1
0
mirror of https://github.com/VDR4Arch/vdr.git synced 2023-10-10 13:36:52 +02:00
vdr/dvbdevice.c

2434 lines
89 KiB
C

/*
* dvbdevice.c: The DVB device tuner interface
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: dvbdevice.c 4.24 2020/10/15 10:16:38 kls Exp $
*/
#include "dvbdevice.h"
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <linux/dvb/dmx.h>
#include <linux/dvb/frontend.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include "channels.h"
#include "diseqc.h"
#include "dvbci.h"
#include "menuitems.h"
#include "sourceparams.h"
static int DvbApiVersion = 0x0000; // the version of the DVB driver actually in use (will be determined by the first device created)
#define DVBS_TUNE_TIMEOUT 9000 //ms
#define DVBS_LOCK_TIMEOUT 2000 //ms
#define DVBC_TUNE_TIMEOUT 9000 //ms
#define DVBC_LOCK_TIMEOUT 2000 //ms
#define DVBT_TUNE_TIMEOUT 9000 //ms
#define DVBT_LOCK_TIMEOUT 2000 //ms
#define ATSC_TUNE_TIMEOUT 9000 //ms
#define ATSC_LOCK_TIMEOUT 2000 //ms
#define SCR_RANDOM_TIMEOUT 500 // ms (add random value up to this when tuning SCR device to avoid lockups)
#define TSBUFFERSIZE MEGABYTE(16)
// --- DVB Parameter Maps ----------------------------------------------------
const tDvbParameterMap PilotValues[] = {
{ 0, PILOT_OFF, trNOOP("off") },
{ 1, PILOT_ON, trNOOP("on") },
{ 999, PILOT_AUTO, trNOOP("auto") },
{ -1, 0, NULL }
};
const tDvbParameterMap InversionValues[] = {
{ 0, INVERSION_OFF, trNOOP("off") },
{ 1, INVERSION_ON, trNOOP("on") },
{ 999, INVERSION_AUTO, trNOOP("auto") },
{ -1, 0, NULL }
};
const tDvbParameterMap BandwidthValues[] = {
{ 5, 5000000, "5 MHz" },
{ 6, 6000000, "6 MHz" },
{ 7, 7000000, "7 MHz" },
{ 8, 8000000, "8 MHz" },
{ 10, 10000000, "10 MHz" },
{ 1712, 1712000, "1.712 MHz" },
{ -1, 0, NULL }
};
const tDvbParameterMap CoderateValues[] = {
{ 0, FEC_NONE, trNOOP("none") },
{ 12, FEC_1_2, "1/2" },
{ 23, FEC_2_3, "2/3" },
{ 34, FEC_3_4, "3/4" },
{ 35, FEC_3_5, "3/5" },
{ 45, FEC_4_5, "4/5" },
{ 56, FEC_5_6, "5/6" },
{ 67, FEC_6_7, "6/7" },
{ 78, FEC_7_8, "7/8" },
{ 89, FEC_8_9, "8/9" },
{ 910, FEC_9_10, "9/10" },
{ 999, FEC_AUTO, trNOOP("auto") },
{ -1, 0, NULL }
};
const tDvbParameterMap ModulationValues[] = {
{ 16, QAM_16, "QAM16" },
{ 32, QAM_32, "QAM32" },
{ 64, QAM_64, "QAM64" },
{ 128, QAM_128, "QAM128" },
{ 256, QAM_256, "QAM256" },
{ 2, QPSK, "QPSK" },
{ 5, PSK_8, "8PSK" },
{ 6, APSK_16, "16APSK" },
{ 7, APSK_32, "32APSK" },
{ 10, VSB_8, "VSB8" },
{ 11, VSB_16, "VSB16" },
{ 12, DQPSK, "DQPSK" },
{ 999, QAM_AUTO, trNOOP("auto") },
{ -1, 0, NULL }
};
#define DVB_SYSTEM_1 0 // see also nit.c
#define DVB_SYSTEM_2 1
const tDvbParameterMap SystemValuesSat[] = {
{ 0, DVB_SYSTEM_1, "DVB-S" },
{ 1, DVB_SYSTEM_2, "DVB-S2" },
{ -1, 0, NULL }
};
const tDvbParameterMap SystemValuesTerr[] = {
{ 0, DVB_SYSTEM_1, "DVB-T" },
{ 1, DVB_SYSTEM_2, "DVB-T2" },
{ -1, 0, NULL }
};
const tDvbParameterMap TransmissionValues[] = {
{ 1, TRANSMISSION_MODE_1K, "1K" },
{ 2, TRANSMISSION_MODE_2K, "2K" },
{ 4, TRANSMISSION_MODE_4K, "4K" },
{ 8, TRANSMISSION_MODE_8K, "8K" },
{ 16, TRANSMISSION_MODE_16K, "16K" },
{ 32, TRANSMISSION_MODE_32K, "32K" },
{ 999, TRANSMISSION_MODE_AUTO, trNOOP("auto") },
{ -1, 0, NULL }
};
const tDvbParameterMap GuardValues[] = {
{ 4, GUARD_INTERVAL_1_4, "1/4" },
{ 8, GUARD_INTERVAL_1_8, "1/8" },
{ 16, GUARD_INTERVAL_1_16, "1/16" },
{ 32, GUARD_INTERVAL_1_32, "1/32" },
{ 128, GUARD_INTERVAL_1_128, "1/128" },
{ 19128, GUARD_INTERVAL_19_128, "19/128" },
{ 19256, GUARD_INTERVAL_19_256, "19/256" },
{ 999, GUARD_INTERVAL_AUTO, trNOOP("auto") },
{ -1, 0, NULL }
};
const tDvbParameterMap HierarchyValues[] = {
{ 0, HIERARCHY_NONE, trNOOP("none") },
{ 1, HIERARCHY_1, "1" },
{ 2, HIERARCHY_2, "2" },
{ 4, HIERARCHY_4, "4" },
{ 999, HIERARCHY_AUTO, trNOOP("auto") },
{ -1, 0, NULL }
};
const tDvbParameterMap RollOffValues[] = {
{ 0, ROLLOFF_AUTO, trNOOP("auto") },
{ 20, ROLLOFF_20, "0.20" },
{ 25, ROLLOFF_25, "0.25" },
{ 35, ROLLOFF_35, "0.35" },
{ -1, 0, NULL }
};
int UserIndex(int Value, const tDvbParameterMap *Map)
{
const tDvbParameterMap *map = Map;
while (map && map->userValue != -1) {
if (map->userValue == Value)
return map - Map;
map++;
}
return -1;
}
int DriverIndex(int Value, const tDvbParameterMap *Map)
{
const tDvbParameterMap *map = Map;
while (map && map->userValue != -1) {
if (map->driverValue == Value)
return map - Map;
map++;
}
return -1;
}
int MapToUser(int Value, const tDvbParameterMap *Map, const char **String)
{
int n = DriverIndex(Value, Map);
if (n >= 0) {
if (String)
*String = tr(Map[n].userString);
return Map[n].userValue;
}
return -1;
}
const char *MapToUserString(int Value, const tDvbParameterMap *Map)
{
int n = DriverIndex(Value, Map);
if (n >= 0)
return Map[n].userString;
return "???";
}
int MapToDriver(int Value, const tDvbParameterMap *Map)
{
int n = UserIndex(Value, Map);
if (n >= 0)
return Map[n].driverValue;
return -1;
}
// --- cDvbTransponderParameters ---------------------------------------------
cDvbTransponderParameters::cDvbTransponderParameters(const char *Parameters)
{
Parse(Parameters);
}
int cDvbTransponderParameters::PrintParameter(char *p, char Name, int Value) const
{
return Value >= 0 && Value != 999 ? sprintf(p, "%c%d", Name, Value) : 0;
}
cString cDvbTransponderParameters::ToString(char Type) const
{
#define ST(s) if (strchr(s, Type) && (strchr(s, '0' + system + 1) || strchr(s, '*')))
char buffer[64];
char *q = buffer;
*q = 0;
ST(" S *") q += sprintf(q, "%c", polarization);
ST(" T*") q += PrintParameter(q, 'B', MapToUser(bandwidth, BandwidthValues));
ST(" CST*") q += PrintParameter(q, 'C', MapToUser(coderateH, CoderateValues));
ST(" T*") q += PrintParameter(q, 'D', MapToUser(coderateL, CoderateValues));
ST(" T*") q += PrintParameter(q, 'G', MapToUser(guard, GuardValues));
ST("ACST*") q += PrintParameter(q, 'I', MapToUser(inversion, InversionValues));
ST("ACST*") q += PrintParameter(q, 'M', MapToUser(modulation, ModulationValues));
ST(" S 2") q += PrintParameter(q, 'N', MapToUser(pilot, PilotValues));
ST(" S 2") q += PrintParameter(q, 'O', MapToUser(rollOff, RollOffValues));
ST(" ST2") q += PrintParameter(q, 'P', streamId);
ST(" T2") q += PrintParameter(q, 'Q', t2systemId);
ST(" ST*") q += PrintParameter(q, 'S', MapToUser(system, SystemValuesSat)); // we only need the numerical value, so Sat or Terr doesn't matter
ST(" T*") q += PrintParameter(q, 'T', MapToUser(transmission, TransmissionValues));
ST(" T2") q += PrintParameter(q, 'X', sisoMiso);
ST(" T*") q += PrintParameter(q, 'Y', MapToUser(hierarchy, HierarchyValues));
return buffer;
}
const char *cDvbTransponderParameters::ParseParameter(const char *s, int &Value, const tDvbParameterMap *Map)
{
if (*++s) {
char *p = NULL;
errno = 0;
int n = strtol(s, &p, 10);
if (!errno && p != s) {
Value = Map ? MapToDriver(n, Map) : n;
if (Value >= 0)
return p;
}
}
esyslog("ERROR: invalid value for parameter '%c'", *(s - 1));
return NULL;
}
bool cDvbTransponderParameters::Parse(const char *s)
{
polarization = 0;
inversion = INVERSION_AUTO;
bandwidth = 8000000;
coderateH = FEC_AUTO;
coderateL = FEC_AUTO;
modulation = QPSK;
system = DVB_SYSTEM_1;
transmission = TRANSMISSION_MODE_AUTO;
guard = GUARD_INTERVAL_AUTO;
hierarchy = HIERARCHY_AUTO;
rollOff = ROLLOFF_AUTO;
streamId = 0;
t2systemId = 0;
sisoMiso = 0;
pilot = PILOT_AUTO;
while (s && *s) {
switch (toupper(*s)) {
case 'B': s = ParseParameter(s, bandwidth, BandwidthValues); break;
case 'C': s = ParseParameter(s, coderateH, CoderateValues); break;
case 'D': s = ParseParameter(s, coderateL, CoderateValues); break;
case 'G': s = ParseParameter(s, guard, GuardValues); break;
case 'H': polarization = 'H'; s++; break;
case 'I': s = ParseParameter(s, inversion, InversionValues); break;
case 'L': polarization = 'L'; s++; break;
case 'M': s = ParseParameter(s, modulation, ModulationValues); break;
case 'N': s = ParseParameter(s, pilot, PilotValues); break;
case 'O': s = ParseParameter(s, rollOff, RollOffValues); break;
case 'P': s = ParseParameter(s, streamId); break;
case 'Q': s = ParseParameter(s, t2systemId); break;
case 'R': polarization = 'R'; s++; break;
case 'S': s = ParseParameter(s, system, SystemValuesSat); break; // we only need the numerical value, so Sat or Terr doesn't matter
case 'T': s = ParseParameter(s, transmission, TransmissionValues); break;
case 'V': polarization = 'V'; s++; break;
case 'X': s = ParseParameter(s, sisoMiso); break;
case 'Y': s = ParseParameter(s, hierarchy, HierarchyValues); break;
default: esyslog("ERROR: unknown parameter key '%c'", *s);
return false;
}
}
return true;
}
// --- cDvbFrontend ----------------------------------------------------------
const char *DeliverySystemNames[] = {
"???",
"DVB-C",
"DVB-C",
"DVB-T",
"DSS",
"DVB-S",
"DVB-S2",
"DVB-H",
"ISDBT",
"ISDBS",
"ISDBC",
"ATSC",
"ATSCMH",
"DTMB",
"CMMB",
"DAB",
"DVB-T2",
"TURBO",
"DVB-C",
"DVB-C2",
NULL
};
static const int DeliverySystemNamesMax = sizeof(DeliverySystemNames) / sizeof(DeliverySystemNames[0]) - 2; // -1 to get the maximum allowed index & -1 for the NULL => -2
static const char *GetDeliverySystemName(int Index)
{
if (Index > DeliverySystemNamesMax)
Index = 0;
return DeliverySystemNames[Index];
};
#define MAXFRONTENDCMDS 16
#define SETCMD(c, d) { Props[CmdSeq.num].cmd = (c);\
Props[CmdSeq.num].u.data = (d);\
if (CmdSeq.num++ > MAXFRONTENDCMDS) {\
esyslog("ERROR: too many tuning commands on frontend %d/%d", adapter, frontend);\
return false;\
}\
}
class cDvbFrontend {
private:
int adapter, frontend;
int fd_frontend;
uint32_t subsystemId;
dvb_frontend_info frontendInfo;
cVector<int> deliverySystems;
int numModulations;
bool QueryDeliverySystems(void);
public:
cDvbFrontend(int Adapter, int Frontend);
~cDvbFrontend();
int Open(void);
void Close(void);
const char *FrontendName(void) { return frontendInfo.name; }
bool ProvidesDeliverySystem(int DeliverySystem) const;
bool ProvidesModulation(int System, int StreamId, int Modulation) const;
int NumDeliverySystems(void) const { return deliverySystems.Size(); }
int NumModulations(void) const { return numModulations; }
uint32_t SubsystemId(void) const { return subsystemId; }
};
cDvbFrontend::cDvbFrontend(int Adapter, int Frontend)
{
adapter = Adapter;
frontend = Frontend;
fd_frontend = -1;
subsystemId = cDvbDeviceProbe::GetSubsystemId(adapter, frontend);
numModulations = 0;
Open();
QueryDeliverySystems();
Close();
}
cDvbFrontend::~cDvbFrontend()
{
Close();
}
int cDvbFrontend::Open(void)
{
Close();
fd_frontend = DvbOpen(DEV_DVB_FRONTEND, adapter, frontend, O_RDWR | O_NONBLOCK, true);
return fd_frontend;
}
void cDvbFrontend::Close(void)
{
if (fd_frontend >= 0) {
if (close(fd_frontend) != 0)
esyslog("ERROR: frontend %d/%d", adapter, frontend);
fd_frontend = -1;
}
}
bool cDvbFrontend::ProvidesDeliverySystem(int DeliverySystem) const
{
for (int i = 0; i < deliverySystems.Size(); i++) {
if (deliverySystems[i] == DeliverySystem)
return true;
}
return false;
}
bool cDvbFrontend::ProvidesModulation(int System, int StreamId, int Modulation) const
{
if (StreamId != 0 && !(frontendInfo.caps & FE_CAN_MULTISTREAM))
return false;
if (Modulation == QPSK && !(frontendInfo.caps & FE_CAN_QPSK) ||
Modulation == QAM_16 && !(frontendInfo.caps & FE_CAN_QAM_16) ||
Modulation == QAM_32 && !(frontendInfo.caps & FE_CAN_QAM_32) ||
Modulation == QAM_64 && !(frontendInfo.caps & FE_CAN_QAM_64) ||
Modulation == QAM_128 && !(frontendInfo.caps & FE_CAN_QAM_128) ||
Modulation == QAM_256 && !(frontendInfo.caps & FE_CAN_QAM_256) ||
Modulation == QAM_AUTO && !(frontendInfo.caps & FE_CAN_QAM_AUTO) ||
Modulation == VSB_8 && !(frontendInfo.caps & FE_CAN_8VSB) ||
Modulation == VSB_16 && !(frontendInfo.caps & FE_CAN_16VSB) ||
Modulation == PSK_8 && !(frontendInfo.caps & FE_CAN_TURBO_FEC) && System == SYS_DVBS) // "turbo fec" is a non standard FEC used by North American broadcasters - this is a best guess to de
return false;
return true;
}
bool cDvbFrontend::QueryDeliverySystems(void)
{
deliverySystems.Clear();
numModulations = 0;
if (ioctl(fd_frontend, FE_GET_INFO, &frontendInfo) < 0) {
LOG_ERROR;
return false;
}
dtv_property Props[1];
dtv_properties CmdSeq;
// Determine the version of the running DVB API:
if (!DvbApiVersion) {
memset(&Props, 0, sizeof(Props));
memset(&CmdSeq, 0, sizeof(CmdSeq));
CmdSeq.props = Props;
SETCMD(DTV_API_VERSION, 0);
if (ioctl(fd_frontend, FE_GET_PROPERTY, &CmdSeq) != 0) {
LOG_ERROR;
return false;
}
DvbApiVersion = Props[0].u.data;
isyslog("DVB API version is 0x%04X (VDR was built with 0x%04X)", DvbApiVersion, DVBAPIVERSION);
}
// Determine the types of delivery systems this device provides:
bool LegacyMode = true;
if (DvbApiVersion >= 0x0505) {
memset(&Props, 0, sizeof(Props));
memset(&CmdSeq, 0, sizeof(CmdSeq));
CmdSeq.props = Props;
SETCMD(DTV_ENUM_DELSYS, 0);
int Result = ioctl(fd_frontend, FE_GET_PROPERTY, &CmdSeq);
if (Result == 0) {
for (uint i = 0; i < Props[0].u.buffer.len; i++) {
// activate this line to simulate a multi-frontend device if you only have a single-frontend device with DVB-S and DVB-S2:
//if (frontend == 0 && Props[0].u.buffer.data[i] != SYS_DVBS || frontend == 1 && Props[0].u.buffer.data[i] != SYS_DVBS2)
deliverySystems.Append(Props[0].u.buffer.data[i]);
}
LegacyMode = false;
}
else {
esyslog("ERROR: can't query delivery systems on frontend %d/%d - falling back to legacy mode", adapter, frontend);
}
}
if (LegacyMode) {
// Legacy mode (DVB-API < 5.5):
switch (frontendInfo.type) {
case FE_QPSK: deliverySystems.Append(SYS_DVBS);
if (frontendInfo.caps & FE_CAN_2G_MODULATION)
deliverySystems.Append(SYS_DVBS2);
break;
case FE_OFDM: deliverySystems.Append(SYS_DVBT);
if (frontendInfo.caps & FE_CAN_2G_MODULATION)
deliverySystems.Append(SYS_DVBT2);
break;
case FE_QAM: deliverySystems.Append(SYS_DVBC_ANNEX_AC); break;
case FE_ATSC: deliverySystems.Append(SYS_ATSC); break;
default: esyslog("ERROR: unknown frontend type %d on frontend %d/%d", frontendInfo.type, adapter, frontend);
}
}
if (deliverySystems.Size() > 0) {
cString ds("");
for (int i = 0; i < deliverySystems.Size(); i++)
ds = cString::sprintf("%s%s%s", *ds, i ? "," : "", GetDeliverySystemName(deliverySystems[i]));
cString ms("");
if (frontendInfo.caps & FE_CAN_QPSK) { numModulations++; ms = cString::sprintf("%s%s%s", *ms, **ms ? "," : "", MapToUserString(QPSK, ModulationValues)); }
if (frontendInfo.caps & FE_CAN_QAM_16) { numModulations++; ms = cString::sprintf("%s%s%s", *ms, **ms ? "," : "", MapToUserString(QAM_16, ModulationValues)); }
if (frontendInfo.caps & FE_CAN_QAM_32) { numModulations++; ms = cString::sprintf("%s%s%s", *ms, **ms ? "," : "", MapToUserString(QAM_32, ModulationValues)); }
if (frontendInfo.caps & FE_CAN_QAM_64) { numModulations++; ms = cString::sprintf("%s%s%s", *ms, **ms ? "," : "", MapToUserString(QAM_64, ModulationValues)); }
if (frontendInfo.caps & FE_CAN_QAM_128) { numModulations++; ms = cString::sprintf("%s%s%s", *ms, **ms ? "," : "", MapToUserString(QAM_128, ModulationValues)); }
if (frontendInfo.caps & FE_CAN_QAM_256) { numModulations++; ms = cString::sprintf("%s%s%s", *ms, **ms ? "," : "", MapToUserString(QAM_256, ModulationValues)); }
if (frontendInfo.caps & FE_CAN_8VSB) { numModulations++; ms = cString::sprintf("%s%s%s", *ms, **ms ? "," : "", MapToUserString(VSB_8, ModulationValues)); }
if (frontendInfo.caps & FE_CAN_16VSB) { numModulations++; ms = cString::sprintf("%s%s%s", *ms, **ms ? "," : "", MapToUserString(VSB_16, ModulationValues)); }
if (frontendInfo.caps & FE_CAN_TURBO_FEC) { numModulations++; ms = cString::sprintf("%s%s%s", *ms, **ms ? "," : "", "TURBO_FEC"); }
if (!**ms)
ms = "unknown modulations";
isyslog("frontend %d/%d provides %s with %s (\"%s\")", adapter, frontend, *ds, *ms, frontendInfo.name);
return true;
}
else
esyslog("ERROR: frontend %d/%d doesn't provide any delivery systems", adapter, frontend);
return false;
}
// --- cDvbTuner -------------------------------------------------------------
#define TUNER_POLL_TIMEOUT 10 // ms
static int GetRequiredDeliverySystem(const cChannel *Channel, const cDvbTransponderParameters *Dtp)
{
int ds = SYS_UNDEFINED;
if (Channel->IsAtsc())
ds = SYS_ATSC;
else if (Channel->IsCable())
ds = SYS_DVBC_ANNEX_AC;
else if (Channel->IsSat())
ds = Dtp->System() == DVB_SYSTEM_1 ? SYS_DVBS : SYS_DVBS2;
else if (Channel->IsTerr())
ds = Dtp->System() == DVB_SYSTEM_1 ? SYS_DVBT : SYS_DVBT2;
else
esyslog("ERROR: can't determine frontend type for channel %d (%s)", Channel->Number(), Channel->Name());
return ds;
}
class cDvbTuner : public cThread {
private:
static cMutex bondMutex;
enum eTunerStatus { tsIdle, tsSet, tsPositioning, tsTuned, tsLocked };
int frontendType;
const cDvbDevice *device;
mutable int fd_frontend;
int adapter;
mutable int frontend;
cVector<cDvbFrontend *> dvbFrontends;
mutable cDvbFrontend *dvbFrontend;
int numDeliverySystems;
int numModulations;
int tuneTimeout;
int lockTimeout;
time_t lastTimeoutReport;
mutable uint32_t lastUncValue;
mutable uint32_t lastUncDelta;
mutable time_t lastUncChange;
cChannel channel;
const cDiseqc *lastDiseqc;
int diseqcOffset;
int lastSource;
cPositioner *positioner;
const cScr *scr;
bool lnbPowerTurnedOn;
eTunerStatus tunerStatus;
mutable cMutex mutex;
cCondVar locked;
cCondVar newSet;
cDvbTuner *bondedTuner;
bool bondedMaster;
bool SetFrontendType(const cChannel *Channel);
cString GetBondingParams(const cChannel *Channel = NULL) const;
cDvbTuner *GetBondedMaster(void);
bool IsBondedMaster(void) const { return !bondedTuner || bondedMaster; }
void ClearEventQueue(void) const;
bool GetFrontendStatus(fe_status_t &Status) const;
cPositioner *GetPositioner(void);
void ExecuteDiseqc(const cDiseqc *Diseqc, int *Frequency);
void ResetToneAndVoltage(void);
bool SetFrontend(void);
virtual void Action(void);
public:
cDvbTuner(const cDvbDevice *Device, int Adapter, int Frontend);
virtual ~cDvbTuner();
bool ProvidesDeliverySystem(int DeliverySystem) const;
bool ProvidesModulation(int System, int StreamId, int Modulation) const;
bool ProvidesFrontend(const cChannel *Channel, bool Activate = false) const;
int Frontend(void) const { return frontend; }
int FrontendType(void) const { return frontendType; }
const char *FrontendName(void) { return dvbFrontend->FrontendName(); }
int NumProvidedSystems(void) const { return numDeliverySystems + numModulations; }
bool Bond(cDvbTuner *Tuner);
void UnBond(void);
bool BondingOk(const cChannel *Channel, bool ConsiderOccupied = false) const;
const cChannel *GetTransponder(void) const { return &channel; }
uint32_t SubsystemId(void) const { return dvbFrontend->SubsystemId(); }
bool IsTunedTo(const cChannel *Channel) const;
void SetChannel(const cChannel *Channel);
bool Locked(int TimeoutMs = 0);
const cPositioner *Positioner(void) const { return positioner; }
bool GetSignalStats(int &Valid, double *Strength = NULL, double *Cnr = NULL, double *BerPre = NULL, double *BerPost = NULL, double *Per = NULL, int *Status = NULL) const;
int GetSignalStrength(void) const;
int GetSignalQuality(void) const;
};
cMutex cDvbTuner::bondMutex;
cDvbTuner::cDvbTuner(const cDvbDevice *Device, int Adapter, int Frontend)
{
frontendType = SYS_UNDEFINED;
device = Device;
fd_frontend = -1;
adapter = Adapter;
frontend = Frontend;
dvbFrontend = NULL;
tuneTimeout = 0;
lockTimeout = 0;
lastTimeoutReport = 0;
lastUncValue = 0;
lastUncDelta = 0;
lastUncChange = 0;
lastDiseqc = NULL;
diseqcOffset = 0;
lastSource = 0;
positioner = NULL;
scr = NULL;
lnbPowerTurnedOn = false;
tunerStatus = tsIdle;
bondedTuner = NULL;
bondedMaster = false;
cDvbFrontend *fe = new cDvbFrontend(adapter, frontend);
dvbFrontends.Append(fe);
numDeliverySystems = fe->NumDeliverySystems();
numModulations = fe->NumModulations();
cString FrontendNumbers = cString::sprintf("%d", frontend);
// Check for multiple frontends:
if (frontend == 0) {
for (int i = 1; ; i++) {
if (access(DvbName(DEV_DVB_FRONTEND, adapter, i), F_OK) == 0) {
if (access(DvbName(DEV_DVB_DEMUX, adapter, i), F_OK) != 0) {
fe = new cDvbFrontend(adapter, i);
dvbFrontends.Append(fe);
numDeliverySystems += fe->NumDeliverySystems();
//numModulations += fe->NumModulations(); // looks like in multi frontend devices all frontends report the same modulations
FrontendNumbers = cString::sprintf("%s+%d", *FrontendNumbers, i);
}
}
else
break;
}
}
// Open default frontend:
dvbFrontend = dvbFrontends[0];
fd_frontend = dvbFrontend->Open();
SetDescription("frontend %d/%s tuner", adapter, *FrontendNumbers);
Start();
}
cDvbTuner::~cDvbTuner()
{
tunerStatus = tsIdle;
newSet.Broadcast();
locked.Broadcast();
Cancel(3);
UnBond();
/* looks like this irritates the SCR switch, so let's leave it out for now
if (lastDiseqc && lastDiseqc->IsScr()) {
unsigned int Frequency = 0;
ExecuteDiseqc(lastDiseqc, &Frequency);
}
*/
for (int i = 0; i < dvbFrontends.Size(); i++)
delete dvbFrontends[i];
}
bool cDvbTuner::ProvidesDeliverySystem(int DeliverySystem) const
{
for (int i = 0; i < dvbFrontends.Size(); i++) {
if (dvbFrontends[i]->ProvidesDeliverySystem(DeliverySystem))
return true;
}
return false;
}
bool cDvbTuner::ProvidesModulation(int System, int StreamId, int Modulation) const
{
for (int i = 0; i < dvbFrontends.Size(); i++) {
if (dvbFrontends[i]->ProvidesModulation(System, StreamId, Modulation))
return true;
}
return false;
}
bool cDvbTuner::ProvidesFrontend(const cChannel *Channel, bool Activate) const
{
cDvbTransponderParameters dtp(Channel->Parameters());
int DeliverySystem = GetRequiredDeliverySystem(Channel, &dtp);
for (int i = 0; i < dvbFrontends.Size(); i++) {
if (dvbFrontends[i]->ProvidesDeliverySystem(DeliverySystem) && dvbFrontends[i]->ProvidesModulation(dtp.System(), dtp.StreamId(), dtp.Modulation())) {
if (Activate && dvbFrontend != dvbFrontends[i]) {
cMutexLock MutexLock(&mutex);
dvbFrontend->Close();
dvbFrontend = dvbFrontends[i];
fd_frontend = dvbFrontend->Open();
frontend = i;
dsyslog("using frontend %d/%d", adapter, frontend);
lastUncValue = 0;
lastUncDelta = 0;
lastUncChange = 0;
}
return true;
}
}
return false;
}
bool cDvbTuner::Bond(cDvbTuner *Tuner)
{
cMutexLock MutexLock(&bondMutex);
if (!bondedTuner) {
ResetToneAndVoltage();
bondedMaster = false; // makes sure we don't disturb an existing master
bondedTuner = Tuner->bondedTuner ? Tuner->bondedTuner : Tuner;
Tuner->bondedTuner = this;
dsyslog("tuner %d/%d bonded with tuner %d/%d", adapter, frontend, bondedTuner->adapter, bondedTuner->frontend);
return true;
}
else
esyslog("ERROR: tuner %d/%d already bonded with tuner %d/%d, can't bond with tuner %d/%d", adapter, frontend, bondedTuner->adapter, bondedTuner->frontend, Tuner->adapter, Tuner->frontend);
return false;
}
void cDvbTuner::UnBond(void)
{
cMutexLock MutexLock(&bondMutex);
if (cDvbTuner *t = bondedTuner) {
dsyslog("tuner %d/%d unbonded from tuner %d/%d", adapter, frontend, bondedTuner->adapter, bondedTuner->frontend);
while (t->bondedTuner != this)
t = t->bondedTuner;
if (t == bondedTuner)
t->bondedTuner = NULL;
else
t->bondedTuner = bondedTuner;
bondedMaster = false; // another one will automatically become master whenever necessary
bondedTuner = NULL;
}
}
cString cDvbTuner::GetBondingParams(const cChannel *Channel) const
{
if (!Channel)
Channel = &channel;
cDvbTransponderParameters dtp(Channel->Parameters());
if (Setup.DiSEqC) {
if (const cDiseqc *diseqc = Diseqcs.Get(device->DeviceNumber() + 1, Channel->Source(), Channel->Frequency(), dtp.Polarization(), NULL))
return diseqc->Commands();
}
else {
bool ToneOff = Channel->Frequency() < Setup.LnbSLOF;
bool VoltOff = dtp.Polarization() == 'V' || dtp.Polarization() == 'R';
return cString::sprintf("%c %c", ToneOff ? 't' : 'T', VoltOff ? 'v' : 'V');
}
return "";
}
bool cDvbTuner::BondingOk(const cChannel *Channel, bool ConsiderOccupied) const
{
cMutexLock MutexLock(&bondMutex);
if (cDvbTuner *t = bondedTuner) {
cString BondingParams = GetBondingParams(Channel);
do {
if (t->device->Priority() > IDLEPRIORITY || ConsiderOccupied && t->device->Occupied()) {
if (strcmp(BondingParams, t->GetBondedMaster()->GetBondingParams()) != 0)
return false;
}
t = t->bondedTuner;
} while (t != bondedTuner);
}
return true;
}
cDvbTuner *cDvbTuner::GetBondedMaster(void)
{
if (!bondedTuner)
return this; // an unbonded tuner is always "master"
cMutexLock MutexLock(&bondMutex);
if (bondedMaster)
return this;
// This tuner is bonded, but it's not the master, so let's see if there is a master at all:
if (cDvbTuner *t = bondedTuner) {
while (t != this) {
if (t->bondedMaster)
return t;
t = t->bondedTuner;
}
}
// None of the other bonded tuners is master, so make this one the master:
bondedMaster = true;
dsyslog("tuner %d/%d is now bonded master", adapter, frontend);
return this;
}
bool cDvbTuner::IsTunedTo(const cChannel *Channel) const
{
if (tunerStatus == tsIdle)
return false; // not tuned to
if (channel.Source() != Channel->Source() || channel.Transponder() != Channel->Transponder())
return false; // sufficient mismatch
// Polarization is already checked as part of the Transponder.
return strcmp(channel.Parameters(), Channel->Parameters()) == 0;
}
void cDvbTuner::SetChannel(const cChannel *Channel)
{
if (Channel) {
if (bondedTuner) {
cMutexLock MutexLock(&bondMutex);
cDvbTuner *BondedMaster = GetBondedMaster();
if (BondedMaster == this) {
if (strcmp(GetBondingParams(Channel), GetBondingParams()) != 0) {
// switching to a completely different band, so set all others to idle:
for (cDvbTuner *t = bondedTuner; t && t != this; t = t->bondedTuner)
t->SetChannel(NULL);
}
}
else if (strcmp(GetBondingParams(Channel), BondedMaster->GetBondingParams()) != 0)
BondedMaster->SetChannel(Channel);
}
cMutexLock MutexLock(&mutex);
if (!IsTunedTo(Channel))
tunerStatus = tsSet;
diseqcOffset = 0;
channel = *Channel;
lastTimeoutReport = 0;
newSet.Broadcast();
}
else {
cMutexLock MutexLock(&mutex);
tunerStatus = tsIdle;
ResetToneAndVoltage();
}
if (bondedTuner && device->IsPrimaryDevice())
cDevice::PrimaryDevice()->DelLivePids(); // 'device' is const, so we must do it this way
}
bool cDvbTuner::Locked(int TimeoutMs)
{
bool isLocked = (tunerStatus >= tsLocked);
if (isLocked || !TimeoutMs)
return isLocked;
cMutexLock MutexLock(&mutex);
if (TimeoutMs && tunerStatus < tsLocked)
locked.TimedWait(mutex, TimeoutMs);
return tunerStatus >= tsLocked;
}
void cDvbTuner::ClearEventQueue(void) const
{
cPoller Poller(fd_frontend);
if (Poller.Poll(TUNER_POLL_TIMEOUT)) {
dvb_frontend_event Event;
while (ioctl(fd_frontend, FE_GET_EVENT, &Event) == 0)
; // just to clear the event queue - we'll read the actual status below
}
}
bool cDvbTuner::GetFrontendStatus(fe_status_t &Status) const
{
ClearEventQueue();
while (1) {
if (ioctl(fd_frontend, FE_READ_STATUS, &Status) != -1)
return true;
if (errno != EINTR)
break;
}
return false;
}
//#define DEBUG_SIGNALSTATS
//#define DEBUG_SIGNALSTRENGTH
//#define DEBUG_SIGNALQUALITY
bool cDvbTuner::GetSignalStats(int &Valid, double *Strength, double *Cnr, double *BerPre, double *BerPost, double *Per, int *Status) const
{
ClearEventQueue();
fe_status_t FeStatus;
dtv_property Props[MAXFRONTENDCMDS];
dtv_properties CmdSeq;
memset(&Props, 0, sizeof(Props));
memset(&CmdSeq, 0, sizeof(CmdSeq));
CmdSeq.props = Props;
Valid = DTV_STAT_VALID_NONE;
if (ioctl(fd_frontend, FE_READ_STATUS, &FeStatus) != 0) {
esyslog("ERROR: frontend %d/%d: %m (%s:%d)", adapter, frontend, __FILE__, __LINE__);
return false;
}
if (Status) {
*Status = DTV_STAT_HAS_NONE;
if (FeStatus & FE_HAS_SIGNAL) *Status |= DTV_STAT_HAS_SIGNAL;
if (FeStatus & FE_HAS_CARRIER) *Status |= DTV_STAT_HAS_CARRIER;
if (FeStatus & FE_HAS_VITERBI) *Status |= DTV_STAT_HAS_VITERBI;
if (FeStatus & FE_HAS_SYNC) *Status |= DTV_STAT_HAS_SYNC;
if (FeStatus & FE_HAS_LOCK) *Status |= DTV_STAT_HAS_LOCK;
Valid |= DTV_STAT_VALID_STATUS;
}
if (Strength) SETCMD(DTV_STAT_SIGNAL_STRENGTH, 0);
if (Cnr) SETCMD(DTV_STAT_CNR, 0);
if (BerPre) { SETCMD(DTV_STAT_PRE_ERROR_BIT_COUNT, 0);
SETCMD(DTV_STAT_PRE_TOTAL_BIT_COUNT, 0); }
if (BerPost) { SETCMD(DTV_STAT_POST_ERROR_BIT_COUNT, 0);
SETCMD(DTV_STAT_POST_TOTAL_BIT_COUNT, 0); }
if (Per) { SETCMD(DTV_STAT_ERROR_BLOCK_COUNT, 0);
SETCMD(DTV_STAT_TOTAL_BLOCK_COUNT, 0); }
if (ioctl(fd_frontend, FE_GET_PROPERTY, &CmdSeq) != 0) {
esyslog("ERROR: frontend %d/%d: %m (%s:%d)", adapter, frontend, __FILE__, __LINE__);
return false;
}
int i = 0;
if (Strength) {
if (Props[i].u.st.len > 0) {
switch (Props[i].u.st.stat[0].scale) {
case FE_SCALE_DECIBEL: *Strength = double(Props[i].u.st.stat[0].svalue) / 1000;
Valid |= DTV_STAT_VALID_STRENGTH;
break;
default: ;
}
}
i++;
}
if (Cnr) {
if (Props[i].u.st.len > 0) {
switch (Props[i].u.st.stat[0].scale) {
case FE_SCALE_DECIBEL: *Cnr = double(Props[i].u.st.stat[0].svalue) / 1000;
Valid |= DTV_STAT_VALID_CNR;
break;
default: ;
}
}
i++;
}
if (BerPre) {
if (Props[i].u.st.len > 0 && Props[i + 1].u.st.len > 0) {
if (Props[i].u.st.stat[0].scale == FE_SCALE_COUNTER && Props[i + 1].u.st.stat[0].scale == FE_SCALE_COUNTER) {
uint64_t ebc = Props[i].u.st.stat[0].uvalue; // error bit count
uint64_t tbc = Props[i + 1].u.st.stat[0].uvalue; // total bit count
if (tbc > 0) {
*BerPre = double(ebc) / tbc;
Valid |= DTV_STAT_VALID_BERPRE;
}
}
}
i += 2;
}
if (BerPost) {
if (Props[i].u.st.len > 0 && Props[i + 1].u.st.len > 0) {
if (Props[i].u.st.stat[0].scale == FE_SCALE_COUNTER && Props[i + 1].u.st.stat[0].scale == FE_SCALE_COUNTER) {
uint64_t ebc = Props[i].u.st.stat[0].uvalue; // error bit count
uint64_t tbc = Props[i + 1].u.st.stat[0].uvalue; // total bit count
if (tbc > 0) {
*BerPost = double(ebc) / tbc;
Valid |= DTV_STAT_VALID_BERPOST;
}
}
}
i += 2;
}
if (Per) {
if (Props[i].u.st.len > 0 && Props[i + 1].u.st.len > 0) {
if (Props[i].u.st.stat[0].scale == FE_SCALE_COUNTER && Props[i + 1].u.st.stat[0].scale == FE_SCALE_COUNTER) {
uint64_t ebc = Props[i].u.st.stat[0].uvalue; // error block count
uint64_t tbc = Props[i + 1].u.st.stat[0].uvalue; // total block count
if (tbc > 0) {
*Per = double(ebc) / tbc;
Valid |= DTV_STAT_VALID_PER;
}
}
}
i += 2;
}
#ifdef DEBUG_SIGNALSTATS
fprintf(stderr, "FE %d/%d: API5 %04X", adapter, frontend, Valid);
if ((Valid & DTV_STAT_VALID_STATUS) != 0) fprintf(stderr, " STAT=%04X", *Status);
if ((Valid & DTV_STAT_VALID_STRENGTH) != 0) fprintf(stderr, " STR=%1.1fdBm", *Strength);
if ((Valid & DTV_STAT_VALID_CNR) != 0) fprintf(stderr, " CNR=%1.1fdB", *Cnr);
if ((Valid & DTV_STAT_VALID_BERPRE) != 0) fprintf(stderr, " BERPRE=%1.1e", *BerPre);
if ((Valid & DTV_STAT_VALID_BERPOST) != 0) fprintf(stderr, " BERPOST=%1.1e", *BerPost);
if ((Valid & DTV_STAT_VALID_PER) != 0) fprintf(stderr, " PER=%1.1e", *Per);
fprintf(stderr, "\n");
#endif
return Valid != DTV_STAT_VALID_NONE;
}
int dB1000toPercent(int dB1000, int Low, int High)
{
// Convert the given value, which is in 1/1000 dBm, to a percentage in the
// range 0..100. Anything below Low is considered 0%, and anything above
// High counts as 100%.
if (dB1000 < Low)
return 0;
if (dB1000 > High)
return 100;
// return 100 - 100 * (High - dB1000) / (High - Low); // linear conversion
// return 100 - 100 * sqr(dB1000 - High) / sqr(Low - High); // quadratic conversion, see https://www.adriangranados.com/blog/dbm-to-percent-conversion
double v = 10.0 * (dB1000 - High) / (Low - High); // avoids the sqr() function
return 100 - v * v;
}
#define REF_S1(q1) (mod == QPSK) ? q1 : 0
#define REF_S2(q1, q2, q3, q4) (mod == QPSK) ? q1 : (mod == PSK_8) ? q2 : (mod == APSK_16) ? q3 : (mod == APSK_32) ? q4 : 0
#define REF_T1(q1, q2, q3) (mod == QPSK) ? q1 : (mod == QAM_16) ? q2 : (mod == QAM_64) ? q3 : 0
#define REF_T2(q1, q2, q3, q4) (mod == QPSK) ? q1 : (mod == QAM_16) ? q2 : (mod == QAM_64) ? q3 : (mod == QAM_256) ? q4 : 0
#define REF_C1(q1, q2, q3, q4, q5) (mod == QAM_16) ? q1 : (mod == QAM_32) ? q2 : (mod == QAM_64) ? q3 : (mod == QAM_128) ? q4 : (mod == QAM_256) ? q5: 0
int StrengthToSSI(const cChannel *Channel, int Strength, int FeModulation, int FeCoderateH, int FeFec)
{
// Strength in 0.001dBm (dBm x 1000)
cDvbTransponderParameters dtp(Channel->Parameters());
int ssi = 0; // 0-100
int mod = (FeModulation >= 0) ? FeModulation : dtp.Modulation();
int cod = (FeCoderateH >= 0) ? FeCoderateH : dtp.CoderateH(); // DVB-T
int fec = (FeFec >= 0) ? FeFec : dtp.CoderateH();
if (Channel->IsTerr()) {
int pref = 0;
// NorDig Unified Ver. 2.6 - 3.4.4.6 Page 43 ff.
// reference values : pref-15dBm = 0%, pref+35dBm = 100%
if (dtp.System() == DVB_SYSTEM_1) { // DVB-T
fec = cod; // adjustment for DVB-T
if (mod == QAM_AUTO) mod = QPSK;
switch (fec) { // dBm: Q4 Q16 Q64
case FEC_1_2: pref = REF_T1(-93, -87, -82); break;
default:
case FEC_2_3: pref = REF_T1(-91, -85, -80); break;
case FEC_3_4: pref = REF_T1(-90, -84, -78); break;
case FEC_5_6: pref = REF_T1(-89, -83, -77); break;
case FEC_7_8: pref = REF_T1(-88, -82, -76); break;
}
}
else { // DVB-T2
if (mod == QAM_AUTO) mod = QAM_64;
switch (fec) { // dBm: Q4 Q16 Q64 Q256
case FEC_1_2: pref = REF_T2(-96, -91, -86, -82); break;
default:
case FEC_3_5: pref = REF_T2(-95, -89, -85, -80); break;
case FEC_2_3: pref = REF_T2(-94, -88, -83, -78); break;
case FEC_3_4: pref = REF_T2(-93, -87, -82, -76); break;
case FEC_4_5: pref = REF_T2(-92, -86, -81, -75); break;
case FEC_5_6: pref = REF_T2(-92, -86, -80, -74); break;
}
}
if (pref) {
int prel = (Strength / 1000) - pref;
ssi = (prel < -15) ? 0 :
(prel < 0) ? (prel + 15) * 2 / 3 : // 0% - 10%
(prel < 20) ? prel * 4 + 10 : // 10% - 90%
(prel < 35) ? (prel - 20) * 2 / 3 + 90 : // 90% - 100%
100;
#ifdef DEBUG_SIGNALSTRENGTH
fprintf(stderr, "SSI-T: STR:%d, Pref:%d, Prel:%d, ssi:%d%%(sys:%d, mod:%d, fec:%d)\n", Strength, pref, prel, ssi, dtp.System(), mod, fec);
#endif
}
}
else if (Channel->IsCable()) { // ! COMPLETELY UNTESTED !
// Formula: pref(dB) = -174.0 + NoiseFigure + SymRef + CnRef
// NoiseFigure = 6.5 dB; -> Tuner specific - range: 3.5 .. 9.0 dB
// SymRef = 10*log(6900000) = 68.5 dB; -> for Symbolrate of 6900 kSym/sec (TV: 6900, 6750 or 6111 kSym/sec)
// ==> pref(dB) = -174.0 + 6.5 + 68.5 + CnRef[modulation]{20,23,26,29,32}; (+/- 3 dB tuner specific)
if (mod == QAM_AUTO) mod = QAM_256;
// Q16 Q32 Q64 Q128 Q256
int pref = REF_C1(-79, -76, -73, -70, -67);
if (pref) {
int prel = (Strength / 1000) - pref;
ssi = (prel < -15) ? 0 :
(prel < 0) ? (prel + 15) * 2 / 3 : // 0% - 10%
(prel < 20) ? prel * 4 + 10 : // 10% - 90%
(prel < 35) ? (prel - 20) * 2 / 3 + 90 : // 90% - 100%
100;
#ifdef DEBUG_SIGNALSTRENGTH
fprintf(stderr, "SSI-C: STR:%d, Pref:%d, Prel:%d, ssi:%d%%(mod:%d)\n", Strength, pref, prel, ssi, mod);
#endif
}
}
else if (Channel->IsSat())
ssi = dB1000toPercent(Strength, -95000, -20000); // defaults
return ssi;
}
// Due to missing values or the different meanings of the reported error rate, ber_sqi is currently not taken into account
#define IGNORE_BER 1
#define BER_ERROR_FREE (1000*1000*1000) // 1/10^-9
int SignalToSQI(const cChannel *Channel, int Signal, int Ber, int FeModulation, int FeCoderateH, int FeFec)
{
#if IGNORE_BER
Ber = BER_ERROR_FREE; // assume/pretend to be biterror free
#endif
// Signal in 0.001dB (dB x 1000)
cDvbTransponderParameters dtp(Channel->Parameters());
int sqi = 0; // 0-100
int mod = (FeModulation >= 0) ? FeModulation : dtp.Modulation();
int cod = (FeCoderateH >= 0) ? FeCoderateH : dtp.CoderateH(); // DVB-T
int fec = (FeFec >= 0) ? FeFec : dtp.CoderateH();
if (Channel->IsTerr()) { // QEF: BER 10^-6
int cnref = 0;
// NorDig Unified Ver. 2.6 - 3.4.4.7 Page 45 ff.
// reference values for QEF (BER 10^-11 at MPEG2 demux input)
if (dtp.System() == DVB_SYSTEM_1) { // DVB-T
fec = cod; // adjustment for DVB-T
if (mod == QAM_AUTO) mod = QPSK;
switch (fec) { // 0.1 dB Q4 Q16 Q64 (Hierarchy=None)
case FEC_1_2: cnref = REF_T1(51, 108, 165); break;
default:
case FEC_2_3: cnref = REF_T1(69, 131, 187); break;
case FEC_3_4: cnref = REF_T1(79, 146, 202); break;
case FEC_5_6: cnref = REF_T1(89, 156, 216); break;
case FEC_7_8: cnref = REF_T1(97, 160, 225); break;
}
}
else { // DVB-T2
if (mod == QAM_AUTO) mod = QAM_64;
switch (fec) { // 0.1 dB Q4 Q16 Q64 Q256
case FEC_1_2: cnref = REF_T2(35, 87, 130, 170); break;
default:
case FEC_3_5: cnref = REF_T2(47, 101, 148, 194); break;
case FEC_2_3: cnref = REF_T2(56, 114, 162, 208); break;
case FEC_3_4: cnref = REF_T2(66, 125, 177, 229); break;
case FEC_4_5: cnref = REF_T2(72, 133, 187, 243); break;
case FEC_5_6: cnref = REF_T2(77, 138, 194, 251); break;
}
}
if (cnref) {
int cnrel = (Signal/100) - cnref; // 0.1 dB
int ber_sqi = 100; // 100%
int cnr_sqi = 0; // 0%
if (dtp.System() == DVB_SYSTEM_1) { // DVB-T
ber_sqi = (Ber < 1000) ? 0 : // > 10^-3
(Ber >= 10000000) ? 100 : // <= 10^-7
(int)(20 * log10(Ber)) - 40; // 20*log10(1/BER)-40 -> 20% .. 100%
// scale: -7dB/+3dB to reference-value
cnr_sqi = (cnrel < -70) ? 0 :
(cnrel < +30) ? (100 + (cnrel - 30)) :
100;
sqi = (cnr_sqi * ber_sqi) / 100;
// alternative: stretched scale: cnref-7dB = 0%, 30dB = 100%
// sqi = dB1000toPercent(Signal, (100*cnref)-7000, 30000);
}
else { // DVB-T2
ber_sqi = (Ber < 10000) ? 0 : // > 10^-4
(Ber >= 10000000) ? 100 * 100 / 6 : // <= 10^-7 : 16.67% -> SQI 0% .. 100%
(100 * 100 / 15); // 6.67% -> SQI 0% .. 40% || 100%
// scale: -3dB/+3dB to reference-value
sqi = (cnrel < -30) ? 0 :
(cnrel <= +30) ? (cnrel + 30) * ber_sqi / 1000 : // (0 .. 6) * 16,67 || 6.67
100;
// alternative: stretched scale: cnref-3dB = 0%, 32dB = 100%
// sqi = dB1000toPercent(Signal, (100*cnref)-3000, 32000);
}
#ifdef DEBUG_SIGNALQUALITY
fprintf(stderr, "SQI-T: SIG:%d, BER:%d, CNref:%d, CNrel:%d, bersqi:%d, sqi:%d%%(sys:%d, mod:%d, fec:%d)\n", Signal, Ber, cnref, cnrel, ber_sqi, sqi, dtp.System(), mod, fec);
#endif
}
}
else if (Channel->IsCable()) { // ! COMPLETELY UNTESTED !
if (mod == QAM_AUTO) mod = QAM_256;
// 0.1 dB Q16 Q32 Q64 Q128 Q256
int cnref = REF_C1(200, 230, 260, 290, 320); // minimum for BER<10^-4
if (cnref) {
int cnrel = (Signal / 100) - cnref; // 0.1 dB
int ber_sqi = (Ber < 1000) ? 0 : // > 10^-3
(Ber >= 10000000) ? 100 : // <= 10^-7
(int)(20 * log10(Ber)) - 40; // 20*log10(1/BER)-40 -> 20% .. 100%
// scale: -7dB/+3dB to reference-value
int cnr_sqi = (cnrel < -70) ? 0 :
(cnrel < +30) ? (100 + (cnrel - 30)) :
100;
sqi = (cnr_sqi * ber_sqi) / 100;
// alternative: stretched scale: cnref-7dB = 0%, 40dB = 100%
// sqi = dB1000toPercent(Signal, (100*cnref)-7000, 40000);
#ifdef DEBUG_SIGNALQUALITY
dsyslog("SQI-C: SIG:%d, BER:%d, CNref:%d, CNrel:%d, bersqi:%d, sqi:%d%%(sys:%d, mod:%d, fec:%d)\n", Signal, Ber, cnref, cnrel, ber_sqi, sqi, dtp.System(), mod, fec);
#endif
}
}
else if (Channel->IsSat()) {
int cnref = 0;
if (dtp.System() == DVB_SYSTEM_1) { // DVB-S
if (mod == QAM_AUTO) mod = QPSK;
switch (fec) { // 0.1 dB: Q4 : 10^-7
case FEC_1_2: cnref = REF_S1(38); break;
default:
case FEC_2_3: cnref = REF_S1(56); break;
case FEC_3_4: cnref = REF_S1(67); break;
case FEC_5_6: cnref = REF_S1(77); break;
case FEC_7_8: cnref = REF_S1(84); break;
}
if (cnref) {
//cnrel = (Signal/100) - cnref; // 0.1 dB
// scale: cnref-4dB = 0%, 15dB = 100%
sqi = dB1000toPercent(Signal, (100*cnref)-4000, 15000);
#ifdef DEBUG_SIGNALQUALITY
dsyslog("SQI-S1: SIG:%d, BER:%d, CNref:%d, sqi:%d%%(mod:%d, fec:%d)\n", Signal, Ber, cnref, sqi, mod, fec);
#endif
}
}
else { // DVB-S2
if (mod == QAM_AUTO) mod = QAM_64;
switch (fec) { // 0.1 dB Q4 Q8 16A* 32A*
//case FEC_1_4: cnref = REF_S2(-14, 65, 90, 126); break;
//case FEC_1_3: cnref = REF_S2( -2, 65, 90, 126); break;
case FEC_2_5: cnref = REF_S2( 7, 65, 90, 126); break;
case FEC_1_2: cnref = REF_S2( 20, 65, 90, 126); break;
case FEC_3_5: cnref = REF_S2( 32, 65, 90, 126); break;
default:
case FEC_2_3: cnref = REF_S2( 41, 76, 90, 126); break;
case FEC_3_4: cnref = REF_S2( 50, 66, 102, 126); break;
case FEC_4_5: cnref = REF_S2( 57, 89, 110, 136); break;
case FEC_5_6: cnref = REF_S2( 62, 104, 116, 143); break;
case FEC_8_9: cnref = REF_S2( 72, 117, 129, 157); break;
case FEC_9_10: cnref = REF_S2( 74, 120, 131, 161); break;
}
if (cnref) {
// cnrel = (Signal/100) - cnref; // 0.1 dB
// scale: cnref-4dB = 0%, 20dB = 100%
sqi = dB1000toPercent(Signal, (100*cnref)-4000, 20000);
#ifdef DEBUG_SIGNALQUALITY
dsyslog("SQI-S2: SIG:%d, BER:%d, CNref:%d, sqi:%d%%(mod:%d, fec:%d)\n", Signal, Ber, cnref, sqi, mod, fec);
#endif
}
}
}
return sqi;
}
int cDvbTuner::GetSignalStrength(void) const
{
ClearEventQueue();
// Try DVB API 5:
for (int i = 0; i < 1; i++) { // just a trick to break out with 'continue' ;-)
dtv_property Props[MAXFRONTENDCMDS];
dtv_properties CmdSeq;
memset(&Props, 0, sizeof(Props));
memset(&CmdSeq, 0, sizeof(CmdSeq));
CmdSeq.props = Props;
SETCMD(DTV_STAT_SIGNAL_STRENGTH, 0);
SETCMD(DTV_MODULATION, 0);
SETCMD(DTV_CODE_RATE_HP, 0); // DVB-T only
SETCMD(DTV_INNER_FEC, 0);
if (ioctl(fd_frontend, FE_GET_PROPERTY, &CmdSeq) != 0) {
esyslog("ERROR: frontend %d/%d: %m (%s:%d)", adapter, frontend, __FILE__, __LINE__);
return -1;
}
int FeMod = (Props[1].u.st.len > 0) ? (int)Props[1].u.data : -1;
int FeCod = (Props[2].u.st.len > 0) ? (int)Props[2].u.data : -1;
int FeFec = (Props[3].u.st.len > 0) ? (int)Props[3].u.data : -1;
int Signal = 0;
if (Props[0].u.st.len > 0) {
switch (Props[0].u.st.stat[0].scale) {
case FE_SCALE_DECIBEL: Signal = StrengthToSSI(&channel, Props[0].u.st.stat[0].svalue, FeMod, FeCod, FeFec);
break;
case FE_SCALE_RELATIVE: Signal = 100 * Props[0].u.st.stat[0].uvalue / 0xFFFF;
break;
default: ;
}
#ifdef DEBUG_SIGNALSTRENGTH
fprintf(stderr, "FE %d/%d: API5 %d %08X %.1f S = %d\n", adapter, frontend, Props[0].u.st.stat[0].scale, int(Props[0].u.st.stat[0].svalue), int(Props[0].u.st.stat[0].svalue) / 1000.0, Signal);
#endif
}
else
continue;
return Signal;
}
// Fall back to DVB API 3:
uint16_t Signal;
while (1) {
if (ioctl(fd_frontend, FE_READ_SIGNAL_STRENGTH, &Signal) != -1)
break;
if (errno != EINTR)
return -1;
}
uint16_t MaxSignal = 0xFFFF; // Let's assume the default is using the entire range.
// Use the subsystemId to identify individual devices in case they need
// special treatment to map their Signal value into the range 0...0xFFFF.
switch (dvbFrontend->SubsystemId()) {
case 0x13C21019: // TT-budget S2-3200 (DVB-S/DVB-S2)
case 0x1AE40001: // TechniSat SkyStar HD2 (DVB-S/DVB-S2)
MaxSignal = 670; break;
}
int s = int(Signal) * 100 / MaxSignal;
if (s > 100)
s = 100;
#ifdef DEBUG_SIGNALSTRENGTH
fprintf(stderr, "FE %d/%d: API3 %08X S = %04X %04X %3d%%\n", adapter, frontend, dvbFrontend->SubsystemId(), MaxSignal, Signal, s);
#endif
return s;
}
#define LOCK_THRESHOLD 5 // indicates that all 5 FE_HAS_* flags are set
int cDvbTuner::GetSignalQuality(void) const
{
// Try DVB API 5:
for (int i = 0; i < 1; i++) { // just a trick to break out with 'continue' ;-)
dtv_property Props[MAXFRONTENDCMDS];
dtv_properties CmdSeq;
memset(&Props, 0, sizeof(Props));
memset(&CmdSeq, 0, sizeof(CmdSeq));
CmdSeq.props = Props;
SETCMD(DTV_STAT_CNR, 0);
SETCMD(DTV_MODULATION, 0);
SETCMD(DTV_CODE_RATE_HP, 0); // DVB-T only
SETCMD(DTV_INNER_FEC, 0);
SETCMD(DTV_STAT_POST_ERROR_BIT_COUNT, 0);
SETCMD(DTV_STAT_POST_TOTAL_BIT_COUNT, 0);
if (ioctl(fd_frontend, FE_GET_PROPERTY, &CmdSeq) != 0) {
esyslog("ERROR: frontend %d/%d: %m (%s:%d)", adapter, frontend, __FILE__, __LINE__);
return -1;
}
int FeMod = (Props[1].u.st.len > 0) ? (int)Props[1].u.data : -1;
int FeCod = (Props[2].u.st.len > 0) ? (int)Props[2].u.data : -1;
int FeFec = (Props[3].u.st.len > 0) ? (int)Props[3].u.data : -1;
int Ber = BER_ERROR_FREE; // 1/10^-9
if (Props[4].u.st.len > 0 && Props[4].u.st.stat[0].scale == FE_SCALE_COUNTER && Props[5].u.st.len > 0 && Props[5].u.st.stat[0].scale == FE_SCALE_COUNTER) {
uint64_t ebc = Props[4].u.st.stat[0].uvalue; // error bit count
uint64_t tbc = Props[5].u.st.stat[0].uvalue; // total bit count
if (ebc > 0) {
uint64_t BerRev = tbc / ebc; // reversed, for integer arithmetic
if (BerRev < BER_ERROR_FREE)
Ber = (int)BerRev;
}
}
int Cnr = 0;
if (Props[0].u.st.len > 0) {
switch (Props[0].u.st.stat[0].scale) {
case FE_SCALE_DECIBEL: Cnr = SignalToSQI(&channel, Props[0].u.st.stat[0].svalue, Ber, FeMod, FeCod, FeFec);
break;
case FE_SCALE_RELATIVE: Cnr = 100 * Props[0].u.st.stat[0].uvalue / 0xFFFF;
break;
default: ;
}
#ifdef DEBUG_SIGNALQUALITY
fprintf(stderr, "FE %d/%d: API5 %d %08X %.1f Q = %d\n", adapter, frontend, Props[0].u.st.stat[0].scale, int(Props[0].u.st.stat[0].svalue), int(Props[0].u.st.stat[0].svalue) / 1000.0, Cnr);
#endif
}
else
continue;
return Cnr;
}
// Fall back to DVB API 3:
fe_status_t Status;
if (GetFrontendStatus(Status)) {
// Actually one would expect these checks to be done from FE_HAS_SIGNAL to FE_HAS_LOCK, but some drivers (like the stb0899) are broken, so FE_HAS_LOCK is the only one that (hopefully) is generally reliable...
if ((Status & FE_HAS_LOCK) == 0) {
if ((Status & FE_HAS_SIGNAL) == 0)
return 0;
if ((Status & FE_HAS_CARRIER) == 0)
return 1;
if ((Status & FE_HAS_VITERBI) == 0)
return 2;
if ((Status & FE_HAS_SYNC) == 0)
return 3;
return 4;
}
#ifdef DEBUG_SIGNALQUALITY
bool HasSnr = true;
#endif
uint16_t Snr;
while (1) {
if (ioctl(fd_frontend, FE_READ_SNR, &Snr) != -1)
break;
if (errno != EINTR) {
Snr = 0xFFFF;
#ifdef DEBUG_SIGNALQUALITY
HasSnr = false;
#endif
break;
}
}
#ifdef DEBUG_SIGNALQUALITY
bool HasBer = true;
#endif
uint32_t Ber;
while (1) {
if (ioctl(fd_frontend, FE_READ_BER, &Ber) != -1)
break;
if (errno != EINTR) {
Ber = 0;
#ifdef DEBUG_SIGNALQUALITY
HasBer = false;
#endif
break;
}
}
#ifdef DEBUG_SIGNALQUALITY
bool HasUnc = true;
#endif
uint32_t Unc;
while (1) {
if (ioctl(fd_frontend, FE_READ_UNCORRECTED_BLOCKS, &Unc) != -1) {
if (Unc != lastUncValue) {
#ifdef DEBUG_SIGNALQUALITY
fprintf(stderr, "FE %d/%d: API3 UNC = %u %u %u\n", adapter, frontend, Unc, lastUncValue, lastUncDelta);
#endif
lastUncDelta = (Unc >= lastUncValue) ? Unc - lastUncValue : lastUncValue - Unc;
lastUncValue = Unc;
lastUncChange = time(NULL);
}
// The number of uncorrected blocks is a counter, which is normally
// at a constant value and only increases if there are new uncorrected
// blocks. So a change in the Unc value indicates reduced signal quality.
// Whenever the Unc counter changes, we take the delta between the old
// and new value into account for calculating the overall signal quality.
// The impact of Unc is considered for 2 seconds, and after that it is
// bisected with every passing second in order to phase it out. Otherwise
// once one or more uncorrected blocks occur, the signal quality would
// be considered low even if there haven't been any more uncorrected bocks
// for quite a while.
Unc = lastUncDelta;
if (Unc > 0) {
int t = time(NULL) - lastUncChange - 2;
if (t > 0)
Unc >>= min(t, int(sizeof(Unc) * 8 - 1));
if (Unc == 0)
lastUncDelta = 0;
#ifdef DEBUG_SIGNALQUALITY
fprintf(stderr, "FE %d/%d: API3 UNC = %u\n", adapter, frontend, Unc);
#endif
}
break;
}
if (errno != EINTR) {
Unc = 0;
#ifdef DEBUG_SIGNALQUALITY
HasUnc = false;
#endif
break;
}
}
uint16_t MinSnr = 0x0000;
uint16_t MaxSnr = 0xFFFF; // Let's assume the default is using the entire range.
// Use the subsystemId to identify individual devices in case they need
// special treatment to map their Snr value into the range 0...0xFFFF.
switch (dvbFrontend->SubsystemId()) {
case 0x13C21019: // TT-budget S2-3200 (DVB-S/DVB-S2)
case 0x1AE40001: // TechniSat SkyStar HD2 (DVB-S/DVB-S2)
if (frontendType == SYS_DVBS2) {
MinSnr = 10;
MaxSnr = 70;
}
else
MaxSnr = 200;
break;
case 0x20130245: // PCTV Systems PCTV 73ESE
case 0x2013024F: // PCTV Systems nanoStick T2 290e
MaxSnr = 255; break;
}
int a = int(constrain(Snr, MinSnr, MaxSnr)) * 100 / (MaxSnr - MinSnr);
int b = 100 - (Unc * 10 + (Ber / 256) * 5);
if (b < 0)
b = 0;
int q = LOCK_THRESHOLD + a * b * (100 - LOCK_THRESHOLD) / 100 / 100;
if (q > 100)
q = 100;
#ifdef DEBUG_SIGNALQUALITY
fprintf(stderr, "FE %d/%d: API3 %08X Q = %04X %04X %d %5d %5d %3d%%\n", adapter, frontend, dvbFrontend->SubsystemId(), MaxSnr, Snr, HasSnr, HasBer ? int(Ber) : -1, HasUnc ? int(Unc) : -1, q);
#endif
return q;
}
return -1;
}
static unsigned int FrequencyToHz(unsigned int f)
{
while (f && f < 1000000)
f *= 1000;
return f;
}
cPositioner *cDvbTuner::GetPositioner(void)
{
if (!positioner) {
positioner = cPositioner::GetPositioner();
positioner->SetFrontend(fd_frontend);
}
return positioner;
}
void cDvbTuner::ExecuteDiseqc(const cDiseqc *Diseqc, int *Frequency)
{
if (!lnbPowerTurnedOn) {
CHECK(ioctl(fd_frontend, FE_SET_VOLTAGE, SEC_VOLTAGE_13)); // must explicitly turn on LNB power
lnbPowerTurnedOn = true;
}
static cMutex Mutex;
if (Diseqc->IsScr())
Mutex.Lock();
struct dvb_diseqc_master_cmd cmd;
const char *CurrentAction = NULL;
cPositioner *Positioner = NULL;
bool Break = false;
for (int i = 0; !Break; i++) {
cmd.msg_len = sizeof(cmd.msg);
cDiseqc::eDiseqcActions da = Diseqc->Execute(&CurrentAction, cmd.msg, &cmd.msg_len, scr, Frequency);
if (da == cDiseqc::daNone) {
diseqcOffset = 0;
break;
}
bool d = i >= diseqcOffset;
switch (da) {
case cDiseqc::daToneOff: if (d) CHECK(ioctl(fd_frontend, FE_SET_TONE, SEC_TONE_OFF)); break;
case cDiseqc::daToneOn: if (d) CHECK(ioctl(fd_frontend, FE_SET_TONE, SEC_TONE_ON)); break;
case cDiseqc::daVoltage13: if (d) CHECK(ioctl(fd_frontend, FE_SET_VOLTAGE, SEC_VOLTAGE_13)); break;
case cDiseqc::daVoltage18: if (d) CHECK(ioctl(fd_frontend, FE_SET_VOLTAGE, SEC_VOLTAGE_18)); break;
case cDiseqc::daMiniA: if (d) CHECK(ioctl(fd_frontend, FE_DISEQC_SEND_BURST, SEC_MINI_A)); break;
case cDiseqc::daMiniB: if (d) CHECK(ioctl(fd_frontend, FE_DISEQC_SEND_BURST, SEC_MINI_B)); break;
case cDiseqc::daCodes: if (d) CHECK(ioctl(fd_frontend, FE_DISEQC_SEND_MASTER_CMD, &cmd)); break;
case cDiseqc::daPositionN: if ((Positioner = GetPositioner()) != NULL) {
if (d) {
Positioner->GotoPosition(Diseqc->Position(), cSource::Position(channel.Source()));
Break = Positioner->IsMoving();
}
}
break;
case cDiseqc::daPositionA: if ((Positioner = GetPositioner()) != NULL) {
if (d) {
Positioner->GotoAngle(cSource::Position(channel.Source()));
Break = Positioner->IsMoving();
}
}
break;
case cDiseqc::daScr:
case cDiseqc::daWait: break;
default: esyslog("ERROR: unknown diseqc command %d", da);
}
if (Break)
diseqcOffset = i + 1;
}
positioner = Positioner;
if (scr && !Break)
ResetToneAndVoltage(); // makes sure we don't block the bus!
if (Diseqc->IsScr())
Mutex.Unlock();
}
void cDvbTuner::ResetToneAndVoltage(void)
{
CHECK(ioctl(fd_frontend, FE_SET_VOLTAGE, bondedTuner ? SEC_VOLTAGE_OFF : SEC_VOLTAGE_13));
CHECK(ioctl(fd_frontend, FE_SET_TONE, SEC_TONE_OFF));
}
bool cDvbTuner::SetFrontend(void)
{
dtv_property Props[MAXFRONTENDCMDS];
memset(&Props, 0, sizeof(Props));
dtv_properties CmdSeq;
memset(&CmdSeq, 0, sizeof(CmdSeq));
CmdSeq.props = Props;
SETCMD(DTV_CLEAR, 0);
if (ioctl(fd_frontend, FE_SET_PROPERTY, &CmdSeq) < 0) {
esyslog("ERROR: frontend %d/%d: %m (%s:%d)", adapter, frontend, __FILE__, __LINE__);
return false;
}
CmdSeq.num = 0;
cDvbTransponderParameters dtp(channel.Parameters());
// Determine the required frontend type:
frontendType = GetRequiredDeliverySystem(&channel, &dtp);
if (frontendType == SYS_UNDEFINED)
return false;
SETCMD(DTV_DELIVERY_SYSTEM, frontendType);
if (frontendType == SYS_DVBS || frontendType == SYS_DVBS2) {
int frequency = channel.Frequency();
if (Setup.DiSEqC) {
if (const cDiseqc *diseqc = Diseqcs.Get(device->DeviceNumber() + 1, channel.Source(), frequency, dtp.Polarization(), &scr)) {
frequency -= diseqc->Lof();
if (diseqc != lastDiseqc || diseqc->IsScr() || diseqc->Position() >= 0 && channel.Source() != lastSource) {
if (IsBondedMaster()) {
ExecuteDiseqc(diseqc, &frequency);
if (frequency == 0)
return false;
}
else
ResetToneAndVoltage();
lastDiseqc = diseqc;
lastSource = channel.Source();
}
}
else {
esyslog("ERROR: no DiSEqC parameters found for channel %d (%s)", channel.Number(), channel.Name());
return false;
}
}
else {
int tone = SEC_TONE_OFF;
if (frequency < Setup.LnbSLOF) {
frequency -= Setup.LnbFrequLo;
tone = SEC_TONE_OFF;
}
else {
frequency -= Setup.LnbFrequHi;
tone = SEC_TONE_ON;
}
int volt = (dtp.Polarization() == 'V' || dtp.Polarization() == 'R') ? SEC_VOLTAGE_13 : SEC_VOLTAGE_18;
if (!IsBondedMaster()) {
tone = SEC_TONE_OFF;
volt = SEC_VOLTAGE_13;
}
CHECK(ioctl(fd_frontend, FE_SET_VOLTAGE, volt));
CHECK(ioctl(fd_frontend, FE_SET_TONE, tone));
}
frequency = abs(frequency); // Allow for C-band, where the frequency is less than the LOF
// DVB-S/DVB-S2 (common parts)
SETCMD(DTV_FREQUENCY, frequency * 1000UL);
SETCMD(DTV_MODULATION, dtp.Modulation());
SETCMD(DTV_SYMBOL_RATE, channel.Srate() * 1000UL);
SETCMD(DTV_INNER_FEC, dtp.CoderateH());
SETCMD(DTV_INVERSION, dtp.Inversion());
if (frontendType == SYS_DVBS2) {
// DVB-S2
SETCMD(DTV_PILOT, dtp.Pilot());
SETCMD(DTV_ROLLOFF, dtp.RollOff());
if (DvbApiVersion >= 0x0508)
SETCMD(DTV_STREAM_ID, dtp.StreamId());
}
else {
// DVB-S
SETCMD(DTV_ROLLOFF, ROLLOFF_35); // DVB-S always has a ROLLOFF of 0.35
}
tuneTimeout = DVBS_TUNE_TIMEOUT;
lockTimeout = DVBS_LOCK_TIMEOUT;
}
else if (frontendType == SYS_DVBC_ANNEX_AC || frontendType == SYS_DVBC_ANNEX_B) {
// DVB-C
SETCMD(DTV_FREQUENCY, FrequencyToHz(channel.Frequency()));
SETCMD(DTV_INVERSION, dtp.Inversion());
SETCMD(DTV_SYMBOL_RATE, channel.Srate() * 1000UL);
SETCMD(DTV_INNER_FEC, dtp.CoderateH());
SETCMD(DTV_MODULATION, dtp.Modulation());
tuneTimeout = DVBC_TUNE_TIMEOUT;
lockTimeout = DVBC_LOCK_TIMEOUT;
}
else if (frontendType == SYS_DVBT || frontendType == SYS_DVBT2) {
// DVB-T/DVB-T2 (common parts)
SETCMD(DTV_FREQUENCY, FrequencyToHz(channel.Frequency()));
SETCMD(DTV_INVERSION, dtp.Inversion());
SETCMD(DTV_BANDWIDTH_HZ, dtp.Bandwidth());
SETCMD(DTV_CODE_RATE_HP, dtp.CoderateH());
SETCMD(DTV_CODE_RATE_LP, dtp.CoderateL());
SETCMD(DTV_MODULATION, dtp.Modulation());
SETCMD(DTV_TRANSMISSION_MODE, dtp.Transmission());
SETCMD(DTV_GUARD_INTERVAL, dtp.Guard());
SETCMD(DTV_HIERARCHY, dtp.Hierarchy());
if (frontendType == SYS_DVBT2) {
// DVB-T2
SETCMD(DTV_INNER_FEC, dtp.CoderateH());
if (DvbApiVersion >= 0x0508) {
SETCMD(DTV_STREAM_ID, dtp.StreamId());
}
else if (DvbApiVersion >= 0x0503)
SETCMD(DTV_DVBT2_PLP_ID_LEGACY, dtp.StreamId());
}
tuneTimeout = DVBT_TUNE_TIMEOUT;
lockTimeout = DVBT_LOCK_TIMEOUT;
}
else if (frontendType == SYS_ATSC) {
// ATSC
SETCMD(DTV_FREQUENCY, FrequencyToHz(channel.Frequency()));
SETCMD(DTV_INVERSION, dtp.Inversion());
SETCMD(DTV_MODULATION, dtp.Modulation());
tuneTimeout = ATSC_TUNE_TIMEOUT;
lockTimeout = ATSC_LOCK_TIMEOUT;
}
else {
esyslog("ERROR: attempt to set channel with unknown DVB frontend type");
return false;
}
SETCMD(DTV_TUNE, 0);
if (ioctl(fd_frontend, FE_SET_PROPERTY, &CmdSeq) < 0) {
esyslog("ERROR: frontend %d/%d: %m (%s:%d)", adapter, frontend, __FILE__, __LINE__);
return false;
}
return true;
}
void cDvbTuner::Action(void)
{
cTimeMs Timer;
bool LostLock = false;
fe_status_t Status = (fe_status_t)0;
while (Running()) {
int WaitTime = 1000;
fe_status_t NewStatus;
if (GetFrontendStatus(NewStatus))
Status = NewStatus;
cMutexLock MutexLock(&mutex);
switch (tunerStatus) {
case tsIdle:
break; // we want the TimedWait() below!
case tsSet:
tunerStatus = SetFrontend() ? tsPositioning : tsIdle;
continue;
case tsPositioning:
if (positioner) {
if (positioner->IsMoving())
break; // we want the TimedWait() below!
else if (diseqcOffset) {
lastDiseqc = NULL;
tunerStatus = tsSet; // have it process the rest of the DiSEqC sequence
continue;
}
}
tunerStatus = tsTuned;
device->SectionHandler()->SetStatus(true); // may have been turned off when retuning
Timer.Set(tuneTimeout + (scr ? rand() % SCR_RANDOM_TIMEOUT : 0));
if (positioner)
continue;
// otherwise run directly into tsTuned...
case tsTuned:
if (Timer.TimedOut()) {
tunerStatus = tsSet;
lastDiseqc = NULL;
lastSource = 0;
if (time(NULL) - lastTimeoutReport > 60) { // let's not get too many of these
if (channel.Number()) // no need to log this for transponders that are announced in the NIT but are not currently broadcasting
isyslog("frontend %d/%d timed out while tuning to channel %d (%s), tp %d", adapter, frontend, channel.Number(), channel.Name(), channel.Transponder());
lastTimeoutReport = time(NULL);
}
continue;
}
WaitTime = 100; // allows for a quick change from tsTuned to tsLocked
// run into tsLocked...
case tsLocked:
if (Status & FE_REINIT) {
tunerStatus = tsSet;
lastDiseqc = NULL;
lastSource = 0;
isyslog("frontend %d/%d was reinitialized", adapter, frontend);
lastTimeoutReport = 0;
continue;
}
else if (Status & FE_HAS_LOCK) {
if (LostLock) {
isyslog("frontend %d/%d regained lock on channel %d (%s), tp %d", adapter, frontend, channel.Number(), channel.Name(), channel.Transponder());
LostLock = false;
}
if (device->SdtFilter()->TransponderWrong()) {
isyslog("frontend %d/%d is not receiving transponder %d for channel %d (%s) - retuning", adapter, frontend, channel.Transponder(), channel.Number(), channel.Name());
device->SectionHandler()->SetStatus(false);
tunerStatus = tsSet;
lastDiseqc = NULL;
lastSource = 0;
continue;
}
tunerStatus = tsLocked;
locked.Broadcast();
lastTimeoutReport = 0;
}
else if (tunerStatus == tsLocked) {
LostLock = true;
isyslog("frontend %d/%d lost lock on channel %d (%s), tp %d", adapter, frontend, channel.Number(), channel.Name(), channel.Transponder());
tunerStatus = tsTuned;
Timer.Set(lockTimeout);
lastTimeoutReport = 0;
continue;
}
break;
default: esyslog("ERROR: unknown tuner status %d", tunerStatus);
}
newSet.TimedWait(mutex, WaitTime);
}
}
// --- cDvbSourceParam -------------------------------------------------------
class cDvbSourceParam : public cSourceParam {
private:
int param;
int srate;
cDvbTransponderParameters dtp;
public:
cDvbSourceParam(char Source, const char *Description);
virtual void SetData(cChannel *Channel);
virtual void GetData(cChannel *Channel);
virtual cOsdItem *GetOsdItem(void);
};
cDvbSourceParam::cDvbSourceParam(char Source, const char *Description)
:cSourceParam(Source, Description)
{
param = 0;
srate = 0;
}
void cDvbSourceParam::SetData(cChannel *Channel)
{
srate = Channel->Srate();
dtp.Parse(Channel->Parameters());
param = 0;
}
void cDvbSourceParam::GetData(cChannel *Channel)
{
Channel->SetTransponderData(Channel->Source(), Channel->Frequency(), srate, dtp.ToString(Source()), true);
}
cOsdItem *cDvbSourceParam::GetOsdItem(void)
{
char type = Source();
const tDvbParameterMap *SystemValues = type == 'S' ? SystemValuesSat : SystemValuesTerr;
#undef ST
#define ST(s) if (strchr(s, type))
switch (param++) {
case 0: ST(" S ") return new cMenuEditChrItem( tr("Polarization"), &dtp.polarization, "HVLR"); else return GetOsdItem();
case 1: ST(" ST") return new cMenuEditMapItem( tr("System"), &dtp.system, SystemValues); else return GetOsdItem();
case 2: ST(" CS ") return new cMenuEditIntItem( tr("Srate"), &srate); else return GetOsdItem();
case 3: ST("ACST") return new cMenuEditMapItem( tr("Inversion"), &dtp.inversion, InversionValues); else return GetOsdItem();
case 4: ST(" CST") return new cMenuEditMapItem( tr("CoderateH"), &dtp.coderateH, CoderateValues); else return GetOsdItem();
case 5: ST(" T") return new cMenuEditMapItem( tr("CoderateL"), &dtp.coderateL, CoderateValues); else return GetOsdItem();
case 6: ST("ACST") return new cMenuEditMapItem( tr("Modulation"), &dtp.modulation, ModulationValues); else return GetOsdItem();
case 7: ST(" T") return new cMenuEditMapItem( tr("Bandwidth"), &dtp.bandwidth, BandwidthValues); else return GetOsdItem();
case 8: ST(" T") return new cMenuEditMapItem( tr("Transmission"), &dtp.transmission, TransmissionValues); else return GetOsdItem();
case 9: ST(" T") return new cMenuEditMapItem( tr("Guard"), &dtp.guard, GuardValues); else return GetOsdItem();
case 10: ST(" T") return new cMenuEditMapItem( tr("Hierarchy"), &dtp.hierarchy, HierarchyValues); else return GetOsdItem();
case 11: ST(" S ") return new cMenuEditMapItem( tr("Rolloff"), &dtp.rollOff, RollOffValues); else return GetOsdItem();
case 12: ST(" ST") return new cMenuEditIntItem( tr("StreamId"), &dtp.streamId, 0, 255); else return GetOsdItem();
case 13: ST(" S ") return new cMenuEditMapItem( tr("Pilot"), &dtp.pilot, PilotValues); else return GetOsdItem();
case 14: ST(" T") return new cMenuEditIntItem( tr("T2SystemId"), &dtp.t2systemId, 0, 65535); else return GetOsdItem();
case 15: ST(" T") return new cMenuEditIntItem( tr("SISO/MISO"), &dtp.sisoMiso, 0, 1); else return GetOsdItem();
default: return NULL;
}
return NULL;
}
// --- cDvbDevice ------------------------------------------------------------
bool cDvbDevice::useDvbDevices = true;
int cDvbDevice::setTransferModeForDolbyDigital = 1;
cMutex cDvbDevice::bondMutex;
cDvbDevice::cDvbDevice(int Adapter, int Frontend)
{
adapter = Adapter;
frontend = Frontend;
ciAdapter = NULL;
dvbTuner = NULL;
bondedDevice = NULL;
needsDetachBondedReceivers = false;
tsBuffer = NULL;
// Common Interface:
fd_ca = DvbOpen(DEV_DVB_CA, adapter, frontend, O_RDWR);
if (fd_ca >= 0)
ciAdapter = cDvbCiAdapter::CreateCiAdapter(this, fd_ca);
checkTsBuffer = false;
// The DVR device (will be opened and closed as needed):
fd_dvr = -1;
// We only check the devices that must be present - the others will be checked before accessing them://XXX
dvbTuner = new cDvbTuner(this, adapter, frontend);
StartSectionHandler();
}
cDvbDevice::~cDvbDevice()
{
StopSectionHandler();
delete dvbTuner;
delete ciAdapter;
UnBond();
// We're not explicitly closing any device files here, since this sometimes
// caused segfaults. Besides, the program is about to terminate anyway...
}
cString DvbName(const char *Name, int Adapter, int Frontend)
{
return cString::sprintf("%s/%s%d/%s%d", DEV_DVB_BASE, DEV_DVB_ADAPTER, Adapter, Name, Frontend);
}
int DvbOpen(const char *Name, int Adapter, int Frontend, int Mode, bool ReportError)
{
cString FileName = DvbName(Name, Adapter, Frontend);
int fd = open(FileName, Mode);
if (fd < 0 && ReportError)
LOG_ERROR_STR(*FileName);
return fd;
}
int cDvbDevice::Frontend(void) const
{
return dvbTuner ? dvbTuner->Frontend() : frontend;
}
bool cDvbDevice::Exists(int Adapter, int Frontend)
{
cString FileName = DvbName(DEV_DVB_FRONTEND, Adapter, Frontend);
if (access(FileName, F_OK) == 0) {
int f = open(FileName, O_RDONLY);
if (f >= 0) {
close(f);
return true;
}
else if (errno != ENODEV && errno != EINVAL)
LOG_ERROR_STR(*FileName);
}
else if (errno != ENOENT)
LOG_ERROR_STR(*FileName);
return false;
}
bool cDvbDevice::Probe(int Adapter, int Frontend)
{
cString FileName = DvbName(DEV_DVB_FRONTEND, Adapter, Frontend);
dsyslog("probing %s", *FileName);
for (cDvbDeviceProbe *dp = DvbDeviceProbes.First(); dp; dp = DvbDeviceProbes.Next(dp)) {
if (dp->Probe(Adapter, Frontend))
return true; // a plugin has created the actual device
}
dsyslog("creating cDvbDevice");
new cDvbDevice(Adapter, Frontend); // it's a "budget" device
return true;
}
cString cDvbDevice::DeviceType(void) const
{
if (dvbTuner)
return GetDeliverySystemName(dvbTuner->FrontendType());
return "";
}
cString cDvbDevice::DeviceName(void) const
{
if (dvbTuner)
return dvbTuner->FrontendName();
return "";
}
bool cDvbDevice::Initialize(void)
{
new cDvbSourceParam('A', "ATSC");
new cDvbSourceParam('C', "DVB-C");
new cDvbSourceParam('S', "DVB-S");
new cDvbSourceParam('T', "DVB-T");
cStringList Nodes;
cReadDir DvbDir(DEV_DVB_BASE);
if (DvbDir.Ok()) {
struct dirent *a;
while ((a = DvbDir.Next()) != NULL) {
if (strstr(a->d_name, DEV_DVB_ADAPTER) == a->d_name) {
int Adapter = strtol(a->d_name + strlen(DEV_DVB_ADAPTER), NULL, 10);
cReadDir AdapterDir(AddDirectory(DEV_DVB_BASE, a->d_name));
if (AdapterDir.Ok()) {
struct dirent *f;
while ((f = AdapterDir.Next()) != NULL) {
if (strstr(f->d_name, DEV_DVB_FRONTEND) == f->d_name) {
int Frontend = strtol(f->d_name + strlen(DEV_DVB_FRONTEND), NULL, 10);
if (access(DvbName(DEV_DVB_DEMUX, Adapter, Frontend), F_OK) == 0) { // we only create devices for actual demuxes
dsyslog("detected /dev/dvb/adapter%d/frontend%d", Adapter, Frontend);
Nodes.Append(strdup(cString::sprintf("%2d %2d", Adapter, Frontend)));
}
}
}
}
}
}
}
int Found = 0;
int Used = 0;
if (Nodes.Size() > 0) {
Nodes.Sort();
for (int i = 0; i < Nodes.Size(); i++) {
int Adapter;
int Frontend;
if (2 == sscanf(Nodes[i], "%d %d", &Adapter, &Frontend)) {
if (Exists(Adapter, Frontend)) {
if (Found < MAXDEVICES) {
Found++;
if (useDvbDevices && UseDevice(NextCardIndex())) {
if (Probe(Adapter, Frontend))
Used++;
}
else {
dsyslog("skipped /dev/dvb/adapter%d/frontend%d", Adapter, Frontend);
NextCardIndex(1); // skips this one
}
}
}
}
}
}
if (Found > 0) {
isyslog("found %d DVB device%s", Found, Found > 1 ? "s" : "");
if (Used != Found)
isyslog("using only %d DVB device%s", Used, Used != 1 ? "s" : "");
}
else
isyslog("no DVB device found");
return Found > 0;
}
bool cDvbDevice::BondDevices(const char *Bondings)
{
UnBondDevices();
if (Bondings) {
cSatCableNumbers SatCableNumbers(MAXDEVICES, Bondings);
for (int i = 0; i < cDevice::NumDevices(); i++) {
int d = SatCableNumbers.FirstDeviceIndex(i);
if (d >= 0) {
int ErrorDevice = 0;
if (cDevice *Device1 = cDevice::GetDevice(i)) {
if (cDevice *Device2 = cDevice::GetDevice(d)) {
if (cDvbDevice *DvbDevice1 = dynamic_cast<cDvbDevice *>(Device1)) {
if (cDvbDevice *DvbDevice2 = dynamic_cast<cDvbDevice *>(Device2)) {
if (!DvbDevice1->Bond(DvbDevice2))
return false; // Bond() has already logged the error
}
else
ErrorDevice = d + 1;
}
else
ErrorDevice = i + 1;
if (ErrorDevice) {
esyslog("ERROR: device '%d' in device bondings '%s' is not a cDvbDevice", ErrorDevice, Bondings);
return false;
}
}
else
ErrorDevice = d + 1;
}
else
ErrorDevice = i + 1;
if (ErrorDevice) {
esyslog("ERROR: unknown device '%d' in device bondings '%s'", ErrorDevice, Bondings);
return false;
}
}
}
}
return true;
}
void cDvbDevice::UnBondDevices(void)
{
for (int i = 0; i < cDevice::NumDevices(); i++) {
if (cDvbDevice *d = dynamic_cast<cDvbDevice *>(cDevice::GetDevice(i)))
d->UnBond();
}
}
bool cDvbDevice::Bond(cDvbDevice *Device)
{
cMutexLock MutexLock(&bondMutex);
if (!bondedDevice) {
if (Device != this) {
if ((ProvidesDeliverySystem(SYS_DVBS) || ProvidesDeliverySystem(SYS_DVBS2)) && (Device->ProvidesDeliverySystem(SYS_DVBS) || Device->ProvidesDeliverySystem(SYS_DVBS2))) {
if (dvbTuner && Device->dvbTuner && dvbTuner->Bond(Device->dvbTuner)) {
bondedDevice = Device->bondedDevice ? Device->bondedDevice : Device;
Device->bondedDevice = this;
dsyslog("device %d bonded with device %d", DeviceNumber() + 1, bondedDevice->DeviceNumber() + 1);
return true;
}
}
else
esyslog("ERROR: can't bond device %d with device %d (only DVB-S(2) devices can be bonded)", DeviceNumber() + 1, Device->DeviceNumber() + 1);
}
else
esyslog("ERROR: can't bond device %d with itself", DeviceNumber() + 1);
}
else
esyslog("ERROR: device %d already bonded with device %d, can't bond with device %d", DeviceNumber() + 1, bondedDevice->DeviceNumber() + 1, Device->DeviceNumber() + 1);
return false;
}
void cDvbDevice::UnBond(void)
{
cMutexLock MutexLock(&bondMutex);
if (cDvbDevice *d = bondedDevice) {
if (dvbTuner)
dvbTuner->UnBond();
dsyslog("device %d unbonded from device %d", DeviceNumber() + 1, bondedDevice->DeviceNumber() + 1);
while (d->bondedDevice != this)
d = d->bondedDevice;
if (d == bondedDevice)
d->bondedDevice = NULL;
else
d->bondedDevice = bondedDevice;
bondedDevice = NULL;
}
}
bool cDvbDevice::BondingOk(const cChannel *Channel, bool ConsiderOccupied) const
{
cMutexLock MutexLock(&bondMutex);
if (bondedDevice || Positioner())
return dvbTuner && dvbTuner->BondingOk(Channel, ConsiderOccupied);
return true;
}
bool cDvbDevice::HasCi(void)
{
return ciAdapter;
}
bool cDvbDevice::SetPid(cPidHandle *Handle, int Type, bool On)
{
if (Handle->pid) {
dmx_pes_filter_params pesFilterParams;
memset(&pesFilterParams, 0, sizeof(pesFilterParams));
if (On) {
if (Handle->handle < 0) {
Handle->handle = DvbOpen(DEV_DVB_DEMUX, adapter, frontend, O_RDWR | O_NONBLOCK, true);
if (Handle->handle < 0) {
LOG_ERROR;
return false;
}
}
pesFilterParams.pid = Handle->pid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_TS_TAP;
pesFilterParams.pes_type= DMX_PES_OTHER;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(Handle->handle, DMX_SET_PES_FILTER, &pesFilterParams) < 0) {
LOG_ERROR;
return false;
}
}
else if (!Handle->used) {
CHECK(ioctl(Handle->handle, DMX_STOP));
if (Type <= ptTeletext) {
pesFilterParams.pid = 0x1FFF;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_DECODER;
pesFilterParams.pes_type= DMX_PES_OTHER;
pesFilterParams.flags = DMX_IMMEDIATE_START;
CHECK(ioctl(Handle->handle, DMX_SET_PES_FILTER, &pesFilterParams));
}
close(Handle->handle);
Handle->handle = -1;
}
}
return true;
}
int cDvbDevice::OpenFilter(u_short Pid, u_char Tid, u_char Mask)
{
cString FileName = DvbName(DEV_DVB_DEMUX, adapter, frontend);
int f = open(FileName, O_RDWR | O_NONBLOCK);
if (f >= 0) {
dmx_sct_filter_params sctFilterParams;
memset(&sctFilterParams, 0, sizeof(sctFilterParams));
sctFilterParams.pid = Pid;
sctFilterParams.timeout = 0;
sctFilterParams.flags = DMX_IMMEDIATE_START;
sctFilterParams.filter.filter[0] = Tid;
sctFilterParams.filter.mask[0] = Mask;
if (ioctl(f, DMX_SET_FILTER, &sctFilterParams) >= 0)
return f;
else {
esyslog("ERROR: can't set filter (pid=%d, tid=%02X, mask=%02X): %m", Pid, Tid, Mask);
close(f);
}
}
else
esyslog("ERROR: can't open filter handle on '%s'", *FileName);
return -1;
}
void cDvbDevice::CloseFilter(int Handle)
{
close(Handle);
}
bool cDvbDevice::ProvidesDeliverySystem(int DeliverySystem) const
{
return dvbTuner->ProvidesDeliverySystem(DeliverySystem);
}
bool cDvbDevice::ProvidesSource(int Source) const
{
int type = Source & cSource::st_Mask;
return type == cSource::stNone
|| type == cSource::stAtsc && ProvidesDeliverySystem(SYS_ATSC)
|| type == cSource::stCable && (ProvidesDeliverySystem(SYS_DVBC_ANNEX_AC) || ProvidesDeliverySystem(SYS_DVBC_ANNEX_B))
|| type == cSource::stSat && (ProvidesDeliverySystem(SYS_DVBS) || ProvidesDeliverySystem(SYS_DVBS2))
|| type == cSource::stTerr && (ProvidesDeliverySystem(SYS_DVBT) || ProvidesDeliverySystem(SYS_DVBT2));
}
bool cDvbDevice::ProvidesTransponder(const cChannel *Channel) const
{
if (!ProvidesSource(Channel->Source()))
return false; // doesn't provide source
if (!dvbTuner->ProvidesFrontend(Channel))
return false; // requires modulation system which frontend doesn't provide
cDvbTransponderParameters dtp(Channel->Parameters());
if (!cSource::IsSat(Channel->Source()) ||
(!Setup.DiSEqC || Diseqcs.Get(DeviceNumber() + 1, Channel->Source(), Channel->Frequency(), dtp.Polarization(), NULL)))
return DeviceHooksProvidesTransponder(Channel);
return false;
}
bool cDvbDevice::ProvidesChannel(const cChannel *Channel, int Priority, bool *NeedsDetachReceivers) const
{
bool result = false;
bool hasPriority = Priority == IDLEPRIORITY || Priority > this->Priority();
bool needsDetachReceivers = false;
needsDetachBondedReceivers = false;
if (ProvidesTransponder(Channel)) {
result = hasPriority;
if (Priority > IDLEPRIORITY) {
if (Receiving()) {
if (dvbTuner->IsTunedTo(Channel)) {
if (Channel->Vpid() && !HasPid(Channel->Vpid()) || Channel->Apid(0) && !HasPid(Channel->Apid(0)) || Channel->Dpid(0) && !HasPid(Channel->Dpid(0))) {
if (CamSlot() && Channel->Ca() >= CA_ENCRYPTED_MIN) {
if (CamSlot()->CanDecrypt(Channel))
result = true;
else
needsDetachReceivers = true;
}
else
result = true;
}
else
result = true;
}
else
needsDetachReceivers = Receiving();
}
if (result) {
cMutexLock MutexLock(&bondMutex);
if (!BondingOk(Channel)) {
// This device is bonded, so we need to check the priorities of the others:
for (cDvbDevice *d = bondedDevice; d && d != this; d = d->bondedDevice) {
if (d->Priority() >= Priority) {
result = false;
break;
}
needsDetachReceivers |= d->Receiving();
}
needsDetachBondedReceivers = true;
needsDetachReceivers |= Receiving();
}
}
}
}
if (NeedsDetachReceivers)
*NeedsDetachReceivers = needsDetachReceivers;
return result;
}
bool cDvbDevice::ProvidesEIT(void) const
{
return dvbTuner != NULL && DeviceHooksProvidesEIT();
}
int cDvbDevice::NumProvidedSystems(void) const
{
return dvbTuner ? dvbTuner->NumProvidedSystems() : 0;
}
const cPositioner *cDvbDevice::Positioner(void) const
{
return dvbTuner ? dvbTuner->Positioner() : NULL;
}
bool cDvbDevice::SignalStats(int &Valid, double *Strength, double *Cnr, double *BerPre, double *BerPost, double *Per, int *Status) const
{
return dvbTuner ? dvbTuner->GetSignalStats(Valid, Strength, Cnr, BerPre, BerPost, Per, Status) : false;
}
int cDvbDevice::SignalStrength(void) const
{
return dvbTuner ? dvbTuner->GetSignalStrength() : -1;
}
int cDvbDevice::SignalQuality(void) const
{
return dvbTuner ? dvbTuner->GetSignalQuality() : -1;
}
const cChannel *cDvbDevice::GetCurrentlyTunedTransponder(void) const
{
return dvbTuner ? dvbTuner->GetTransponder() : NULL;
}
bool cDvbDevice::IsTunedToTransponder(const cChannel *Channel) const
{
return dvbTuner ? dvbTuner->IsTunedTo(Channel) : false;
}
bool cDvbDevice::MaySwitchTransponder(const cChannel *Channel) const
{
return BondingOk(Channel, true) && cDevice::MaySwitchTransponder(Channel);
}
bool cDvbDevice::SetChannelDevice(const cChannel *Channel, bool LiveView)
{
if (dvbTuner->ProvidesFrontend(Channel, true)) {
dvbTuner->SetChannel(Channel);
return true;
}
return false;
}
bool cDvbDevice::HasLock(int TimeoutMs) const
{
return dvbTuner ? dvbTuner->Locked(TimeoutMs) : false;
}
void cDvbDevice::SetTransferModeForDolbyDigital(int Mode)
{
setTransferModeForDolbyDigital = Mode;
}
bool cDvbDevice::OpenDvr(void)
{
CloseDvr();
fd_dvr = DvbOpen(DEV_DVB_DVR, adapter, frontend, O_RDONLY | O_NONBLOCK, true);
if (fd_dvr >= 0)
tsBuffer = new cTSBuffer(fd_dvr, TSBUFFERSIZE, DeviceNumber() + 1);
return fd_dvr >= 0;
}
void cDvbDevice::CloseDvr(void)
{
if (fd_dvr >= 0) {
delete tsBuffer;
tsBuffer = NULL;
close(fd_dvr);
fd_dvr = -1;
}
}
bool cDvbDevice::GetTSPacket(uchar *&Data)
{
if (tsBuffer) {
if (cCamSlot *cs = CamSlot()) {
if (cs->WantsTsData()) {
int Available;
Data = tsBuffer->Get(&Available, checkTsBuffer);
if (!Data)
Available = 0;
Data = cs->Decrypt(Data, Available);
tsBuffer->Skip(Available);
checkTsBuffer = Data != NULL;
return true;
}
}
Data = tsBuffer->Get();
return true;
}
return false;
}
void cDvbDevice::DetachAllReceivers(void)
{
cMutexLock MutexLock(&bondMutex);
cDvbDevice *d = this;
do {
d->cDevice::DetachAllReceivers();
d = d->bondedDevice;
} while (d && d != this && needsDetachBondedReceivers);
needsDetachBondedReceivers = false;
}
// --- cDvbDeviceProbe -------------------------------------------------------
cList<cDvbDeviceProbe> DvbDeviceProbes;
cDvbDeviceProbe::cDvbDeviceProbe(void)
{
DvbDeviceProbes.Add(this);
}
cDvbDeviceProbe::~cDvbDeviceProbe()
{
DvbDeviceProbes.Del(this, false);
}
uint32_t cDvbDeviceProbe::GetSubsystemId(int Adapter, int Frontend)
{
uint32_t SubsystemId = 0;
cString FileName = cString::sprintf("/dev/dvb/adapter%d/frontend%d", Adapter, Frontend);
struct stat st;
if (stat(FileName, &st) == 0) {
cReadDir d("/sys/class/dvb");
if (d.Ok()) {
struct dirent *e;
while ((e = d.Next()) != NULL) {
if (strstr(e->d_name, "frontend")) {
FileName = cString::sprintf("/sys/class/dvb/%s/dev", e->d_name);
if (FILE *f = fopen(FileName, "r")) {
cReadLine ReadLine;
char *s = ReadLine.Read(f);
fclose(f);
unsigned Major;
unsigned Minor;
if (s && 2 == sscanf(s, "%u:%u", &Major, &Minor)) {
if (((Major << 8) | Minor) == st.st_rdev) {
FileName = cString::sprintf("/sys/class/dvb/%s/device/subsystem_vendor", e->d_name);
if ((f = fopen(FileName, "r")) != NULL) {
if (char *s = ReadLine.Read(f))
SubsystemId = strtoul(s, NULL, 0) << 16;
fclose(f);
}
else {
FileName = cString::sprintf("/sys/class/dvb/%s/device/idVendor", e->d_name);
if ((f = fopen(FileName, "r")) != NULL) {
if (char *s = ReadLine.Read(f))
SubsystemId = strtoul(s, NULL, 16) << 16;
fclose(f);
}
}
FileName = cString::sprintf("/sys/class/dvb/%s/device/subsystem_device", e->d_name);
if ((f = fopen(FileName, "r")) != NULL) {
if (char *s = ReadLine.Read(f))
SubsystemId |= strtoul(s, NULL, 0);
fclose(f);
}
else {
FileName = cString::sprintf("/sys/class/dvb/%s/device/idProduct", e->d_name);
if ((f = fopen(FileName, "r")) != NULL) {
if (char *s = ReadLine.Read(f))
SubsystemId |= strtoul(s, NULL, 16);
fclose(f);
}
}
break;
}
}
}
}
}
}
}
return SubsystemId;
}