mirror of
https://github.com/vdr-projects/vdr.git
synced 2025-03-01 10:50:46 +00:00
- Fixed a hangup when replaying a TS recording with subtitles activated (reported by Timo Helkio). - Fixed handling the 'new' indicator in the recordings menu for TS recordings (thanks to Derek Kelly). - Added cap_sys_nice to the capabilities that are not dropped (thanks to Rolf Ahrenberg). - Updated the Italian OSD texts (thanks to Diego Pierotto). - Added cRecordingInfo::GetEvent() (thanks to Marcel Unbehaun). - Improved synchronizing the progress display, trick modes and subtitle display to the actual audio/video. This now works independent of any buffer sizes the output device might use. + The cBackTrace class has been replaced with cPtsIndex, which keeps track of the PTS timestamps of recently played frames. + cDevice::GetSTC() is now required to deliver the STC even in trick modes. It is sufficient if it returns the PTS of the most recently presented audio/video frame. + The full-featured DVB cards need an improved firmware in order to return proper STC values in trick modes (thanks to Oliver Endriss for enhancing the av7110 firmware). - Adapted cFrameDetector::Analyze() to HD NTSC broadcasts that split frames over several payload units (thanks to Derek Kelly for reporting this and helping in testing). - Modified cFrameDetector::Analyze() to make it process whole frames at once, so that file I/O overhead is minimized during recording (reported by Günter Niedermeier). - Added command line help for the '-i' option. - Fixed cDvbPlayer::NextFile() to handle files larger than 2GB (thanks to Jose Alberto Reguero). - Improved replay at the begin and end of a recording. The very first and very last frame is now sent to the output device repeatedly until GetSTC() reports that it has been played. cDvbPlayer::Action() no longer calls DeviceFlush() (thanks to Reinhard Nissl for making sure vdr-xine no longer needs this). - Added missing '[]' to the delete operator in cMenuEditStrItem::~cMenuEditStrItem(). - Added missing virtual destructor to cPalette. - Now freeing configDirectory before setting it to a new value in cPlugin::SetConfigDirectory(). - Fixed a crash when jumping to an editing mark in an audio recording. - Fixed the 'VideoOnly' condition in the PlayPes() and PlayTs() calls in cDvbPlayer::Action() (thanks to Reinhard Nissl). - cDevice::PlayTs() now plays as many TS packets as possible in one call. - Making sure any floating point numbers written use a decimal point (thanks to Oliver Endriss for pointing out a problem with the F record in the info file of a recording). - Fixed detecting the frame rate for radio recordings. - Added missing AUDIO_PAUSE/AUDIO_CONTINUE calls to cDvbDevice (thanks to Oliver Endriss). - No longer writing the video type into channels.conf if VPID is 0 (thanks to Oliver Endriss for reporting this). - Improved efficiency of cEIT::cEIT() (thanks to Tobias Bratfisch).
311 lines
9.5 KiB
C++
311 lines
9.5 KiB
C++
/*
|
|
* remux.h: Tools for detecting frames and handling PAT/PMT
|
|
*
|
|
* See the main source file 'vdr.c' for copyright information and
|
|
* how to reach the author.
|
|
*
|
|
* $Id: remux.h 2.9 2009/03/27 13:38:59 kls Exp $
|
|
*/
|
|
|
|
#ifndef __REMUX_H
|
|
#define __REMUX_H
|
|
|
|
#include "channels.h"
|
|
#include "tools.h"
|
|
|
|
enum ePesHeader {
|
|
phNeedMoreData = -1,
|
|
phInvalid = 0,
|
|
phMPEG1 = 1,
|
|
phMPEG2 = 2
|
|
};
|
|
|
|
ePesHeader AnalyzePesHeader(const uchar *Data, int Count, int &PesPayloadOffset, bool *ContinuationHeader = NULL);
|
|
|
|
class cRemux {
|
|
public:
|
|
static void SetBrokenLink(uchar *Data, int Length);
|
|
};
|
|
|
|
// Some TS handling tools.
|
|
// The following functions all take a pointer to one complete TS packet.
|
|
|
|
#define TS_SYNC_BYTE 0x47
|
|
#define TS_SIZE 188
|
|
#define TS_ERROR 0x80
|
|
#define TS_PAYLOAD_START 0x40
|
|
#define TS_TRANSPORT_PRIORITY 0x20
|
|
#define TS_PID_MASK_HI 0x1F
|
|
#define TS_SCRAMBLING_CONTROL 0xC0
|
|
#define TS_ADAPT_FIELD_EXISTS 0x20
|
|
#define TS_PAYLOAD_EXISTS 0x10
|
|
#define TS_CONT_CNT_MASK 0x0F
|
|
#define TS_ADAPT_DISCONT 0x80
|
|
#define TS_ADAPT_RANDOM_ACC 0x40 // would be perfect for detecting independent frames, but unfortunately not used by all broadcasters
|
|
#define TS_ADAPT_ELEM_PRIO 0x20
|
|
#define TS_ADAPT_PCR 0x10
|
|
#define TS_ADAPT_OPCR 0x08
|
|
#define TS_ADAPT_SPLICING 0x04
|
|
#define TS_ADAPT_TP_PRIVATE 0x02
|
|
#define TS_ADAPT_EXTENSION 0x01
|
|
|
|
inline bool TsHasPayload(const uchar *p)
|
|
{
|
|
return p[3] & TS_PAYLOAD_EXISTS;
|
|
}
|
|
|
|
inline bool TsHasAdaptationField(const uchar *p)
|
|
{
|
|
return p[3] & TS_ADAPT_FIELD_EXISTS;
|
|
}
|
|
|
|
inline bool TsPayloadStart(const uchar *p)
|
|
{
|
|
return p[1] & TS_PAYLOAD_START;
|
|
}
|
|
|
|
inline bool TsError(const uchar *p)
|
|
{
|
|
return p[1] & TS_ERROR;
|
|
}
|
|
|
|
inline int TsPid(const uchar *p)
|
|
{
|
|
return (p[1] & TS_PID_MASK_HI) * 256 + p[2];
|
|
}
|
|
|
|
inline bool TsIsScrambled(const uchar *p)
|
|
{
|
|
return p[3] & TS_SCRAMBLING_CONTROL;
|
|
}
|
|
|
|
inline int TsPayloadOffset(const uchar *p)
|
|
{
|
|
return (p[3] & TS_ADAPT_FIELD_EXISTS) ? p[4] + 5 : 4;
|
|
}
|
|
|
|
inline int TsGetPayload(const uchar **p)
|
|
{
|
|
int o = TsPayloadOffset(*p);
|
|
*p += o;
|
|
return TS_SIZE - o;
|
|
}
|
|
|
|
inline int TsContinuityCounter(const uchar *p)
|
|
{
|
|
return p[3] & TS_CONT_CNT_MASK;
|
|
}
|
|
|
|
inline int TsGetAdaptationField(const uchar *p)
|
|
{
|
|
return TsHasAdaptationField(p) ? p[5] : 0x00;
|
|
}
|
|
|
|
// The following functions all take a pointer to a sequence of complete TS packets.
|
|
|
|
int64_t TsGetPts(const uchar *p, int l);
|
|
|
|
// Some PES handling tools:
|
|
// The following functions that take a pointer to PES data all assume that
|
|
// there is enough data so that PesLongEnough() returns true.
|
|
|
|
inline bool PesLongEnough(int Length)
|
|
{
|
|
return Length >= 6;
|
|
}
|
|
|
|
inline bool PesHasLength(const uchar *p)
|
|
{
|
|
return p[4] | p[5];
|
|
}
|
|
|
|
inline int PesLength(const uchar *p)
|
|
{
|
|
return 6 + p[4] * 256 + p[5];
|
|
}
|
|
|
|
inline int PesPayloadOffset(const uchar *p)
|
|
{
|
|
return 9 + p[8];
|
|
}
|
|
|
|
inline bool PesHasPts(const uchar *p)
|
|
{
|
|
return (p[7] & 0x80) && p[8] >= 5;
|
|
}
|
|
|
|
inline int64_t PesGetPts(const uchar *p)
|
|
{
|
|
return ((((int64_t)p[ 9]) & 0x0E) << 29) |
|
|
(( (int64_t)p[10]) << 22) |
|
|
((((int64_t)p[11]) & 0xFE) << 14) |
|
|
(( (int64_t)p[12]) << 7) |
|
|
((((int64_t)p[13]) & 0xFE) >> 1);
|
|
}
|
|
|
|
// PAT/PMT Generator:
|
|
|
|
#define MAX_SECTION_SIZE 4096 // maximum size of an SI section
|
|
#define MAX_PMT_TS (MAX_SECTION_SIZE / TS_SIZE + 1)
|
|
|
|
class cPatPmtGenerator {
|
|
private:
|
|
uchar pat[TS_SIZE]; // the PAT always fits into a single TS packet
|
|
uchar pmt[MAX_PMT_TS][TS_SIZE]; // the PMT may well extend over several TS packets
|
|
int numPmtPackets;
|
|
int patCounter;
|
|
int pmtCounter;
|
|
int patVersion;
|
|
int pmtVersion;
|
|
int pmtPid;
|
|
uchar *esInfoLength;
|
|
void IncCounter(int &Counter, uchar *TsPacket);
|
|
void IncVersion(int &Version);
|
|
void IncEsInfoLength(int Length);
|
|
protected:
|
|
int MakeStream(uchar *Target, uchar Type, int Pid);
|
|
int MakeAC3Descriptor(uchar *Target);
|
|
int MakeSubtitlingDescriptor(uchar *Target, const char *Language);
|
|
int MakeLanguageDescriptor(uchar *Target, const char *Language);
|
|
int MakeCRC(uchar *Target, const uchar *Data, int Length);
|
|
void GeneratePmtPid(cChannel *Channel);
|
|
///< Generates a PMT pid that doesn't collide with any of the actual
|
|
///< pids of the Channel.
|
|
void GeneratePat(void);
|
|
///< Generates a PAT section for later use with GetPat().
|
|
void GeneratePmt(cChannel *Channel);
|
|
///< Generates a PMT section for the given Channel, for later use
|
|
///< with GetPmt().
|
|
public:
|
|
cPatPmtGenerator(cChannel *Channel = NULL);
|
|
void SetChannel(cChannel *Channel);
|
|
///< Sets the Channel for which the PAT/PMT shall be generated.
|
|
uchar *GetPat(void);
|
|
///< Returns a pointer to the PAT section, which consists of exactly
|
|
///< one TS packet.
|
|
uchar *GetPmt(int &Index);
|
|
///< Returns a pointer to the Index'th TS packet of the PMT section.
|
|
///< Index must be initialized to 0 and will be incremented by each
|
|
///< call to GetPmt(). Returns NULL is all packets of the PMT section
|
|
///< have been fetched..
|
|
};
|
|
|
|
// PAT/PMT Parser:
|
|
|
|
class cPatPmtParser {
|
|
private:
|
|
uchar pmt[MAX_SECTION_SIZE];
|
|
int pmtSize;
|
|
int patVersion;
|
|
int pmtVersion;
|
|
int pmtPid;
|
|
int vpid;
|
|
int vtype;
|
|
protected:
|
|
int SectionLength(const uchar *Data, int Length) { return (Length >= 3) ? ((int(Data[1]) & 0x0F) << 8)| Data[2] : 0; }
|
|
public:
|
|
cPatPmtParser(void);
|
|
void Reset(void);
|
|
///< Resets the parser. This function must be called whenever a new
|
|
///< stream is parsed.
|
|
void ParsePat(const uchar *Data, int Length);
|
|
///< Parses the PAT data from the single TS packet in Data.
|
|
///< Length is always TS_SIZE.
|
|
void ParsePmt(const uchar *Data, int Length);
|
|
///< Parses the PMT data from the single TS packet in Data.
|
|
///< Length is always TS_SIZE.
|
|
///< The PMT may consist of several TS packets, which
|
|
///< are delivered to the parser through several subsequent calls to
|
|
///< ParsePmt(). The whole PMT data will be processed once the last packet
|
|
///< has been received.
|
|
int PmtPid(void) { return pmtPid; }
|
|
///< Returns the PMT pid as defined by the current PAT.
|
|
///< If no PAT has been received yet, -1 will be returned.
|
|
int Vpid(void) { return vpid; }
|
|
///< Returns the video pid as defined by the current PMT.
|
|
int Vtype(void) { return vtype; }
|
|
};
|
|
|
|
// TS to PES converter:
|
|
// Puts together the payload of several TS packets that form one PES
|
|
// packet.
|
|
|
|
class cTsToPes {
|
|
private:
|
|
uchar *data;
|
|
int size;
|
|
int length;
|
|
int offset;
|
|
bool synced;
|
|
public:
|
|
cTsToPes(void);
|
|
~cTsToPes();
|
|
void PutTs(const uchar *Data, int Length);
|
|
///< Puts the payload data of the single TS packet at Data into the converter.
|
|
///< Length is always 188.
|
|
///< If the given TS packet starts a new PES payload packet, the converter
|
|
///< will be automatically reset. Any packets before the first one that starts
|
|
///< a new PES payload packet will be ignored.
|
|
const uchar *GetPes(int &Length);
|
|
///< Gets a pointer to the complete PES packet, or NULL if the packet
|
|
///< is not complete yet. If the packet is complete, Length will contain
|
|
///< the total packet length. The returned pointer is only valid until
|
|
///< the next call to PutTs() or Reset(), or until this object is destroyed.
|
|
void Reset(void);
|
|
///< Resets the converter. This needs to be called after a PES packet has
|
|
///< been fetched by a call to GetPes(), and before the next call to
|
|
///< PutTs().
|
|
};
|
|
|
|
// Some helper functions for debugging:
|
|
|
|
void BlockDump(const char *Name, const u_char *Data, int Length);
|
|
void TsDump(const char *Name, const u_char *Data, int Length);
|
|
void PesDump(const char *Name, const u_char *Data, int Length);
|
|
|
|
// Frame detector:
|
|
|
|
class cFrameDetector {
|
|
private:
|
|
enum { MaxPtsValues = 150 };
|
|
int pid;
|
|
int type;
|
|
bool synced;
|
|
bool newFrame;
|
|
bool independentFrame;
|
|
uint32_t ptsValues[MaxPtsValues]; // 32 bit is enough - we only need the delta
|
|
int numPtsValues;
|
|
int numIFrames;
|
|
bool isVideo;
|
|
int frameDuration;
|
|
int framesInPayloadUnit;
|
|
int framesPerPayloadUnit; // Some broadcasters send one frame per payload unit (== 1),
|
|
// some put an entire GOP into one payload unit (> 1), and
|
|
// some spread a single frame over several payload units (< 0).
|
|
int payloadUnitOfFrame;
|
|
bool scanning;
|
|
uint32_t scanner;
|
|
public:
|
|
cFrameDetector(int Pid, int Type);
|
|
int Analyze(const uchar *Data, int Length);
|
|
///< Analyzes the TS packets pointed to by Data. Length is the number of
|
|
///< bytes Data points to, and must be a multiple of 188.
|
|
///< Returns the number of bytes that have been analyzed.
|
|
///< If the return value is 0, the data was not sufficient for analyzing and
|
|
///< Analyze() needs to be called again with more actual data.
|
|
bool Synced(void) { return synced; }
|
|
///< Returns true if the frame detector has synced on the data stream.
|
|
bool NewFrame(void) { return newFrame; }
|
|
///< Returns true if the data given to the last call to Analyze() started a
|
|
///< new frame.
|
|
bool IndependentFrame(void) { return independentFrame; }
|
|
///< Returns true if a new frame was detected and this is an independent frame
|
|
///< (i.e. one that can be displayed by itself, without using data from any
|
|
///< other frames).
|
|
double FramesPerSecond(void) { return frameDuration ? 90000.0 / frameDuration : 0; }
|
|
///< Returns the number of frames per second, or 0 if this information is not
|
|
///< available.
|
|
};
|
|
|
|
#endif // __REMUX_H
|