1
0
mirror of https://github.com/VDR4Arch/vdr.git synced 2023-10-10 13:36:52 +02:00
vdr/device.c
2008-01-27 14:35:54 +01:00

1637 lines
48 KiB
C

/*
* device.c: The basic device interface
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: device.c 1.149 2008/01/27 10:40:46 kls Exp $
*/
#include "device.h"
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include "audio.h"
#include "channels.h"
#include "i18n.h"
#include "player.h"
#include "receiver.h"
#include "status.h"
#include "transfer.h"
// --- cLiveSubtitle ---------------------------------------------------------
#define LIVESUBTITLEBUFSIZE KILOBYTE(100)
class cLiveSubtitle : public cReceiver, public cThread {
private:
cRingBufferLinear *ringBuffer;
cRemux *remux;
protected:
virtual void Activate(bool On);
virtual void Receive(uchar *Data, int Length);
virtual void Action(void);
public:
cLiveSubtitle(int SPid);
virtual ~cLiveSubtitle();
};
cLiveSubtitle::cLiveSubtitle(int SPid)
:cReceiver(tChannelID(), -1, SPid)
,cThread("live subtitle")
{
ringBuffer = new cRingBufferLinear(LIVESUBTITLEBUFSIZE, TS_SIZE * 2, true, "Live Subtitle");
int NoPids = 0;
int SPids[] = { SPid, 0 };
remux = new cRemux(0, &NoPids, &NoPids, SPids);
}
cLiveSubtitle::~cLiveSubtitle()
{
cReceiver::Detach();
delete remux;
delete ringBuffer;
}
void cLiveSubtitle::Activate(bool On)
{
if (On)
Start();
else
Cancel(3);
}
void cLiveSubtitle::Receive(uchar *Data, int Length)
{
if (Running()) {
int p = ringBuffer->Put(Data, Length);
if (p != Length && Running())
ringBuffer->ReportOverflow(Length - p);
}
}
void cLiveSubtitle::Action(void)
{
while (Running()) {
int Count;
uchar *b = ringBuffer->Get(Count);
if (b) {
Count = remux->Put(b, Count);
if (Count)
ringBuffer->Del(Count);
}
b = remux->Get(Count);
if (b) {
Count = cDevice::PrimaryDevice()->PlaySubtitle(b, Count);
remux->Del(Count);
}
}
}
// --- cPesAssembler ---------------------------------------------------------
class cPesAssembler {
private:
uchar *data;
uint32_t tag;
int length;
int size;
bool Realloc(int Size);
public:
cPesAssembler(void);
~cPesAssembler();
int ExpectedLength(void) { return PacketSize(data); }
static int PacketSize(const uchar *data);
int Length(void) { return length; }
const uchar *Data(void) { return data; } // only valid if Length() >= 4
void Reset(void);
void Put(uchar c);
void Put(const uchar *Data, int Length);
bool IsPes(void);
};
cPesAssembler::cPesAssembler(void)
{
data = NULL;
size = 0;
Reset();
}
cPesAssembler::~cPesAssembler()
{
free(data);
}
void cPesAssembler::Reset(void)
{
tag = 0xFFFFFFFF;
length = 0;
}
bool cPesAssembler::Realloc(int Size)
{
if (Size > size) {
size = max(Size, 2048);
data = (uchar *)realloc(data, size);
if (!data) {
esyslog("ERROR: can't allocate memory for PES assembler");
length = 0;
size = 0;
return false;
}
}
return true;
}
void cPesAssembler::Put(uchar c)
{
if (length < 4) {
tag = (tag << 8) | c;
if ((tag & 0xFFFFFF00) == 0x00000100) {
if (Realloc(4)) {
*(uint32_t *)data = htonl(tag);
length = 4;
}
}
else if (length < 3)
length++;
}
else if (Realloc(length + 1))
data[length++] = c;
}
void cPesAssembler::Put(const uchar *Data, int Length)
{
while (length < 4 && Length > 0) {
Put(*Data++);
Length--;
}
if (Length && Realloc(length + Length)) {
memcpy(data + length, Data, Length);
length += Length;
}
}
int cPesAssembler::PacketSize(const uchar *data)
{
// we need atleast 6 bytes of data here !!!
switch (data[3]) {
default:
case 0x00 ... 0xB8: // video stream start codes
case 0xB9: // Program end
case 0xBC: // Programm stream map
case 0xF0 ... 0xFF: // reserved
return 6;
case 0xBA: // Pack header
if ((data[4] & 0xC0) == 0x40) // MPEG2
return 14;
// to be absolutely correct we would have to add the stuffing bytes
// as well, but at this point we only may have 6 bytes of data avail-
// able. So it's up to the higher level to resync...
//return 14 + (data[13] & 0x07); // add stuffing bytes
else // MPEG1
return 12;
case 0xBB: // System header
case 0xBD: // Private stream1
case 0xBE: // Padding stream
case 0xBF: // Private stream2 (navigation data)
case 0xC0 ... 0xCF: // all the rest (the real packets)
case 0xD0 ... 0xDF:
case 0xE0 ... 0xEF:
return 6 + data[4] * 256 + data[5];
}
}
// --- cDevice ---------------------------------------------------------------
// The default priority for non-primary devices:
#define DEFAULTPRIORITY -1
// The minimum number of unknown PS1 packets to consider this a "pre 1.3.19 private stream":
#define MIN_PRE_1_3_19_PRIVATESTREAM 10
int cDevice::numDevices = 0;
int cDevice::useDevice = 0;
int cDevice::nextCardIndex = 0;
int cDevice::currentChannel = 1;
cDevice *cDevice::device[MAXDEVICES] = { NULL };
cDevice *cDevice::primaryDevice = NULL;
cDevice::cDevice(void)
{
cardIndex = nextCardIndex++;
SetDescription("receiver on device %d", CardIndex() + 1);
SetVideoFormat(Setup.VideoFormat);
mute = false;
volume = Setup.CurrentVolume;
sectionHandler = NULL;
eitFilter = NULL;
patFilter = NULL;
sdtFilter = NULL;
nitFilter = NULL;
camSlot = NULL;
startScrambleDetection = 0;
player = NULL;
pesAssembler = new cPesAssembler;
ClrAvailableTracks();
currentAudioTrack = ttNone;
currentAudioTrackMissingCount = 0;
currentSubtitleTrack = ttNone;
liveSubtitle = NULL;
dvbSubtitleConverter = NULL;
autoSelectPreferredSubtitleLanguage = true;
for (int i = 0; i < MAXRECEIVERS; i++)
receiver[i] = NULL;
if (numDevices < MAXDEVICES)
device[numDevices++] = this;
else
esyslog("ERROR: too many devices!");
}
cDevice::~cDevice()
{
Detach(player);
DetachAllReceivers();
delete liveSubtitle;
delete dvbSubtitleConverter;
delete nitFilter;
delete sdtFilter;
delete patFilter;
delete eitFilter;
delete sectionHandler;
delete pesAssembler;
}
bool cDevice::WaitForAllDevicesReady(int Timeout)
{
for (time_t t0 = time(NULL); time(NULL) - t0 < Timeout; ) {
bool ready = true;
for (int i = 0; i < numDevices; i++) {
if (device[i] && !device[i]->Ready()) {
ready = false;
cCondWait::SleepMs(100);
}
}
if (ready)
return true;
}
return false;
}
void cDevice::SetUseDevice(int n)
{
if (n < MAXDEVICES)
useDevice |= (1 << n);
}
int cDevice::NextCardIndex(int n)
{
if (n > 0) {
nextCardIndex += n;
if (nextCardIndex >= MAXDEVICES)
esyslog("ERROR: nextCardIndex too big (%d)", nextCardIndex);
}
else if (n < 0)
esyslog("ERROR: invalid value in IncCardIndex(%d)", n);
return nextCardIndex;
}
int cDevice::DeviceNumber(void) const
{
for (int i = 0; i < numDevices; i++) {
if (device[i] == this)
return i;
}
return -1;
}
void cDevice::MakePrimaryDevice(bool On)
{
}
bool cDevice::SetPrimaryDevice(int n)
{
n--;
if (0 <= n && n < numDevices && device[n]) {
isyslog("setting primary device to %d", n + 1);
if (primaryDevice)
primaryDevice->MakePrimaryDevice(false);
primaryDevice = device[n];
primaryDevice->MakePrimaryDevice(true);
primaryDevice->SetVideoFormat(Setup.VideoFormat);
primaryDevice->SetVolumeDevice(Setup.CurrentVolume);
return true;
}
esyslog("ERROR: invalid primary device number: %d", n + 1);
return false;
}
bool cDevice::HasDecoder(void) const
{
return false;
}
cSpuDecoder *cDevice::GetSpuDecoder(void)
{
return NULL;
}
cDevice *cDevice::ActualDevice(void)
{
cDevice *d = cTransferControl::ReceiverDevice();
if (!d)
d = PrimaryDevice();
return d;
}
cDevice *cDevice::GetDevice(int Index)
{
return (0 <= Index && Index < numDevices) ? device[Index] : NULL;
}
static int GetClippedNumProvidedSystems(int AvailableBits, cDevice *Device)
{
int MaxNumProvidedSystems = 1 << AvailableBits;
int NumProvidedSystems = Device->NumProvidedSystems();
if (NumProvidedSystems > MaxNumProvidedSystems) {
esyslog("ERROR: device %d supports %d modulation systems but cDevice::GetDevice() currently only supports %d delivery systems which should be fixed", Device->CardIndex() + 1, NumProvidedSystems, MaxNumProvidedSystems);
NumProvidedSystems = MaxNumProvidedSystems;
}
else if (NumProvidedSystems <= 0) {
esyslog("ERROR: device %d reported an invalid number (%d) of supported delivery systems - assuming 1", Device->CardIndex() + 1, NumProvidedSystems);
NumProvidedSystems = 1;
}
return NumProvidedSystems;
}
cDevice *cDevice::GetDevice(const cChannel *Channel, int Priority, bool LiveView)
{
// Collect the current priorities of all CAM slots that can decrypt the channel:
int NumCamSlots = CamSlots.Count();
int SlotPriority[NumCamSlots];
int NumUsableSlots = 0;
if (Channel->Ca() >= CA_ENCRYPTED_MIN) {
for (cCamSlot *CamSlot = CamSlots.First(); CamSlot; CamSlot = CamSlots.Next(CamSlot)) {
SlotPriority[CamSlot->Index()] = MAXPRIORITY + 1; // assumes it can't be used
if (CamSlot->ModuleStatus() == msReady) {
if (CamSlot->ProvidesCa(Channel->Caids())) {
if (!ChannelCamRelations.CamChecked(Channel->GetChannelID(), CamSlot->SlotNumber())) {
SlotPriority[CamSlot->Index()] = CamSlot->Priority();
NumUsableSlots++;
}
}
}
}
if (!NumUsableSlots)
return NULL; // no CAM is able to decrypt this channel
}
bool NeedsDetachReceivers = false;
cDevice *d = NULL;
cCamSlot *s = NULL;
uint32_t Impact = 0xFFFFFFFF; // we're looking for a device with the least impact
for (int j = 0; j < NumCamSlots || !NumUsableSlots; j++) {
if (NumUsableSlots && SlotPriority[j] > MAXPRIORITY)
continue; // there is no CAM available in this slot
for (int i = 0; i < numDevices; i++) {
if (Channel->Ca() && Channel->Ca() <= CA_DVB_MAX && Channel->Ca() != device[i]->CardIndex() + 1)
continue; // a specific card was requested, but not this one
if (NumUsableSlots && !CamSlots.Get(j)->Assign(device[i], true))
continue; // CAM slot can't be used with this device
bool ndr;
if (device[i]->ProvidesChannel(Channel, Priority, &ndr)) { // this device is basicly able to do the job
if (NumUsableSlots && device[i]->CamSlot() && device[i]->CamSlot() != CamSlots.Get(j))
ndr = true; // using a different CAM slot requires detaching receivers
// Put together an integer number that reflects the "impact" using
// this device would have on the overall system. Each condition is represented
// by one bit in the number (or several bits, if the condition is actually
// a numeric value). The sequence in which the conditions are listed corresponds
// to their individual severity, where the one listed first will make the most
// difference, because it results in the most significant bit of the result.
uint32_t imp = 0;
imp <<= 1; imp |= LiveView ? !device[i]->IsPrimaryDevice() || ndr : 0; // prefer the primary device for live viewing if we don't need to detach existing receivers
imp <<= 1; imp |= !device[i]->Receiving() && (device[i] != cTransferControl::ReceiverDevice() || device[i]->IsPrimaryDevice()) || ndr; // use receiving devices if we don't need to detach existing receivers, but avoid primary device in local transfer mode
imp <<= 1; imp |= device[i]->Receiving(); // avoid devices that are receiving
imp <<= 2; imp |= GetClippedNumProvidedSystems(2, device[i]) - 1; // avoid cards which support multiple delivery systems
imp <<= 1; imp |= device[i] == cTransferControl::ReceiverDevice(); // avoid the Transfer Mode receiver device
imp <<= 8; imp |= min(max(device[i]->Priority() + MAXPRIORITY, 0), 0xFF); // use the device with the lowest priority (+MAXPRIORITY to assure that values -99..99 can be used)
imp <<= 8; imp |= min(max((NumUsableSlots ? SlotPriority[j] : 0) + MAXPRIORITY, 0), 0xFF); // use the CAM slot with the lowest priority (+MAXPRIORITY to assure that values -99..99 can be used)
imp <<= 1; imp |= ndr; // avoid devices if we need to detach existing receivers
imp <<= 1; imp |= device[i]->IsPrimaryDevice(); // avoid the primary device
imp <<= 1; imp |= NumUsableSlots ? 0 : device[i]->HasCi(); // avoid cards with Common Interface for FTA channels
imp <<= 1; imp |= device[i]->HasDecoder(); // avoid full featured cards
imp <<= 1; imp |= NumUsableSlots ? !ChannelCamRelations.CamDecrypt(Channel->GetChannelID(), j + 1) : 0; // prefer CAMs that are known to decrypt this channel
if (imp < Impact) {
// This device has less impact than any previous one, so we take it.
Impact = imp;
d = device[i];
NeedsDetachReceivers = ndr;
if (NumUsableSlots)
s = CamSlots.Get(j);
}
}
}
if (!NumUsableSlots)
break; // no CAM necessary, so just one loop over the devices
}
if (d) {
if (NeedsDetachReceivers)
d->DetachAllReceivers();
if (s) {
if (s->Device() != d) {
if (s->Device())
s->Device()->DetachAllReceivers();
if (d->CamSlot())
d->CamSlot()->Assign(NULL);
s->Assign(d);
}
}
else if (d->CamSlot() && !d->CamSlot()->IsDecrypting())
d->CamSlot()->Assign(NULL);
}
return d;
}
bool cDevice::HasCi(void)
{
return false;
}
void cDevice::SetCamSlot(cCamSlot *CamSlot)
{
camSlot = CamSlot;
}
void cDevice::Shutdown(void)
{
primaryDevice = NULL;
for (int i = 0; i < numDevices; i++) {
delete device[i];
device[i] = NULL;
}
}
uchar *cDevice::GrabImage(int &Size, bool Jpeg, int Quality, int SizeX, int SizeY)
{
return NULL;
}
bool cDevice::GrabImageFile(const char *FileName, bool Jpeg, int Quality, int SizeX, int SizeY)
{
int result = 0;
int fd = open(FileName, O_WRONLY | O_CREAT | O_NOFOLLOW | O_TRUNC, DEFFILEMODE);
if (fd >= 0) {
int ImageSize;
uchar *Image = GrabImage(ImageSize, Jpeg, Quality, SizeX, SizeY);
if (Image) {
if (safe_write(fd, Image, ImageSize) == ImageSize)
isyslog("grabbed image to %s", FileName);
else {
LOG_ERROR_STR(FileName);
result |= 1;
}
free(Image);
}
else
result |= 1;
close(fd);
}
else {
LOG_ERROR_STR(FileName);
result |= 1;
}
return result == 0;
}
void cDevice::SetVideoDisplayFormat(eVideoDisplayFormat VideoDisplayFormat)
{
cSpuDecoder *spuDecoder = GetSpuDecoder();
if (spuDecoder) {
if (Setup.VideoFormat)
spuDecoder->setScaleMode(cSpuDecoder::eSpuNormal);
else {
switch (VideoDisplayFormat) {
case vdfPanAndScan:
spuDecoder->setScaleMode(cSpuDecoder::eSpuPanAndScan);
break;
case vdfLetterBox:
spuDecoder->setScaleMode(cSpuDecoder::eSpuLetterBox);
break;
case vdfCenterCutOut:
spuDecoder->setScaleMode(cSpuDecoder::eSpuNormal);
break;
}
}
}
}
void cDevice::SetVideoFormat(bool VideoFormat16_9)
{
}
eVideoSystem cDevice::GetVideoSystem(void)
{
return vsPAL;
}
//#define PRINTPIDS(s) { char b[500]; char *q = b; q += sprintf(q, "%d %s ", CardIndex(), s); for (int i = 0; i < MAXPIDHANDLES; i++) q += sprintf(q, " %s%4d %d", i == ptOther ? "* " : "", pidHandles[i].pid, pidHandles[i].used); dsyslog(b); }
#define PRINTPIDS(s)
bool cDevice::HasPid(int Pid) const
{
for (int i = 0; i < MAXPIDHANDLES; i++) {
if (pidHandles[i].pid == Pid)
return true;
}
return false;
}
bool cDevice::AddPid(int Pid, ePidType PidType)
{
if (Pid || PidType == ptPcr) {
int n = -1;
int a = -1;
if (PidType != ptPcr) { // PPID always has to be explicit
for (int i = 0; i < MAXPIDHANDLES; i++) {
if (i != ptPcr) {
if (pidHandles[i].pid == Pid)
n = i;
else if (a < 0 && i >= ptOther && !pidHandles[i].used)
a = i;
}
}
}
if (n >= 0) {
// The Pid is already in use
if (++pidHandles[n].used == 2 && n <= ptTeletext) {
// It's a special PID that may have to be switched into "tap" mode
PRINTPIDS("A");
if (!SetPid(&pidHandles[n], n, true)) {
esyslog("ERROR: can't set PID %d on device %d", Pid, CardIndex() + 1);
if (PidType <= ptTeletext)
DetachAll(Pid);
DelPid(Pid, PidType);
return false;
}
if (camSlot)
camSlot->SetPid(Pid, true);
}
PRINTPIDS("a");
return true;
}
else if (PidType < ptOther) {
// The Pid is not yet in use and it is a special one
n = PidType;
}
else if (a >= 0) {
// The Pid is not yet in use and we have a free slot
n = a;
}
else {
esyslog("ERROR: no free slot for PID %d on device %d", Pid, CardIndex() + 1);
return false;
}
if (n >= 0) {
pidHandles[n].pid = Pid;
pidHandles[n].used = 1;
PRINTPIDS("C");
if (!SetPid(&pidHandles[n], n, true)) {
esyslog("ERROR: can't set PID %d on device %d", Pid, CardIndex() + 1);
if (PidType <= ptTeletext)
DetachAll(Pid);
DelPid(Pid, PidType);
return false;
}
if (camSlot)
camSlot->SetPid(Pid, true);
}
}
return true;
}
void cDevice::DelPid(int Pid, ePidType PidType)
{
if (Pid || PidType == ptPcr) {
int n = -1;
if (PidType == ptPcr)
n = PidType; // PPID always has to be explicit
else {
for (int i = 0; i < MAXPIDHANDLES; i++) {
if (pidHandles[i].pid == Pid) {
n = i;
break;
}
}
}
if (n >= 0 && pidHandles[n].used) {
PRINTPIDS("D");
if (--pidHandles[n].used < 2) {
SetPid(&pidHandles[n], n, false);
if (pidHandles[n].used == 0) {
pidHandles[n].handle = -1;
pidHandles[n].pid = 0;
if (camSlot)
camSlot->SetPid(Pid, false);
}
}
PRINTPIDS("E");
}
}
}
bool cDevice::SetPid(cPidHandle *Handle, int Type, bool On)
{
return false;
}
void cDevice::StartSectionHandler(void)
{
if (!sectionHandler) {
sectionHandler = new cSectionHandler(this);
AttachFilter(eitFilter = new cEitFilter);
AttachFilter(patFilter = new cPatFilter);
AttachFilter(sdtFilter = new cSdtFilter(patFilter));
AttachFilter(nitFilter = new cNitFilter);
}
}
int cDevice::OpenFilter(u_short Pid, u_char Tid, u_char Mask)
{
return -1;
}
void cDevice::CloseFilter(int Handle)
{
close(Handle);
}
void cDevice::AttachFilter(cFilter *Filter)
{
if (sectionHandler)
sectionHandler->Attach(Filter);
}
void cDevice::Detach(cFilter *Filter)
{
if (sectionHandler)
sectionHandler->Detach(Filter);
}
bool cDevice::ProvidesSource(int Source) const
{
return false;
}
bool cDevice::ProvidesTransponder(const cChannel *Channel) const
{
return false;
}
bool cDevice::ProvidesTransponderExclusively(const cChannel *Channel) const
{
for (int i = 0; i < numDevices; i++) {
if (device[i] && device[i] != this && device[i]->ProvidesTransponder(Channel))
return false;
}
return true;
}
bool cDevice::ProvidesChannel(const cChannel *Channel, int Priority, bool *NeedsDetachReceivers) const
{
return false;
}
int cDevice::NumProvidedSystems(void) const
{
return 0;
}
bool cDevice::IsTunedToTransponder(const cChannel *Channel)
{
return false;
}
bool cDevice::MaySwitchTransponder(void)
{
return !Receiving(true) && !(pidHandles[ptAudio].pid || pidHandles[ptVideo].pid || pidHandles[ptDolby].pid);
}
bool cDevice::SwitchChannel(const cChannel *Channel, bool LiveView)
{
if (LiveView) {
isyslog("switching to channel %d", Channel->Number());
cControl::Shutdown(); // prevents old channel from being shown too long if GetDevice() takes longer
}
for (int i = 3; i--;) {
switch (SetChannel(Channel, LiveView)) {
case scrOk: return true;
case scrNotAvailable: Skins.Message(mtInfo, tr("Channel not available!"));
return false;
case scrNoTransfer: Skins.Message(mtError, tr("Can't start Transfer Mode!"));
return false;
case scrFailed: break; // loop will retry
}
esyslog("retrying");
}
return false;
}
bool cDevice::SwitchChannel(int Direction)
{
bool result = false;
Direction = sgn(Direction);
if (Direction) {
cControl::Shutdown(); // prevents old channel from being shown too long if GetDevice() takes longer
int n = CurrentChannel() + Direction;
int first = n;
cChannel *channel;
while ((channel = Channels.GetByNumber(n, Direction)) != NULL) {
// try only channels which are currently available
if (GetDevice(channel, 0, true))
break;
n = channel->Number() + Direction;
}
if (channel) {
int d = n - first;
if (abs(d) == 1)
dsyslog("skipped channel %d", first);
else if (d)
dsyslog("skipped channels %d..%d", first, n - sgn(d));
if (PrimaryDevice()->SwitchChannel(channel, true))
result = true;
}
else if (n != first)
Skins.Message(mtError, tr("Channel not available!"));
}
return result;
}
eSetChannelResult cDevice::SetChannel(const cChannel *Channel, bool LiveView)
{
if (LiveView) {
StopReplay();
DELETENULL(liveSubtitle);
DELETENULL(dvbSubtitleConverter);
}
cDevice *Device = (LiveView && IsPrimaryDevice()) ? GetDevice(Channel, 0, LiveView) : this;
bool NeedsTransferMode = Device != this;
eSetChannelResult Result = scrOk;
// If this DVB card can't receive this channel, let's see if we can
// use the card that actually can receive it and transfer data from there:
if (NeedsTransferMode) {
if (Device && CanReplay()) {
cStatus::MsgChannelSwitch(this, 0); // only report status if we are actually going to switch the channel
if (Device->SetChannel(Channel, false) == scrOk) // calling SetChannel() directly, not SwitchChannel()!
cControl::Launch(new cTransferControl(Device, Channel->GetChannelID(), Channel->Vpid(), Channel->Apids(), Channel->Dpids(), Channel->Spids()));
else
Result = scrNoTransfer;
}
else
Result = scrNotAvailable;
}
else {
Channels.Lock(false);
cStatus::MsgChannelSwitch(this, 0); // only report status if we are actually going to switch the channel
// Stop section handling:
if (sectionHandler) {
sectionHandler->SetStatus(false);
sectionHandler->SetChannel(NULL);
}
// Tell the camSlot about the channel switch and add all PIDs of this
// channel to it, for possible later decryption:
if (camSlot)
camSlot->AddChannel(Channel);
if (SetChannelDevice(Channel, LiveView)) {
// Start section handling:
if (sectionHandler) {
sectionHandler->SetChannel(Channel);
sectionHandler->SetStatus(true);
}
// Start decrypting any PIDs that might have been set in SetChannelDevice():
if (camSlot)
camSlot->StartDecrypting();
}
else
Result = scrFailed;
Channels.Unlock();
}
if (Result == scrOk) {
if (LiveView && IsPrimaryDevice()) {
currentChannel = Channel->Number();
// Set the available audio tracks:
ClrAvailableTracks();
for (int i = 0; i < MAXAPIDS; i++)
SetAvailableTrack(ttAudio, i, Channel->Apid(i), Channel->Alang(i));
if (Setup.UseDolbyDigital) {
for (int i = 0; i < MAXDPIDS; i++)
SetAvailableTrack(ttDolby, i, Channel->Dpid(i), Channel->Dlang(i));
}
for (int i = 0; i < MAXSPIDS; i++)
SetAvailableTrack(ttSubtitle, i, Channel->Spid(i), Channel->Slang(i));
if (!NeedsTransferMode)
EnsureAudioTrack(true);
EnsureSubtitleTrack();
}
cStatus::MsgChannelSwitch(this, Channel->Number()); // only report status if channel switch successfull
}
return Result;
}
void cDevice::ForceTransferMode(void)
{
if (!cTransferControl::ReceiverDevice()) {
cChannel *Channel = Channels.GetByNumber(CurrentChannel());
if (Channel)
SetChannelDevice(Channel, false); // this implicitly starts Transfer Mode
}
}
bool cDevice::SetChannelDevice(const cChannel *Channel, bool LiveView)
{
return false;
}
bool cDevice::HasLock(int TimeoutMs)
{
return true;
}
bool cDevice::HasProgramme(void)
{
return Replaying() || pidHandles[ptAudio].pid || pidHandles[ptVideo].pid;
}
int cDevice::GetAudioChannelDevice(void)
{
return 0;
}
void cDevice::SetAudioChannelDevice(int AudioChannel)
{
}
void cDevice::SetVolumeDevice(int Volume)
{
}
void cDevice::SetDigitalAudioDevice(bool On)
{
}
void cDevice::SetAudioTrackDevice(eTrackType Type)
{
}
bool cDevice::ToggleMute(void)
{
int OldVolume = volume;
mute = !mute;
//XXX why is it necessary to use different sequences???
if (mute) {
SetVolume(0, true);
Audios.MuteAudio(mute); // Mute external audio after analog audio
}
else {
Audios.MuteAudio(mute); // Enable external audio before analog audio
SetVolume(OldVolume, true);
}
volume = OldVolume;
return mute;
}
int cDevice::GetAudioChannel(void)
{
int c = GetAudioChannelDevice();
return (0 <= c && c <= 2) ? c : 0;
}
void cDevice::SetAudioChannel(int AudioChannel)
{
if (0 <= AudioChannel && AudioChannel <= 2)
SetAudioChannelDevice(AudioChannel);
}
void cDevice::SetVolume(int Volume, bool Absolute)
{
int OldVolume = volume;
volume = min(max(Absolute ? Volume : volume + Volume, 0), MAXVOLUME);
SetVolumeDevice(volume);
Absolute |= mute;
cStatus::MsgSetVolume(Absolute ? volume : volume - OldVolume, Absolute);
if (volume > 0) {
mute = false;
Audios.MuteAudio(mute);
}
}
void cDevice::ClrAvailableTracks(bool DescriptionsOnly, bool IdsOnly)
{
if (DescriptionsOnly) {
for (int i = ttNone; i < ttMaxTrackTypes; i++)
*availableTracks[i].description = 0;
}
else {
if (IdsOnly) {
for (int i = ttNone; i < ttMaxTrackTypes; i++)
availableTracks[i].id = 0;
}
else
memset(availableTracks, 0, sizeof(availableTracks));
pre_1_3_19_PrivateStream = 0;
SetAudioChannel(0); // fall back to stereo
currentAudioTrackMissingCount = 0;
currentAudioTrack = ttNone;
currentSubtitleTrack = ttNone;
}
}
bool cDevice::SetAvailableTrack(eTrackType Type, int Index, uint16_t Id, const char *Language, const char *Description)
{
eTrackType t = eTrackType(Type + Index);
if (Type == ttAudio && IS_AUDIO_TRACK(t) ||
Type == ttDolby && IS_DOLBY_TRACK(t) ||
Type == ttSubtitle && IS_SUBTITLE_TRACK(t)) {
if (Language)
strn0cpy(availableTracks[t].language, Language, sizeof(availableTracks[t].language));
if (Description)
Utf8Strn0Cpy(availableTracks[t].description, Description, sizeof(availableTracks[t].description));
if (Id) {
availableTracks[t].id = Id; // setting 'id' last to avoid the need for extensive locking
if (Type == ttAudio || Type == ttDolby) {
int numAudioTracks = NumAudioTracks();
if (!availableTracks[currentAudioTrack].id && numAudioTracks && currentAudioTrackMissingCount++ > numAudioTracks * 10)
EnsureAudioTrack();
else if (t == currentAudioTrack)
currentAudioTrackMissingCount = 0;
}
else if (Type == ttSubtitle && autoSelectPreferredSubtitleLanguage)
EnsureSubtitleTrack();
}
return true;
}
else
esyslog("ERROR: SetAvailableTrack called with invalid Type/Index (%d/%d)", Type, Index);
return false;
}
const tTrackId *cDevice::GetTrack(eTrackType Type)
{
return (ttNone < Type && Type < ttMaxTrackTypes) ? &availableTracks[Type] : NULL;
}
int cDevice::NumTracks(eTrackType FirstTrack, eTrackType LastTrack) const
{
int n = 0;
for (int i = FirstTrack; i <= LastTrack; i++) {
if (availableTracks[i].id)
n++;
}
return n;
}
int cDevice::NumAudioTracks(void) const
{
return NumTracks(ttAudioFirst, ttDolbyLast);
}
int cDevice::NumSubtitleTracks(void) const
{
return NumTracks(ttSubtitleFirst, ttSubtitleLast);
}
bool cDevice::SetCurrentAudioTrack(eTrackType Type)
{
if (ttNone < Type && Type <= ttDolbyLast) {
cMutexLock MutexLock(&mutexCurrentAudioTrack);
if (IS_DOLBY_TRACK(Type))
SetDigitalAudioDevice(true);
currentAudioTrack = Type;
if (player)
player->SetAudioTrack(currentAudioTrack, GetTrack(currentAudioTrack));
else
SetAudioTrackDevice(currentAudioTrack);
if (IS_AUDIO_TRACK(Type))
SetDigitalAudioDevice(false);
return true;
}
return false;
}
bool cDevice::SetCurrentSubtitleTrack(eTrackType Type, bool Manual)
{
if (Type == ttNone || IS_SUBTITLE_TRACK(Type)) {
currentSubtitleTrack = Type;
autoSelectPreferredSubtitleLanguage = !Manual;
if (dvbSubtitleConverter)
dvbSubtitleConverter->Reset();
if (Type == ttNone && dvbSubtitleConverter) {
cMutexLock MutexLock(&mutexCurrentSubtitleTrack);
DELETENULL(dvbSubtitleConverter);
}
DELETENULL(liveSubtitle);
if (currentSubtitleTrack != ttNone && !Replaying() && !Transferring()) {
const tTrackId *TrackId = GetTrack(currentSubtitleTrack);
if (TrackId && TrackId->id) {
liveSubtitle = new cLiveSubtitle(TrackId->id);
AttachReceiver(liveSubtitle);
}
}
return true;
}
return false;
}
void cDevice::EnsureAudioTrack(bool Force)
{
if (Force || !availableTracks[currentAudioTrack].id) {
eTrackType PreferredTrack = ttAudioFirst;
int PreferredAudioChannel = 0;
int LanguagePreference = -1;
int StartCheck = Setup.CurrentDolby ? ttDolbyFirst : ttAudioFirst;
int EndCheck = ttDolbyLast;
for (int i = StartCheck; i <= EndCheck; i++) {
const tTrackId *TrackId = GetTrack(eTrackType(i));
int pos = 0;
if (TrackId && TrackId->id && I18nIsPreferredLanguage(Setup.AudioLanguages, TrackId->language, LanguagePreference, &pos)) {
PreferredTrack = eTrackType(i);
PreferredAudioChannel = pos;
}
if (Setup.CurrentDolby && i == ttDolbyLast) {
i = ttAudioFirst - 1;
EndCheck = ttAudioLast;
}
}
// Make sure we're set to an available audio track:
const tTrackId *Track = GetTrack(GetCurrentAudioTrack());
if (Force || !Track || !Track->id || PreferredTrack != GetCurrentAudioTrack()) {
if (!Force) // only log this for automatic changes
dsyslog("setting audio track to %d (%d)", PreferredTrack, PreferredAudioChannel);
SetCurrentAudioTrack(PreferredTrack);
SetAudioChannel(PreferredAudioChannel);
}
}
}
void cDevice::EnsureSubtitleTrack(void)
{
if (Setup.DisplaySubtitles) {
eTrackType PreferredTrack = ttSubtitleFirst;
int LanguagePreference = -1;
for (int i = ttSubtitleFirst; i <= ttSubtitleLast; i++) {
const tTrackId *TrackId = GetTrack(eTrackType(i));
if (TrackId && TrackId->id && I18nIsPreferredLanguage(Setup.SubtitleLanguages, TrackId->language, LanguagePreference))
PreferredTrack = eTrackType(i);
}
// Make sure we're set to an available subtitle track:
const tTrackId *Track = GetTrack(GetCurrentSubtitleTrack());
if (!Track || !Track->id || PreferredTrack != GetCurrentSubtitleTrack())
SetCurrentSubtitleTrack(PreferredTrack);
}
else
SetCurrentSubtitleTrack(ttNone);
}
bool cDevice::CanReplay(void) const
{
return HasDecoder();
}
bool cDevice::SetPlayMode(ePlayMode PlayMode)
{
return false;
}
int64_t cDevice::GetSTC(void)
{
return -1;
}
void cDevice::TrickSpeed(int Speed)
{
}
void cDevice::Clear(void)
{
Audios.ClearAudio();
if (dvbSubtitleConverter)
dvbSubtitleConverter->Reset();
}
void cDevice::Play(void)
{
Audios.MuteAudio(mute);
}
void cDevice::Freeze(void)
{
Audios.MuteAudio(true);
}
void cDevice::Mute(void)
{
Audios.MuteAudio(true);
}
void cDevice::StillPicture(const uchar *Data, int Length)
{
}
bool cDevice::Replaying(void) const
{
return player != NULL;
}
bool cDevice::Transferring(void) const
{
return dynamic_cast<cTransfer *>(player) != NULL;
}
bool cDevice::AttachPlayer(cPlayer *Player)
{
if (CanReplay()) {
if (player)
Detach(player);
DELETENULL(liveSubtitle);
DELETENULL(dvbSubtitleConverter);
pesAssembler->Reset();
player = Player;
if (!Transferring())
ClrAvailableTracks(false, true);
SetPlayMode(player->playMode);
player->device = this;
player->Activate(true);
return true;
}
return false;
}
void cDevice::Detach(cPlayer *Player)
{
if (Player && player == Player) {
cPlayer *p = player;
player = NULL; // avoids recursive calls to Detach()
p->Activate(false);
p->device = NULL;
cMutexLock MutexLock(&mutexCurrentSubtitleTrack);
delete dvbSubtitleConverter;
dvbSubtitleConverter = NULL;
SetPlayMode(pmNone);
SetVideoDisplayFormat(eVideoDisplayFormat(Setup.VideoDisplayFormat));
Audios.ClearAudio();
}
}
void cDevice::StopReplay(void)
{
if (player) {
Detach(player);
if (IsPrimaryDevice())
cControl::Shutdown();
}
}
bool cDevice::Poll(cPoller &Poller, int TimeoutMs)
{
return false;
}
bool cDevice::Flush(int TimeoutMs)
{
return true;
}
int cDevice::PlayVideo(const uchar *Data, int Length)
{
return -1;
}
int cDevice::PlayAudio(const uchar *Data, int Length, uchar Id)
{
return -1;
}
int cDevice::PlaySubtitle(const uchar *Data, int Length)
{
if (!dvbSubtitleConverter)
dvbSubtitleConverter = new cDvbSubtitleConverter;
return dvbSubtitleConverter->Convert(Data, Length);
}
int cDevice::PlayPesPacket(const uchar *Data, int Length, bool VideoOnly)
{
cMutexLock MutexLock(&mutexCurrentAudioTrack);
bool FirstLoop = true;
uchar c = Data[3];
const uchar *Start = Data;
const uchar *End = Start + Length;
while (Start < End) {
int d = End - Start;
int w = d;
switch (c) {
case 0xBE: // padding stream, needed for MPEG1
case 0xE0 ... 0xEF: // video
w = PlayVideo(Start, d);
break;
case 0xC0 ... 0xDF: // audio
SetAvailableTrack(ttAudio, c - 0xC0, c);
if (!VideoOnly && c == availableTracks[currentAudioTrack].id) {
w = PlayAudio(Start, d, c);
if (FirstLoop)
Audios.PlayAudio(Data, Length, c);
}
break;
case 0xBD: { // private stream 1
int PayloadOffset = Data[8] + 9;
// Compatibility mode for old subtitles plugin:
if ((Data[7] & 0x01) && (Data[PayloadOffset - 3] & 0x81) == 0x01 && Data[PayloadOffset - 2] == 0x81)
PayloadOffset--;
uchar SubStreamId = Data[PayloadOffset];
uchar SubStreamType = SubStreamId & 0xF0;
uchar SubStreamIndex = SubStreamId & 0x1F;
// Compatibility mode for old VDR recordings, where 0xBD was only AC3:
pre_1_3_19_PrivateStreamDeteced:
if (pre_1_3_19_PrivateStream > MIN_PRE_1_3_19_PRIVATESTREAM) {
SubStreamId = c;
SubStreamType = 0x80;
SubStreamIndex = 0;
}
else if (pre_1_3_19_PrivateStream)
pre_1_3_19_PrivateStream--; // every known PS1 packet counts down towards 0 to recover from glitches...
switch (SubStreamType) {
case 0x20: // SPU
case 0x30: // SPU
SetAvailableTrack(ttSubtitle, SubStreamIndex, SubStreamId);
if (!VideoOnly && currentSubtitleTrack != ttNone && SubStreamId == availableTracks[currentSubtitleTrack].id)
w = PlaySubtitle(Start, d);
break;
case 0x80: // AC3 & DTS
if (Setup.UseDolbyDigital) {
SetAvailableTrack(ttDolby, SubStreamIndex, SubStreamId);
if (!VideoOnly && SubStreamId == availableTracks[currentAudioTrack].id) {
w = PlayAudio(Start, d, SubStreamId);
if (FirstLoop)
Audios.PlayAudio(Data, Length, SubStreamId);
}
}
break;
case 0xA0: // LPCM
SetAvailableTrack(ttAudio, SubStreamIndex, SubStreamId);
if (!VideoOnly && SubStreamId == availableTracks[currentAudioTrack].id) {
w = PlayAudio(Start, d, SubStreamId);
if (FirstLoop)
Audios.PlayAudio(Data, Length, SubStreamId);
}
break;
default:
// Compatibility mode for old VDR recordings, where 0xBD was only AC3:
if (pre_1_3_19_PrivateStream <= MIN_PRE_1_3_19_PRIVATESTREAM) {
dsyslog("unknown PS1 packet, substream id = %02X (counter is at %d)", SubStreamId, pre_1_3_19_PrivateStream);
pre_1_3_19_PrivateStream += 2; // ...and every unknown PS1 packet counts up (the very first one counts twice, but that's ok)
if (pre_1_3_19_PrivateStream > MIN_PRE_1_3_19_PRIVATESTREAM) {
dsyslog("switching to pre 1.3.19 Dolby Digital compatibility mode - substream id = %02X", SubStreamId);
ClrAvailableTracks();
goto pre_1_3_19_PrivateStreamDeteced;
}
}
}
}
break;
default:
;//esyslog("ERROR: unexpected packet id %02X", c);
}
if (w > 0)
Start += w;
else {
if (Start != Data)
esyslog("ERROR: incomplete PES packet write!");
return Start == Data ? w : Start - Data;
}
FirstLoop = false;
}
return Length;
}
int cDevice::PlayPes(const uchar *Data, int Length, bool VideoOnly)
{
if (!Data) {
pesAssembler->Reset();
if (dvbSubtitleConverter)
dvbSubtitleConverter->Reset();
return 0;
}
int Result = 0;
if (pesAssembler->Length()) {
// Make sure we have a complete PES header:
while (pesAssembler->Length() < 6 && Length > 0) {
pesAssembler->Put(*Data++);
Length--;
Result++;
}
if (pesAssembler->Length() < 6)
return Result; // Still no complete PES header - wait for more
int l = pesAssembler->ExpectedLength();
int Rest = min(l - pesAssembler->Length(), Length);
pesAssembler->Put(Data, Rest);
Data += Rest;
Length -= Rest;
Result += Rest;
if (pesAssembler->Length() < l)
return Result; // Still no complete PES packet - wait for more
// Now pesAssembler contains one complete PES packet.
int w = PlayPesPacket(pesAssembler->Data(), pesAssembler->Length(), VideoOnly);
if (w > 0)
pesAssembler->Reset();
return Result > 0 ? Result : w < 0 ? w : 0;
}
int i = 0;
while (i <= Length - 6) {
if (Data[i] == 0x00 && Data[i + 1] == 0x00 && Data[i + 2] == 0x01) {
int l = cPesAssembler::PacketSize(&Data[i]);
if (i + l > Length) {
// Store incomplete PES packet for later completion:
pesAssembler->Put(Data + i, Length - i);
return Length;
}
int w = PlayPesPacket(Data + i, l, VideoOnly);
if (w > 0)
i += l;
else
return i == 0 ? w : i;
}
else
i++;
}
if (i < Length)
pesAssembler->Put(Data + i, Length - i);
return Length;
}
int cDevice::Priority(void) const
{
int priority = IsPrimaryDevice() ? Setup.PrimaryLimit - 1 : DEFAULTPRIORITY;
for (int i = 0; i < MAXRECEIVERS; i++) {
if (receiver[i])
priority = max(receiver[i]->priority, priority);
}
return priority;
}
bool cDevice::Ready(void)
{
return true;
}
bool cDevice::Receiving(bool CheckAny) const
{
for (int i = 0; i < MAXRECEIVERS; i++) {
if (receiver[i] && (CheckAny || receiver[i]->priority >= 0)) // cReceiver with priority < 0 doesn't count
return true;
}
return false;
}
#define TS_SCRAMBLING_CONTROL 0xC0
#define TS_SCRAMBLING_TIMEOUT 3 // seconds to wait until a TS becomes unscrambled
#define TS_SCRAMBLING_TIME_OK 10 // seconds before a Channel/CAM combination is marked a known to decrypt
void cDevice::Action(void)
{
if (Running() && OpenDvr()) {
while (Running()) {
// Read data from the DVR device:
uchar *b = NULL;
if (GetTSPacket(b)) {
if (b) {
int Pid = (((uint16_t)b[1] & PID_MASK_HI) << 8) | b[2];
// Check whether the TS packets are scrambled:
bool DetachReceivers = false;
bool DescramblingOk = false;
int CamSlotNumber = 0;
if (startScrambleDetection) {
cCamSlot *cs = CamSlot();
CamSlotNumber = cs ? cs->SlotNumber() : 0;
if (CamSlotNumber) {
bool Scrambled = b[3] & TS_SCRAMBLING_CONTROL;
int t = time(NULL) - startScrambleDetection;
if (Scrambled) {
if (t > TS_SCRAMBLING_TIMEOUT)
DetachReceivers = true;
}
else if (t > TS_SCRAMBLING_TIME_OK) {
DescramblingOk = true;
startScrambleDetection = 0;
}
}
}
// Distribute the packet to all attached receivers:
Lock();
for (int i = 0; i < MAXRECEIVERS; i++) {
if (receiver[i] && receiver[i]->WantsPid(Pid)) {
if (DetachReceivers) {
ChannelCamRelations.SetChecked(receiver[i]->ChannelID(), CamSlotNumber);
Detach(receiver[i]);
}
else
receiver[i]->Receive(b, TS_SIZE);
if (DescramblingOk)
ChannelCamRelations.SetDecrypt(receiver[i]->ChannelID(), CamSlotNumber);
}
}
Unlock();
}
}
else
break;
}
CloseDvr();
}
}
bool cDevice::OpenDvr(void)
{
return false;
}
void cDevice::CloseDvr(void)
{
}
bool cDevice::GetTSPacket(uchar *&Data)
{
return false;
}
bool cDevice::AttachReceiver(cReceiver *Receiver)
{
if (!Receiver)
return false;
if (Receiver->device == this)
return true;
// activate the following line if you need it - actually the driver should be fixed!
//#define WAIT_FOR_TUNER_LOCK
#ifdef WAIT_FOR_TUNER_LOCK
#define TUNER_LOCK_TIMEOUT 5000 // ms
if (!HasLock(TUNER_LOCK_TIMEOUT)) {
esyslog("ERROR: device %d has no lock, can't attach receiver!", CardIndex() + 1);
return false;
}
#endif
cMutexLock MutexLock(&mutexReceiver);
for (int i = 0; i < MAXRECEIVERS; i++) {
if (!receiver[i]) {
for (int n = 0; n < Receiver->numPids; n++) {
if (!AddPid(Receiver->pids[n])) {
for ( ; n-- > 0; )
DelPid(Receiver->pids[n]);
return false;
}
}
Receiver->Activate(true);
Lock();
Receiver->device = this;
receiver[i] = Receiver;
Unlock();
if (camSlot) {
camSlot->StartDecrypting();
startScrambleDetection = time(NULL);
}
Start();
return true;
}
}
esyslog("ERROR: no free receiver slot!");
return false;
}
void cDevice::Detach(cReceiver *Receiver)
{
if (!Receiver || Receiver->device != this)
return;
bool receiversLeft = false;
cMutexLock MutexLock(&mutexReceiver);
for (int i = 0; i < MAXRECEIVERS; i++) {
if (receiver[i] == Receiver) {
Receiver->Activate(false);
Lock();
receiver[i] = NULL;
Receiver->device = NULL;
Unlock();
for (int n = 0; n < Receiver->numPids; n++)
DelPid(Receiver->pids[n]);
}
else if (receiver[i])
receiversLeft = true;
}
if (camSlot)
camSlot->StartDecrypting();
if (!receiversLeft)
Cancel(-1);
}
void cDevice::DetachAll(int Pid)
{
if (Pid) {
cMutexLock MutexLock(&mutexReceiver);
for (int i = 0; i < MAXRECEIVERS; i++) {
cReceiver *Receiver = receiver[i];
if (Receiver && Receiver->WantsPid(Pid))
Detach(Receiver);
}
}
}
void cDevice::DetachAllReceivers(void)
{
cMutexLock MutexLock(&mutexReceiver);
for (int i = 0; i < MAXRECEIVERS; i++)
Detach(receiver[i]);
}
// --- cTSBuffer -------------------------------------------------------------
cTSBuffer::cTSBuffer(int File, int Size, int CardIndex)
{
SetDescription("TS buffer on device %d", CardIndex);
f = File;
cardIndex = CardIndex;
delivered = false;
ringBuffer = new cRingBufferLinear(Size, TS_SIZE, true, "TS");
ringBuffer->SetTimeouts(100, 100);
Start();
}
cTSBuffer::~cTSBuffer()
{
Cancel(3);
delete ringBuffer;
}
void cTSBuffer::Action(void)
{
if (ringBuffer) {
bool firstRead = true;
cPoller Poller(f);
while (Running()) {
if (firstRead || Poller.Poll(100)) {
firstRead = false;
int r = ringBuffer->Read(f);
if (r < 0 && FATALERRNO) {
if (errno == EOVERFLOW)
esyslog("ERROR: driver buffer overflow on device %d", cardIndex);
else {
LOG_ERROR;
break;
}
}
}
}
}
}
uchar *cTSBuffer::Get(void)
{
int Count = 0;
if (delivered) {
ringBuffer->Del(TS_SIZE);
delivered = false;
}
uchar *p = ringBuffer->Get(Count);
if (p && Count >= TS_SIZE) {
if (*p != TS_SYNC_BYTE) {
for (int i = 1; i < Count; i++) {
if (p[i] == TS_SYNC_BYTE) {
Count = i;
break;
}
}
ringBuffer->Del(Count);
esyslog("ERROR: skipped %d bytes to sync on TS packet on device %d", Count, cardIndex);
return NULL;
}
delivered = true;
return p;
}
return NULL;
}