data that are "ready".
public:
cRingBufferLinear(int Size, int Margin = 0, bool Statistics = false, const char *Description = NULL);
///< Creates a linear ring buffer.
///< The buffer will be able to hold at most Size-Margin-1 bytes of data, and will
///< be guaranteed to return at least Margin bytes in one consecutive block.
///< The optional Description is used for debugging only.
virtual ~cRingBufferLinear();
virtual int Available(void);
virtual int Free(void) { return Size() - Available() - 1 - margin; }
virtual void Clear(void);
///< Immediately clears the ring buffer.
int Read(int FileHandle, int Max = 0);
///< Reads at most Max bytes from FileHandle and stores them in the
///< ring buffer. If Max is 0, reads as many bytes as possible.
///< Only one actual read() call is done.
///< \return Returns the number of bytes actually read and stored, or
///< an error value from the actual read() call.
int Read(cUnbufferedFile *File, int Max = 0);
///< Like Read(int FileHandle, int Max), but reads from a cUnbufferedFile).
int Put(const uchar *Data, int Count);
///< Puts at most Count bytes of Data into the ring buffer.
///< \return Returns the number of bytes actually stored.
uchar *Get(int &Count);
///< Gets data from the ring buffer.
///< The data will remain in the buffer until a call to Del() deletes it.
///< \return Returns a pointer to the data, and stores the number of bytes
///< actually available in Count. If the returned pointer is NULL, Count has no meaning.
void Del(int Count);
///< Deletes at most Count bytes from the ring buffer.
///< Count must be less or equal to the number that was returned by a previous
///< call to Get().
};
enum eFrameType { ftUnknown, ftVideo, ftAudio, ftDolby };
class cFrame {
friend class cRingBufferFrame;
private:
cFrame *next;
uchar *data;
int count;
eFrameType type;
int index;
uint32_t pts;
public:
cFrame(const uchar *Data, int Count, eFrameType = ftUnknown, int Index = -1, uint32_t Pts = 0);
///< Creates a new cFrame object.
///< If Count is negative, the cFrame object will take ownership of the given
///< Data. Otherwise it will allocate Count bytes of memory and copy Data.
~cFrame();
uchar *Data(void) const { return data; }
int Count(void) const { return count; }
eFrameType Type(void) const { return type; }
int Index(void) const { return index; }
uint32_t Pts(void) const { return pts; }
};
class cRingBufferFrame : public cRingBuffer {
private:
cMutex mutex;
cFrame *head;
int currentFill;
void Delete(cFrame *Frame);
void Lock(void) { mutex.Lock(); }
void Unlock(void) { mutex.Unlock(); }
public:
cRingBufferFrame(int Size, bool Statistics = false);
virtual ~cRingBufferFrame();
virtual int Available(void);
virtual void Clear(void);
// Immediately clears the ring buffer.
bool Put(cFrame *Frame);
// Puts the Frame into the ring buffer.
// Returns true if this was possible.
cFrame *Get(void);
// Gets the next frame from the ring buffer.
// The actual data still remains in the buffer until Drop() is called.
void Drop(cFrame *Frame);
// Drops the Frame that has just been fetched with Get().
};
#endif // __RINGBUFFER_H