mirror of
https://github.com/VDR4Arch/vdr.git
synced 2023-10-10 13:36:52 +02:00
94 lines
2.9 KiB
C
94 lines
2.9 KiB
C
/*
|
|
* srfft_kni.c
|
|
*
|
|
* Copyright (C) Yuqing Deng <Yuqing_Deng@brown.edu> - April 2000
|
|
*
|
|
* 64 and 128 point split radix fft for ac3dec
|
|
*
|
|
* The algorithm is desribed in the book:
|
|
* "Computational Frameworks of the Fast Fourier Transform".
|
|
*
|
|
* The ideas and the the organization of code borrowed from djbfft written by
|
|
* D. J. Bernstein <djb@cr.py.to>. djbff can be found at
|
|
* http://cr.yp.to/djbfft.html.
|
|
*
|
|
* srfft.c is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* srfft.c is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNU Make; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*/
|
|
|
|
#ifdef __i386__
|
|
|
|
#include <stdio.h>
|
|
|
|
#include "srfft_kni.h"
|
|
#include "srfftp.h"
|
|
|
|
void fft_64p_kni(complex_t *a)
|
|
{
|
|
fft_8_kni(&a[0]); fft_4_kni(&a[8]); fft_4_kni(&a[12]);
|
|
fft_asmb_kni(2, &a[0], &a[8], &delta16[0], &delta16_3[0]);
|
|
|
|
fft_8_kni(&a[16]), fft_8_kni(&a[24]);
|
|
fft_asmb_kni(4, &a[0], &a[16],&delta32[0], &delta32_3[0]);
|
|
|
|
fft_8_kni(&a[32]); fft_4_kni(&a[40]); fft_4_kni(&a[44]);
|
|
fft_asmb_kni(2, &a[32], &a[40], &delta16[0], &delta16_3[0]);
|
|
|
|
fft_8_kni(&a[48]); fft_4_kni(&a[56]); fft_4_kni(&a[60]);
|
|
fft_asmb_kni(2, &a[48], &a[56], &delta16[0], &delta16_3[0]);
|
|
|
|
fft_asmb_kni(8, &a[0], &a[32],&delta64[0], &delta64_3[0]);
|
|
}
|
|
|
|
|
|
void fft_128p_kni(complex_t *a)
|
|
{
|
|
fft_8_kni(&a[0]); fft_4_kni(&a[8]); fft_4_kni(&a[12]);
|
|
fft_asmb_kni(2, &a[0], &a[8], &delta16[0], &delta16_3[0]);
|
|
|
|
fft_8_kni(&a[16]), fft_8_kni(&a[24]);
|
|
fft_asmb_kni(4, &a[0], &a[16],&delta32[0], &delta32_3[0]);
|
|
|
|
fft_8_kni(&a[32]); fft_4_kni(&a[40]); fft_4_kni(&a[44]);
|
|
fft_asmb_kni(2, &a[32], &a[40], &delta16[0], &delta16_3[0]);
|
|
|
|
fft_8_kni(&a[48]); fft_4_kni(&a[56]); fft_4_kni(&a[60]);
|
|
fft_asmb_kni(2, &a[48], &a[56], &delta16[0], &delta16_3[0]);
|
|
|
|
fft_asmb_kni(8, &a[0], &a[32],&delta64[0], &delta64_3[0]);
|
|
|
|
fft_8_kni(&a[64]); fft_4_kni(&a[72]); fft_4_kni(&a[76]);
|
|
/* fft_16(&a[64]); */
|
|
fft_asmb_kni(2, &a[64], &a[72], &delta16[0], &delta16_3[0]);
|
|
|
|
fft_8_kni(&a[80]); fft_8_kni(&a[88]);
|
|
|
|
/* fft_32(&a[64]); */
|
|
fft_asmb_kni(4, &a[64], &a[80],&delta32[0], &delta32_3[0]);
|
|
|
|
fft_8_kni(&a[96]); fft_4_kni(&a[104]), fft_4_kni(&a[108]);
|
|
/* fft_16(&a[96]); */
|
|
fft_asmb_kni(2, &a[96], &a[104], &delta16[0], &delta16_3[0]);
|
|
|
|
fft_8_kni(&a[112]), fft_8_kni(&a[120]);
|
|
/* fft_32(&a[96]); */
|
|
fft_asmb_kni(4, &a[96], &a[112], &delta32[0], &delta32_3[0]);
|
|
|
|
/* fft_128(&a[0]); */
|
|
fft_asmb_kni(16, &a[0], &a[64], &delta128[0], &delta128_3[0]);
|
|
}
|
|
|
|
#endif
|