1
0
mirror of https://github.com/VDR4Arch/vdr.git synced 2023-10-10 13:36:52 +02:00
vdr/osd.c

2118 lines
61 KiB
C

/*
* osd.c: Abstract On Screen Display layer
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: osd.c 2.23 2011/08/15 09:27:39 kls Exp $
*/
#include "osd.h"
#include <math.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/unistd.h>
#include "device.h"
#include "tools.h"
tColor HsvToColor(double H, double S, double V)
{
if (S > 0) {
H /= 60;
int i = floor(H);
double f = H - i;
double p = V * (1 - S);
double q = V * (1 - S * f);
double t = V * (1 - S * (1 - f));
switch (i) {
case 0: return RgbToColor(V, t, p);
case 1: return RgbToColor(q, V, p);
case 2: return RgbToColor(p, V, t);
case 3: return RgbToColor(p, q, V);
case 4: return RgbToColor(t, p, V);
default: return RgbToColor(V, p, q);
}
}
else { // greyscale
uint8_t n = V * 0xFF;
return RgbToColor(n, n, n);
}
}
#define USE_ALPHA_LUT
#ifdef USE_ALPHA_LUT
// Alpha blending with lookup table (by Reinhard Nissl <rnissl@gmx.de>)
// A little slower (138 %) on fast machines than the implementation below and faster
// on slow machines (79 %), but requires some 318KB of RAM for the lookup table.
static uint16_t AlphaLutFactors[255][256][2];
static uint8_t AlphaLutAlpha[255][256];
class cInitAlphaLut {
public:
cInitAlphaLut(void)
{
for (int alphaA = 0; alphaA < 255; alphaA++) {
int range = (alphaA == 255 ? 255 : 254);
for (int alphaB = 0; alphaB < 256; alphaB++) {
int alphaO_x_range = 255 * alphaA + alphaB * (range - alphaA);
if (!alphaO_x_range)
alphaO_x_range++;
int factorA = (256 * 255 * alphaA + alphaO_x_range / 2) / alphaO_x_range;
int factorB = (256 * alphaB * (range - alphaA) + alphaO_x_range / 2) / alphaO_x_range;
AlphaLutFactors[alphaA][alphaB][0] = factorA;
AlphaLutFactors[alphaA][alphaB][1] = factorB;
AlphaLutAlpha[alphaA][alphaB] = alphaO_x_range / range;
}
}
}
} InitAlphaLut;
tColor AlphaBlend(tColor ColorFg, tColor ColorBg, uint8_t AlphaLayer)
{
tColor Alpha = (ColorFg & 0xFF000000) >> 24;
Alpha *= AlphaLayer;
Alpha >>= 8;
uint16_t *lut = &AlphaLutFactors[Alpha][(ColorBg & 0xFF000000) >> 24][0];
return (tColor)((AlphaLutAlpha[Alpha][(ColorBg & 0xFF000000) >> 24] << 24)
| (((((ColorFg & 0x00FF00FF) * lut[0] + (ColorBg & 0x00FF00FF) * lut[1])) & 0xFF00FF00)
| ((((ColorFg & 0x0000FF00) * lut[0] + (ColorBg & 0x0000FF00) * lut[1])) & 0x00FF0000)) >> 8);
}
#else
// Alpha blending without lookup table.
// Also works fast, but doesn't return the theoretically correct result.
// It's "good enough", though.
static tColor Multiply(tColor Color, uint8_t Alpha)
{
tColor RB = (Color & 0x00FF00FF) * Alpha;
RB = ((RB + ((RB >> 8) & 0x00FF00FF) + 0x00800080) >> 8) & 0x00FF00FF;
tColor AG = ((Color >> 8) & 0x00FF00FF) * Alpha;
AG = ((AG + ((AG >> 8) & 0x00FF00FF) + 0x00800080)) & 0xFF00FF00;
return AG | RB;
}
tColor AlphaBlend(tColor ColorFg, tColor ColorBg, uint8_t AlphaLayer)
{
tColor Alpha = (ColorFg & 0xFF000000) >> 24;
if (AlphaLayer < ALPHA_OPAQUE) {
Alpha *= AlphaLayer;
Alpha = ((Alpha + ((Alpha >> 8) & 0x000000FF) + 0x00000080) >> 8) & 0x000000FF;
}
return Multiply(ColorFg, Alpha) + Multiply(ColorBg, 255 - Alpha);
}
#endif
// --- cPalette --------------------------------------------------------------
cPalette::cPalette(int Bpp)
{
SetBpp(Bpp);
SetAntiAliasGranularity(10, 10);
}
cPalette::~cPalette()
{
}
void cPalette::SetAntiAliasGranularity(uint FixedColors, uint BlendColors)
{
if (FixedColors >= MAXNUMCOLORS || BlendColors == 0)
antiAliasGranularity = MAXNUMCOLORS - 1;
else {
int ColorsForBlending = MAXNUMCOLORS - FixedColors;
int ColorsPerBlend = ColorsForBlending / BlendColors + 2; // +2 = the full foreground and background colors, which are amoung the fixed colors
antiAliasGranularity = double(MAXNUMCOLORS - 1) / (ColorsPerBlend - 1);
}
}
void cPalette::Reset(void)
{
numColors = 0;
modified = false;
}
int cPalette::Index(tColor Color)
{
// Check if color is already defined:
for (int i = 0; i < numColors; i++) {
if (color[i] == Color)
return i;
}
// No exact color, try a close one:
int i = ClosestColor(Color, 4);
if (i >= 0)
return i;
// No close one, try to define a new one:
if (numColors < maxColors) {
color[numColors++] = Color;
modified = true;
return numColors - 1;
}
// Out of colors, so any close color must do:
return ClosestColor(Color);
}
void cPalette::SetBpp(int Bpp)
{
bpp = Bpp;
maxColors = 1 << bpp;
Reset();
}
void cPalette::SetColor(int Index, tColor Color)
{
if (Index < maxColors) {
if (numColors <= Index) {
numColors = Index + 1;
modified = true;
}
else
modified |= color[Index] != Color;
color[Index] = Color;
}
}
const tColor *cPalette::Colors(int &NumColors) const
{
NumColors = numColors;
return numColors ? color : NULL;
}
void cPalette::Take(const cPalette &Palette, tIndexes *Indexes, tColor ColorFg, tColor ColorBg)
{
for (int i = 0; i < Palette.numColors; i++) {
tColor Color = Palette.color[i];
if (ColorFg || ColorBg) {
switch (i) {
case 0: Color = ColorBg; break;
case 1: Color = ColorFg; break;
default: ;
}
}
int n = Index(Color);
if (Indexes)
(*Indexes)[i] = n;
}
}
void cPalette::Replace(const cPalette &Palette)
{
for (int i = 0; i < Palette.numColors; i++)
SetColor(i, Palette.color[i]);
numColors = Palette.numColors;
antiAliasGranularity = Palette.antiAliasGranularity;
}
tColor cPalette::Blend(tColor ColorFg, tColor ColorBg, uint8_t Level) const
{
if (antiAliasGranularity > 0)
Level = uint8_t(int(Level / antiAliasGranularity + 0.5) * antiAliasGranularity);
int Af = (ColorFg & 0xFF000000) >> 24;
int Rf = (ColorFg & 0x00FF0000) >> 16;
int Gf = (ColorFg & 0x0000FF00) >> 8;
int Bf = (ColorFg & 0x000000FF);
int Ab = (ColorBg & 0xFF000000) >> 24;
int Rb = (ColorBg & 0x00FF0000) >> 16;
int Gb = (ColorBg & 0x0000FF00) >> 8;
int Bb = (ColorBg & 0x000000FF);
int A = (Ab + (Af - Ab) * Level / 0xFF) & 0xFF;
int R = (Rb + (Rf - Rb) * Level / 0xFF) & 0xFF;
int G = (Gb + (Gf - Gb) * Level / 0xFF) & 0xFF;
int B = (Bb + (Bf - Bb) * Level / 0xFF) & 0xFF;
return (A << 24) | (R << 16) | (G << 8) | B;
}
int cPalette::ClosestColor(tColor Color, int MaxDiff) const
{
int n = 0;
int d = INT_MAX;
int A1 = (Color & 0xFF000000) >> 24;
int R1 = (Color & 0x00FF0000) >> 16;
int G1 = (Color & 0x0000FF00) >> 8;
int B1 = (Color & 0x000000FF);
for (int i = 0; i < numColors && d > 0; i++) {
int A2 = (color[i] & 0xFF000000) >> 24;
int R2 = (color[i] & 0x00FF0000) >> 16;
int G2 = (color[i] & 0x0000FF00) >> 8;
int B2 = (color[i] & 0x000000FF);
int diff = 0;
if (A1 || A2) // fully transparent colors are considered equal
diff = (abs(A1 - A2) << 1) + (abs(R1 - R2) << 1) + (abs(G1 - G2) << 1) + (abs(B1 - B2) << 1);
if (diff < d) {
d = diff;
n = i;
}
}
return d <= MaxDiff ? n : -1;
}
// --- cBitmap ---------------------------------------------------------------
cBitmap::cBitmap(int Width, int Height, int Bpp, int X0, int Y0)
:cPalette(Bpp)
{
bitmap = NULL;
x0 = X0;
y0 = Y0;
SetSize(Width, Height);
}
cBitmap::cBitmap(const char *FileName)
{
bitmap = NULL;
x0 = 0;
y0 = 0;
LoadXpm(FileName);
}
cBitmap::cBitmap(const char *const Xpm[])
{
bitmap = NULL;
x0 = 0;
y0 = 0;
SetXpm(Xpm);
}
cBitmap::~cBitmap()
{
free(bitmap);
}
void cBitmap::SetSize(int Width, int Height)
{
if (bitmap && Width == width && Height == height)
return;
width = Width;
height = Height;
free(bitmap);
bitmap = NULL;
dirtyX1 = 0;
dirtyY1 = 0;
dirtyX2 = width - 1;
dirtyY2 = height - 1;
if (width > 0 && height > 0) {
bitmap = MALLOC(tIndex, width * height);
if (bitmap)
memset(bitmap, 0x00, width * height);
else
esyslog("ERROR: can't allocate bitmap!");
}
else
esyslog("ERROR: invalid bitmap parameters (%d, %d)!", width, height);
}
bool cBitmap::Contains(int x, int y) const
{
x -= x0;
y -= y0;
return 0 <= x && x < width && 0 <= y && y < height;
}
bool cBitmap::Covers(int x1, int y1, int x2, int y2) const
{
x1 -= x0;
y1 -= y0;
x2 -= x0;
y2 -= y0;
return x1 <= 0 && y1 <= 0 && x2 >= width - 1 && y2 >= height - 1;
}
bool cBitmap::Intersects(int x1, int y1, int x2, int y2) const
{
x1 -= x0;
y1 -= y0;
x2 -= x0;
y2 -= y0;
return !(x2 < 0 || x1 >= width || y2 < 0 || y1 >= height);
}
bool cBitmap::Dirty(int &x1, int &y1, int &x2, int &y2)
{
if (dirtyX2 >= 0) {
x1 = dirtyX1;
y1 = dirtyY1;
x2 = dirtyX2;
y2 = dirtyY2;
return true;
}
return false;
}
void cBitmap::Clean(void)
{
dirtyX1 = width;
dirtyY1 = height;
dirtyX2 = -1;
dirtyY2 = -1;
}
bool cBitmap::LoadXpm(const char *FileName)
{
bool Result = false;
FILE *f = fopen(FileName, "r");
if (f) {
char **Xpm = NULL;
bool isXpm = false;
int lines = 0;
int index = 0;
char *s;
cReadLine ReadLine;
while ((s = ReadLine.Read(f)) != NULL) {
s = skipspace(s);
if (!isXpm) {
if (strcmp(s, "/* XPM */") != 0) {
esyslog("ERROR: invalid header in XPM file '%s'", FileName);
break;
}
isXpm = true;
}
else if (*s++ == '"') {
if (!lines) {
int w, h, n, c;
if (4 != sscanf(s, "%d %d %d %d", &w, &h, &n, &c)) {
esyslog("ERROR: faulty 'values' line in XPM file '%s'", FileName);
isXpm = false;
break;
}
lines = h + n + 1;
Xpm = MALLOC(char *, lines);
memset(Xpm, 0, lines * sizeof(char*));
}
char *q = strchr(s, '"');
if (!q) {
esyslog("ERROR: missing quotes in XPM file '%s'", FileName);
isXpm = false;
break;
}
*q = 0;
if (index < lines)
Xpm[index++] = strdup(s);
else {
esyslog("ERROR: too many lines in XPM file '%s'", FileName);
isXpm = false;
break;
}
}
}
if (isXpm) {
if (index == lines)
Result = SetXpm(Xpm);
else
esyslog("ERROR: too few lines in XPM file '%s'", FileName);
}
if (Xpm) {
for (int i = 0; i < index; i++)
free(Xpm[i]);
}
free(Xpm);
fclose(f);
}
else
esyslog("ERROR: can't open XPM file '%s'", FileName);
return Result;
}
bool cBitmap::SetXpm(const char *const Xpm[], bool IgnoreNone)
{
if (!Xpm)
return false;
const char *const *p = Xpm;
int w, h, n, c;
if (4 != sscanf(*p, "%d %d %d %d", &w, &h, &n, &c)) {
esyslog("ERROR: faulty 'values' line in XPM: '%s'", *p);
return false;
}
if (n > MAXNUMCOLORS) {
esyslog("ERROR: too many colors in XPM: %d", n);
return false;
}
int b = 0;
while (1 << (1 << b) < (IgnoreNone ? n - 1 : n))
b++;
SetBpp(1 << b);
SetSize(w, h);
int NoneColorIndex = MAXNUMCOLORS;
for (int i = 0; i < n; i++) {
const char *s = *++p;
if (int(strlen(s)) < c) {
esyslog("ERROR: faulty 'colors' line in XPM: '%s'", s);
return false;
}
s = skipspace(s + c);
if (*s != 'c') {
esyslog("ERROR: unknown color key in XPM: '%c'", *s);
return false;
}
s = skipspace(s + 1);
if (strcasecmp(s, "none") == 0) {
NoneColorIndex = i;
if (!IgnoreNone)
SetColor(i, clrTransparent);
continue;
}
if (*s != '#') {
esyslog("ERROR: unknown color code in XPM: '%c'", *s);
return false;
}
tColor color = strtoul(++s, NULL, 16) | 0xFF000000;
SetColor((IgnoreNone && i > NoneColorIndex) ? i - 1 : i, color);
}
for (int y = 0; y < h; y++) {
const char *s = *++p;
if (int(strlen(s)) != w * c) {
esyslog("ERROR: faulty pixel line in XPM: %d '%s'", y, s);
return false;
}
for (int x = 0; x < w; x++) {
for (int i = 0; i <= n; i++) {
if (i == n) {
esyslog("ERROR: undefined pixel color in XPM: %d %d '%s'", x, y, s);
return false;
}
if (strncmp(Xpm[i + 1], s, c) == 0) {
if (i == NoneColorIndex)
NoneColorIndex = MAXNUMCOLORS;
SetIndex(x, y, (IgnoreNone && i > NoneColorIndex) ? i - 1 : i);
break;
}
}
s += c;
}
}
if (NoneColorIndex < MAXNUMCOLORS && !IgnoreNone)
return SetXpm(Xpm, true);
return true;
}
void cBitmap::SetIndex(int x, int y, tIndex Index)
{
if (bitmap) {
if (0 <= x && x < width && 0 <= y && y < height) {
if (bitmap[width * y + x] != Index) {
bitmap[width * y + x] = Index;
if (dirtyX1 > x) dirtyX1 = x;
if (dirtyY1 > y) dirtyY1 = y;
if (dirtyX2 < x) dirtyX2 = x;
if (dirtyY2 < y) dirtyY2 = y;
}
}
}
}
void cBitmap::DrawPixel(int x, int y, tColor Color)
{
x -= x0;
y -= y0;
SetIndex(x, y, Index(Color));
}
void cBitmap::DrawBitmap(int x, int y, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool ReplacePalette, bool Overlay)
{
if (bitmap && Bitmap.bitmap && Intersects(x, y, x + Bitmap.Width() - 1, y + Bitmap.Height() - 1)) {
if (Covers(x, y, x + Bitmap.Width() - 1, y + Bitmap.Height() - 1))
Reset();
x -= x0;
y -= y0;
if (ReplacePalette && Covers(x + x0, y + y0, x + x0 + Bitmap.Width() - 1, y + y0 + Bitmap.Height() - 1)) {
Replace(Bitmap);
for (int ix = 0; ix < Bitmap.width; ix++) {
for (int iy = 0; iy < Bitmap.height; iy++) {
if (!Overlay || Bitmap.bitmap[Bitmap.width * iy + ix] != 0)
SetIndex(x + ix, y + iy, Bitmap.bitmap[Bitmap.width * iy + ix]);
}
}
}
else {
tIndexes Indexes;
Take(Bitmap, &Indexes, ColorFg, ColorBg);
for (int ix = 0; ix < Bitmap.width; ix++) {
for (int iy = 0; iy < Bitmap.height; iy++) {
if (!Overlay || Bitmap.bitmap[Bitmap.width * iy + ix] != 0)
SetIndex(x + ix, y + iy, Indexes[int(Bitmap.bitmap[Bitmap.width * iy + ix])]);
}
}
}
}
}
void cBitmap::DrawText(int x, int y, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width, int Height, int Alignment)
{
if (bitmap) {
int w = Font->Width(s);
int h = Font->Height();
int limit = 0;
int cw = Width ? Width : w;
int ch = Height ? Height : h;
if (!Intersects(x, y, x + cw - 1, y + ch - 1))
return;
if (ColorBg != clrTransparent)
DrawRectangle(x, y, x + cw - 1, y + ch - 1, ColorBg);
if (Width || Height) {
limit = x + cw - x0;
if (Width) {
if ((Alignment & taLeft) != 0)
;
else if ((Alignment & taRight) != 0) {
if (w < Width)
x += Width - w;
}
else { // taCentered
if (w < Width)
x += (Width - w) / 2;
}
}
if (Height) {
if ((Alignment & taTop) != 0)
;
else if ((Alignment & taBottom) != 0) {
if (h < Height)
y += Height - h;
}
else { // taCentered
if (h < Height)
y += (Height - h) / 2;
}
}
}
x -= x0;
y -= y0;
Font->DrawText(this, x, y, s, ColorFg, ColorBg, limit);
}
}
void cBitmap::DrawRectangle(int x1, int y1, int x2, int y2, tColor Color)
{
if (bitmap && Intersects(x1, y1, x2, y2)) {
if (Covers(x1, y1, x2, y2))
Reset();
x1 -= x0;
y1 -= y0;
x2 -= x0;
y2 -= y0;
x1 = max(x1, 0);
y1 = max(y1, 0);
x2 = min(x2, width - 1);
y2 = min(y2, height - 1);
tIndex c = Index(Color);
for (int y = y1; y <= y2; y++) {
for (int x = x1; x <= x2; x++)
SetIndex(x, y, c);
}
}
}
void cBitmap::DrawEllipse(int x1, int y1, int x2, int y2, tColor Color, int Quadrants)
{
if (!Intersects(x1, y1, x2, y2))
return;
// Algorithm based on http://homepage.smc.edu/kennedy_john/BELIPSE.PDF
int rx = x2 - x1;
int ry = y2 - y1;
int cx = (x1 + x2) / 2;
int cy = (y1 + y2) / 2;
switch (abs(Quadrants)) {
case 0: rx /= 2; ry /= 2; break;
case 1: cx = x1; cy = y2; break;
case 2: cx = x2; cy = y2; break;
case 3: cx = x2; cy = y1; break;
case 4: cx = x1; cy = y1; break;
case 5: cx = x1; ry /= 2; break;
case 6: cy = y2; rx /= 2; break;
case 7: cx = x2; ry /= 2; break;
case 8: cy = y1; rx /= 2; break;
default: ;
}
int TwoASquare = 2 * rx * rx;
int TwoBSquare = 2 * ry * ry;
int x = rx;
int y = 0;
int XChange = ry * ry * (1 - 2 * rx);
int YChange = rx * rx;
int EllipseError = 0;
int StoppingX = TwoBSquare * rx;
int StoppingY = 0;
while (StoppingX >= StoppingY) {
switch (Quadrants) {
case 5: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); // no break
case 1: DrawRectangle(cx, cy - y, cx + x, cy - y, Color); break;
case 7: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); // no break
case 2: DrawRectangle(cx - x, cy - y, cx, cy - y, Color); break;
case 3: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); break;
case 4: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); break;
case 0:
case 6: DrawRectangle(cx - x, cy - y, cx + x, cy - y, Color); if (Quadrants == 6) break;
case 8: DrawRectangle(cx - x, cy + y, cx + x, cy + y, Color); break;
case -1: DrawRectangle(cx + x, cy - y, x2, cy - y, Color); break;
case -2: DrawRectangle(x1, cy - y, cx - x, cy - y, Color); break;
case -3: DrawRectangle(x1, cy + y, cx - x, cy + y, Color); break;
case -4: DrawRectangle(cx + x, cy + y, x2, cy + y, Color); break;
default: ;
}
y++;
StoppingY += TwoASquare;
EllipseError += YChange;
YChange += TwoASquare;
if (2 * EllipseError + XChange > 0) {
x--;
StoppingX -= TwoBSquare;
EllipseError += XChange;
XChange += TwoBSquare;
}
}
x = 0;
y = ry;
XChange = ry * ry;
YChange = rx * rx * (1 - 2 * ry);
EllipseError = 0;
StoppingX = 0;
StoppingY = TwoASquare * ry;
while (StoppingX <= StoppingY) {
switch (Quadrants) {
case 5: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); // no break
case 1: DrawRectangle(cx, cy - y, cx + x, cy - y, Color); break;
case 7: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); // no break
case 2: DrawRectangle(cx - x, cy - y, cx, cy - y, Color); break;
case 3: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); break;
case 4: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); break;
case 0:
case 6: DrawRectangle(cx - x, cy - y, cx + x, cy - y, Color); if (Quadrants == 6) break;
case 8: DrawRectangle(cx - x, cy + y, cx + x, cy + y, Color); break;
case -1: DrawRectangle(cx + x, cy - y, x2, cy - y, Color); break;
case -2: DrawRectangle(x1, cy - y, cx - x, cy - y, Color); break;
case -3: DrawRectangle(x1, cy + y, cx - x, cy + y, Color); break;
case -4: DrawRectangle(cx + x, cy + y, x2, cy + y, Color); break;
default: ;
}
x++;
StoppingX += TwoBSquare;
EllipseError += XChange;
XChange += TwoBSquare;
if (2 * EllipseError + YChange > 0) {
y--;
StoppingY -= TwoASquare;
EllipseError += YChange;
YChange += TwoASquare;
}
}
}
void cBitmap::DrawSlope(int x1, int y1, int x2, int y2, tColor Color, int Type)
{
if (!Intersects(x1, y1, x2, y2))
return;
bool upper = Type & 0x01;
bool falling = Type & 0x02;
bool vertical = Type & 0x04;
if (vertical) {
for (int y = y1; y <= y2; y++) {
double c = cos((y - y1) * M_PI / (y2 - y1 + 1));
if (falling)
c = -c;
int x = int((x2 - x1 + 1) * c / 2);
if (upper && !falling || !upper && falling)
DrawRectangle(x1, y, (x1 + x2) / 2 + x, y, Color);
else
DrawRectangle((x1 + x2) / 2 + x, y, x2, y, Color);
}
}
else {
for (int x = x1; x <= x2; x++) {
double c = cos((x - x1) * M_PI / (x2 - x1 + 1));
if (falling)
c = -c;
int y = int((y2 - y1 + 1) * c / 2);
if (upper)
DrawRectangle(x, y1, x, (y1 + y2) / 2 + y, Color);
else
DrawRectangle(x, (y1 + y2) / 2 + y, x, y2, Color);
}
}
}
const tIndex *cBitmap::Data(int x, int y) const
{
return &bitmap[y * width + x];
}
void cBitmap::ReduceBpp(const cPalette &Palette)
{
int NewBpp = Palette.Bpp();
if (Bpp() == 4 && NewBpp == 2) {
for (int i = width * height; i--; ) {
tIndex p = bitmap[i];
bitmap[i] = (p >> 2) | ((p & 0x03) != 0);
}
}
else if (Bpp() == 8) {
if (NewBpp == 2) {
for (int i = width * height; i--; ) {
tIndex p = bitmap[i];
bitmap[i] = (p >> 6) | ((p & 0x30) != 0);
}
}
else if (NewBpp == 4) {
for (int i = width * height; i--; ) {
tIndex p = bitmap[i];
bitmap[i] = p >> 4;
}
}
else
return;
}
else
return;
SetBpp(NewBpp);
Replace(Palette);
}
void cBitmap::ShrinkBpp(int NewBpp)
{
int NumOldColors;
const tColor *Colors = this->Colors(NumOldColors);
if (Colors) {
// Find the most frequently used colors and create a map table:
int Used[MAXNUMCOLORS] = { 0 };
int Map[MAXNUMCOLORS] = { 0 };
for (int i = width * height; i--; )
Used[bitmap[i]]++;
int MaxNewColors = (NewBpp == 4) ? 16 : 4;
cPalette NewPalette(NewBpp);
for (int i = 0; i < MaxNewColors; i++) {
int Max = 0;
int Index = -1;
for (int n = 0; n < NumOldColors; n++) {
if (Used[n] > Max) {
Max = Used[n];
Index = n;
}
}
if (Index >= 0) {
Used[Index] = 0;
Map[Index] = i;
NewPalette.SetColor(i, Colors[Index]);
}
else
break;
}
// Complete the map table for all other colors (will be set to closest match):
for (int n = 0; n < NumOldColors; n++) {
if (Used[n])
Map[n] = NewPalette.Index(Colors[n]);
}
// Do the actual index mapping:
for (int i = width * height; i--; )
bitmap[i] = Map[bitmap[i]];
SetBpp(NewBpp);
Replace(NewPalette);
}
}
cBitmap *cBitmap::Scaled(double FactorX, double FactorY, bool AntiAlias)
{
// Fixed point scaling code based on www.inversereality.org/files/bitmapscaling.pdf
// by deltener@mindtremors.com
cBitmap *b = new cBitmap(int(round(Width() * FactorX)), int(round(Height() * FactorY)), Bpp(), X0(), Y0());
b->Replace(*this); // copy palette
int RatioX = (Width() << 16) / b->Width();
int RatioY = (Height() << 16) / b->Height();
if (!AntiAlias || FactorX <= 1.0 && FactorY <= 1.0) {
// Downscaling - no anti-aliasing:
tIndex *DestRow = b->bitmap;
int SourceY = 0;
for (int y = 0; y < b->Height(); y++) {
int SourceX = 0;
tIndex *SourceRow = bitmap + (SourceY >> 16) * Width();
tIndex *Dest = DestRow;
for (int x = 0; x < b->Width(); x++) {
*Dest++ = SourceRow[SourceX >> 16];
SourceX += RatioX;
}
SourceY += RatioY;
DestRow += b->Width();
}
}
else {
// Upscaling - anti-aliasing:
b->SetBpp(8);
int SourceY = 0;
for (int y = 0; y < b->Height() - 1; y++) {
int SourceX = 0;
int sy = SourceY >> 16;
uint8_t BlendY = 0xFF - ((SourceY >> 8) & 0xFF);
for (int x = 0; x < b->Width() - 1; x++) {
int sx = SourceX >> 16;
uint8_t BlendX = 0xFF - ((SourceX >> 8) & 0xFF);
tColor c1 = b->Blend(GetColor(sx, sy), GetColor(sx + 1, sy), BlendX);
tColor c2 = b->Blend(GetColor(sx, sy + 1), GetColor(sx + 1, sy + 1), BlendX);
tColor c3 = b->Blend(c1, c2, BlendY);
b->DrawPixel(x + X0(), y + Y0(), c3);
SourceX += RatioX;
}
SourceY += RatioY;
}
}
return b;
}
// --- cRect -----------------------------------------------------------------
const cRect cRect::Null;
void cRect::Grow(int Dx, int Dy)
{
point.Shift(-Dx, -Dy);
size.Grow(Dx, Dy);
}
bool cRect::Contains(const cPoint &Point) const
{
return Left() <= Point.X() &&
Top() <= Point.Y() &&
Right() >= Point.X() &&
Bottom() >= Point.Y();
}
bool cRect::Contains(const cRect &Rect) const
{
return Left() <= Rect.Left() &&
Top() <= Rect.Top() &&
Right() >= Rect.Right() &&
Bottom() >= Rect.Bottom();
}
bool cRect::Intersects(const cRect &Rect) const
{
return !(Left() > Rect.Right() ||
Top() > Rect.Bottom() ||
Right() < Rect.Left() ||
Bottom() < Rect.Top());
}
cRect cRect::Intersected(const cRect &Rect) const
{
cRect r;
if (!IsEmpty() && !Rect.IsEmpty()) {
r.SetLeft(max(Left(), Rect.Left()));
r.SetTop(max(Top(), Rect.Top()));
r.SetRight(min(Right(), Rect.Right()));
r.SetBottom(min(Bottom(), Rect.Bottom()));
}
return r;
}
void cRect::Combine(const cRect &Rect)
{
if (IsEmpty())
*this = Rect;
if (Rect.IsEmpty())
return;
// must set right/bottom *before* top/left!
SetRight(max(Right(), Rect.Right()));
SetBottom(max(Bottom(), Rect.Bottom()));
SetLeft(min(Left(), Rect.Left()));
SetTop(min(Top(), Rect.Top()));
}
void cRect::Combine(const cPoint &Point)
{
if (IsEmpty())
Set(Point.X(), Point.Y(), 1, 1);
// must set right/bottom *before* top/left!
SetRight(max(Right(), Point.X()));
SetBottom(max(Bottom(), Point.Y()));
SetLeft(min(Left(), Point.X()));
SetTop(min(Top(), Point.Y()));
}
// --- cPixmap ---------------------------------------------------------------
cMutex cPixmap::mutex;
cPixmap::cPixmap(void)
{
layer = -1;
alpha = ALPHA_OPAQUE;
tile = false;
}
cPixmap::cPixmap(int Layer, const cRect &ViewPort, const cRect &DrawPort)
{
layer = Layer;
if (layer >= MAXPIXMAPLAYERS) {
layer = MAXPIXMAPLAYERS - 1;
esyslog("ERROR: pixmap layer %d limited to %d", Layer, layer);
}
viewPort = ViewPort;
if (!DrawPort.IsEmpty())
drawPort = DrawPort;
else {
drawPort = viewPort;
drawPort.SetPoint(0, 0);
}
alpha = ALPHA_OPAQUE;
tile = false;
}
void cPixmap::MarkViewPortDirty(const cRect &Rect)
{
dirtyViewPort.Combine(Rect.Intersected(viewPort));
}
void cPixmap::MarkViewPortDirty(const cPoint &Point)
{
if (viewPort.Contains(Point))
dirtyViewPort.Combine(Point);
}
void cPixmap::MarkDrawPortDirty(const cRect &Rect)
{
dirtyDrawPort.Combine(Rect.Intersected(drawPort));
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(Rect.Shifted(viewPort.Point()));
}
void cPixmap::MarkDrawPortDirty(const cPoint &Point)
{
if (drawPort.Contains(Point)) {
dirtyDrawPort.Combine(Point);
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(Point.Shifted(viewPort.Point()));
}
}
void cPixmap::SetClean(void)
{
dirtyViewPort = dirtyDrawPort = cRect();
}
void cPixmap::SetLayer(int Layer)
{
Lock();
if (Layer >= MAXPIXMAPLAYERS) {
esyslog("ERROR: pixmap layer %d limited to %d", Layer, MAXPIXMAPLAYERS - 1);
Layer = MAXPIXMAPLAYERS - 1;
}
if (Layer != layer) {
if (Layer > 0 || layer > 0)
MarkViewPortDirty(viewPort);
layer = Layer;
}
Unlock();
}
void cPixmap::SetAlpha(int Alpha)
{
Lock();
Alpha = min(max(Alpha, ALPHA_TRANSPARENT), ALPHA_OPAQUE);
if (Alpha != alpha) {
MarkViewPortDirty(viewPort);
alpha = Alpha;
}
Unlock();
}
void cPixmap::SetTile(bool Tile)
{
Lock();
if (Tile != tile) {
if (drawPort.Point() != cPoint(0, 0) || drawPort.Width() < viewPort.Width() || drawPort.Height() < viewPort.Height())
MarkViewPortDirty(viewPort);
tile = Tile;
}
Unlock();
}
void cPixmap::SetViewPort(const cRect &Rect)
{
Lock();
if (Rect != viewPort) {
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
viewPort = Rect;
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
}
Unlock();
}
void cPixmap::SetDrawPortPoint(const cPoint &Point, bool Dirty)
{
Lock();
if (Point != drawPort.Point()) {
if (Dirty) {
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
}
drawPort.SetPoint(Point);
if (Dirty && !tile)
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
}
Unlock();
}
// --- cImage ----------------------------------------------------------------
cImage::cImage(void)
{
data = NULL;
}
cImage::cImage(const cImage &Image)
{
size = Image.Size();
int l = size.Width() * size.Height() * sizeof(tColor);
data = MALLOC(tColor, l);
memcpy(data, Image.Data(), l);
}
cImage::cImage(const cSize &Size, const tColor *Data)
{
size = Size;
int l = size.Width() * size.Height() * sizeof(tColor);
data = MALLOC(tColor, l);
if (Data)
memcpy(data, Data, l);
}
cImage::~cImage()
{
free(data);
}
void cImage::Clear(void)
{
memset(data, 0x00, Width() * Height() * sizeof(tColor));
}
void cImage::Fill(tColor Color)
{
for (int i = Width() * Height() - 1; i >= 0; i--)
data[i] = Color;
}
// --- cPixmapMemory ---------------------------------------------------------
cPixmapMemory::cPixmapMemory(void)
{
data = NULL;
panning = false;
}
cPixmapMemory::cPixmapMemory(int Layer, const cRect &ViewPort, const cRect &DrawPort)
:cPixmap(Layer, ViewPort, DrawPort)
{
data = MALLOC(tColor, this->DrawPort().Width() * this->DrawPort().Height());
}
cPixmapMemory::~cPixmapMemory()
{
free(data);
}
void cPixmapMemory::Clear(void)
{
Lock();
memset(data, 0x00, DrawPort().Width() * DrawPort().Height() * sizeof(tColor));
MarkDrawPortDirty(DrawPort());
Unlock();
}
void cPixmapMemory::Fill(tColor Color)
{
Lock();
for (int i = DrawPort().Width() * DrawPort().Height() - 1; i >= 0; i--)
data[i] = Color;
MarkDrawPortDirty(DrawPort());
Unlock();
}
void cPixmap::DrawPixmap(const cPixmap *Pixmap, const cRect &Dirty)
{
if (Pixmap->Tile() && (Pixmap->DrawPort().Point() != cPoint(0, 0) || Pixmap->DrawPort().Size() < Pixmap->ViewPort().Size())) {
cPoint t0 = Pixmap->DrawPort().Point().Shifted(Pixmap->ViewPort().Point()); // the origin of the draw port in absolute OSD coordinates
// Find the top/leftmost location where the draw port touches the view port:
while (t0.X() > Pixmap->ViewPort().Left())
t0.Shift(-Pixmap->DrawPort().Width(), 0);
while (t0.Y() > Pixmap->ViewPort().Top())
t0.Shift(0, -Pixmap->DrawPort().Height());
cPoint t = t0;;
while (t.Y() <= Pixmap->ViewPort().Bottom()) {
while (t.X() <= Pixmap->ViewPort().Right()) {
cRect Source = Pixmap->DrawPort(); // assume the entire pixmap needs to be rendered
Source.Shift(Pixmap->ViewPort().Point()); // Source is now in absolute OSD coordinates
cPoint Delta = Source.Point() - t;
Source.SetPoint(t); // Source is now where the pixmap's data shall be drawn
Source = Source.Intersected(Pixmap->ViewPort()); // Source is now limited to the pixmap's view port
Source = Source.Intersected(Dirty); // Source is now limited to the actual dirty rectangle
if (!Source.IsEmpty()) {
cPoint Dest = Source.Point().Shifted(-ViewPort().Point()); // remember the destination point
Source.Shift(Delta); // Source is now back at the pixmap's draw port location, still in absolute OSD coordinates
Source.Shift(-Pixmap->ViewPort().Point()); // Source is now relative to the pixmap's view port again
Source.Shift(-Pixmap->DrawPort().Point()); // Source is now relative to the pixmap's data
if (Pixmap->Layer() == 0)
Copy(Pixmap, Source, Dest); // this is the "background" pixmap
else
Render(Pixmap, Source, Dest); // all others are alpha blended over the background
}
t.Shift(Pixmap->DrawPort().Width(), 0); // increase one draw port width to the right
}
t.SetX(t0.X()); // go back to the leftmost position
t.Shift(0, Pixmap->DrawPort().Height()); // increase one draw port height down
}
}
else {
cRect Source = Pixmap->DrawPort(); // assume the entire pixmap needs to be rendered
Source.Shift(Pixmap->ViewPort().Point()); // Source is now in absolute OSD coordinates
Source = Source.Intersected(Pixmap->ViewPort()); // Source is now limited to the pixmap's view port
Source = Source.Intersected(Dirty); // Source is now limited to the actual dirty rectangle
if (!Source.IsEmpty()) {
cPoint Dest = Source.Point().Shifted(-ViewPort().Point()); // remember the destination point
Source.Shift(-Pixmap->ViewPort().Point()); // Source is now relative to the pixmap's draw port again
Source.Shift(-Pixmap->DrawPort().Point()); // Source is now relative to the pixmap's data
if (Pixmap->Layer() == 0)
Copy(Pixmap, Source, Dest); // this is the "background" pixmap
else
Render(Pixmap, Source, Dest); // all others are alpha blended over the background
}
}
}
void cPixmapMemory::DrawImage(const cPoint &Point, const cImage &Image)
{
Lock();
cRect r = cRect(Point, Image.Size()).Intersected(DrawPort().Size());
if (!r.IsEmpty()) {
int ws = Image.Size().Width();
int wd = DrawPort().Width();
int w = r.Width() * sizeof(tColor);
const tColor *ps = Image.Data();
if (Point.Y() < 0)
ps -= Point.Y() * ws;
if (Point.X() < 0)
ps -= Point.X();
tColor *pd = data + wd * r.Top() + r.Left();
for (int y = r.Height(); y-- > 0; ) {
memcpy(pd, ps, w);
ps += ws;
pd += wd;
}
MarkDrawPortDirty(r);
}
Unlock();
}
void cPixmapMemory::DrawImage(const cPoint &Point, int ImageHandle)
{
Lock();
if (const cImage *Image = cOsdProvider::GetImageData(ImageHandle))
DrawImage(Point, *Image);
Unlock();
}
void cPixmapMemory::DrawPixel(const cPoint &Point, tColor Color)
{
Lock();
if (DrawPort().Size().Contains(Point)) {
int p = Point.Y() * DrawPort().Width() + Point.X();
if (Layer() == 0 && !IS_OPAQUE(Color))
data[p] = AlphaBlend(Color, data[p]);
else
data[p] = Color;
MarkDrawPortDirty(Point);
}
Unlock();
}
void cPixmapMemory::DrawBitmap(const cPoint &Point, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool Overlay)
{
Lock();
cRect r = cRect(Point, cSize(Bitmap.Width(), Bitmap.Height())).Intersected(DrawPort().Size());
if (!r.IsEmpty()) {
bool UseColors = ColorFg || ColorBg;
int wd = DrawPort().Width();
tColor *pd = data + wd * r.Top() + r.Left();
for (int y = r.Top(); y <= r.Bottom(); y++) {
tColor *cd = pd;
for (int x = r.Left(); x <= r.Right(); x++) {
tIndex Index = *Bitmap.Data(x - Point.X(), y - Point.Y());
if (Index || !Overlay) {
if (UseColors)
*cd = Index ? ColorFg : ColorBg;
else
*cd = Bitmap.Color(Index);
}
cd++;
}
pd += wd;
}
MarkDrawPortDirty(r);
}
Unlock();
}
void cPixmapMemory::DrawText(const cPoint &Point, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width, int Height, int Alignment)
{
Lock();
int x = Point.X();
int y = Point.Y();
int w = Font->Width(s);
int h = Font->Height();
int limit = 0;
int cw = Width ? Width : w;
int ch = Height ? Height : h;
cRect r(x, y, cw, ch);
if (ColorBg != clrTransparent)
DrawRectangle(r, ColorBg);
if (Width || Height) {
limit = x + cw;
if (Width) {
if ((Alignment & taLeft) != 0)
;
else if ((Alignment & taRight) != 0) {
if (w < Width)
x += Width - w;
}
else { // taCentered
if (w < Width)
x += (Width - w) / 2;
}
}
if (Height) {
if ((Alignment & taTop) != 0)
;
else if ((Alignment & taBottom) != 0) {
if (h < Height)
y += Height - h;
}
else { // taCentered
if (h < Height)
y += (Height - h) / 2;
}
}
}
Font->DrawText(this, x, y, s, ColorFg, ColorBg, limit);
MarkDrawPortDirty(r);
Unlock();
}
void cPixmapMemory::DrawRectangle(const cRect &Rect, tColor Color)
{
Lock();
cRect r = Rect.Intersected(DrawPort().Size());
if (!r.IsEmpty()) {
int wd = DrawPort().Width();
int w = r.Width() * sizeof(tColor);
tColor *ps = NULL;
tColor *pd = data + wd * r.Top() + r.Left();
for (int y = r.Height(); y-- > 0; ) {
if (ps)
memcpy(pd, ps, w); // all other lines are copied fast from the first one
else {
// explicitly fill the first line:
tColor *cd = ps = pd;
for (int x = r.Width(); x-- > 0; ) {
*cd = Color;
cd++;
}
}
pd += wd;
}
MarkDrawPortDirty(r);
}
Unlock();
}
void cPixmapMemory::DrawEllipse(const cRect &Rect, tColor Color, int Quadrants)
{
//TODO use anti-aliasing?
//TODO fix alignment
Lock();
// Algorithm based on http://homepage.smc.edu/kennedy_john/BELIPSE.PDF
int x1 = Rect.Left();
int y1 = Rect.Top();
int x2 = Rect.Right();
int y2 = Rect.Bottom();
int rx = x2 - x1;
int ry = y2 - y1;
int cx = (x1 + x2) / 2;
int cy = (y1 + y2) / 2;
switch (abs(Quadrants)) {
case 0: rx /= 2; ry /= 2; break;
case 1: cx = x1; cy = y2; break;
case 2: cx = x2; cy = y2; break;
case 3: cx = x2; cy = y1; break;
case 4: cx = x1; cy = y1; break;
case 5: cx = x1; ry /= 2; break;
case 6: cy = y2; rx /= 2; break;
case 7: cx = x2; ry /= 2; break;
case 8: cy = y1; rx /= 2; break;
default: ;
}
int TwoASquare = 2 * rx * rx;
int TwoBSquare = 2 * ry * ry;
int x = rx;
int y = 0;
int XChange = ry * ry * (1 - 2 * rx);
int YChange = rx * rx;
int EllipseError = 0;
int StoppingX = TwoBSquare * rx;
int StoppingY = 0;
while (StoppingX >= StoppingY) {
switch (Quadrants) {
case 5: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); // no break
case 1: DrawRectangle(cRect(cx, cy - y, x + 1, 1), Color); break;
case 7: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); // no break
case 2: DrawRectangle(cRect(cx - x, cy - y, x + 1, 1), Color); break;
case 3: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); break;
case 4: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); break;
case 0:
case 6: DrawRectangle(cRect(cx - x, cy - y, 2 * x + 1, 1), Color); if (Quadrants == 6) break;
case 8: DrawRectangle(cRect(cx - x, cy + y, 2 * x + 1, 1), Color); break;
case -1: DrawRectangle(cRect(cx + x, cy - y, x2 - x + 1, 1), Color); break;
case -2: DrawRectangle(cRect(x1, cy - y, cx - x - x1 + 1, 1), Color); break;
case -3: DrawRectangle(cRect(x1, cy + y, cx - x - x1 + 1, 1), Color); break;
case -4: DrawRectangle(cRect(cx + x, cy + y, x2 - x + 1, 1), Color); break;
default: ;
}
y++;
StoppingY += TwoASquare;
EllipseError += YChange;
YChange += TwoASquare;
if (2 * EllipseError + XChange > 0) {
x--;
StoppingX -= TwoBSquare;
EllipseError += XChange;
XChange += TwoBSquare;
}
}
x = 0;
y = ry;
XChange = ry * ry;
YChange = rx * rx * (1 - 2 * ry);
EllipseError = 0;
StoppingX = 0;
StoppingY = TwoASquare * ry;
while (StoppingX <= StoppingY) {
switch (Quadrants) {
case 5: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); // no break
case 1: DrawRectangle(cRect(cx, cy - y, x + 1, 1), Color); break;
case 7: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); // no break
case 2: DrawRectangle(cRect(cx - x, cy - y, x + 1, 1), Color); break;
case 3: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); break;
case 4: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); break;
case 0:
case 6: DrawRectangle(cRect(cx - x, cy - y, 2 * x + 1, 1), Color); if (Quadrants == 6) break;
case 8: DrawRectangle(cRect(cx - x, cy + y, 2 * x + 1, 1), Color); break;
case -1: DrawRectangle(cRect(cx + x, cy - y, x2 - x + 1, 1), Color); break;
case -2: DrawRectangle(cRect(x1, cy - y, cx - x - x1 + 1, 1), Color); break;
case -3: DrawRectangle(cRect(x1, cy + y, cx - x - x1 + 1, 1), Color); break;
case -4: DrawRectangle(cRect(cx + x, cy + y, x2 - x + 1, 1), Color); break;
default: ;
}
x++;
StoppingX += TwoBSquare;
EllipseError += XChange;
XChange += TwoBSquare;
if (2 * EllipseError + YChange > 0) {
y--;
StoppingY -= TwoASquare;
EllipseError += YChange;
YChange += TwoASquare;
}
}
MarkDrawPortDirty(Rect);
Unlock();
}
void cPixmapMemory::DrawSlope(const cRect &Rect, tColor Color, int Type)
{
//TODO anti-aliasing?
//TODO also simplify cBitmap::DrawSlope()
Lock();
bool upper = Type & 0x01;
bool falling = Type & 0x02;
bool vertical = Type & 0x04;
int x1 = Rect.Left();
int y1 = Rect.Top();
int x2 = Rect.Right();
int y2 = Rect.Bottom();
int w = Rect.Width();
int h = Rect.Height();
if (vertical) {
for (int y = y1; y <= y2; y++) {
double c = cos((y - y1) * M_PI / h);
if (falling)
c = -c;
int x = (x1 + x2) / 2 + int(w * c / 2);
if (upper && !falling || !upper && falling)
DrawRectangle(cRect(x1, y, x - x1 + 1, 1), Color);
else
DrawRectangle(cRect(x, y, x2 - x + 1, 1), Color);
}
}
else {
for (int x = x1; x <= x2; x++) {
double c = cos((x - x1) * M_PI / w);
if (falling)
c = -c;
int y = (y1 + y2) / 2 + int(h * c / 2);
if (upper)
DrawRectangle(cRect(x, y1, 1, y - y1 + 1), Color);
else
DrawRectangle(cRect(x, y, 1, y2 - y + 1), Color);
}
}
MarkDrawPortDirty(Rect);
Unlock();
}
void cPixmapMemory::Render(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest)
{
Lock();
if (Pixmap->Alpha() != ALPHA_TRANSPARENT) {
if (const cPixmapMemory *pm = dynamic_cast<const cPixmapMemory *>(Pixmap)) {
cRect s = Source.Intersected(Pixmap->DrawPort().Size());
if (!s.IsEmpty()) {
cPoint v = Dest - Source.Point();
cRect d = s.Shifted(v).Intersected(DrawPort().Size());
if (!d.IsEmpty()) {
s = d.Shifted(-v);
int a = pm->Alpha();
int ws = pm->DrawPort().Width();
int wd = DrawPort().Width();
const tColor *ps = pm->data + ws * s.Top() + s.Left();
tColor *pd = data + wd * d.Top() + d.Left();
for (int y = d.Height(); y-- > 0; ) {
const tColor *cs = ps;
tColor *cd = pd;
for (int x = d.Width(); x-- > 0; ) {
*cd = AlphaBlend(*cs, *cd, a);
cs++;
cd++;
}
ps += ws;
pd += wd;
}
MarkDrawPortDirty(d);
}
}
}
}
Unlock();
}
void cPixmapMemory::Copy(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest)
{
Lock();
if (const cPixmapMemory *pm = dynamic_cast<const cPixmapMemory *>(Pixmap)) {
cRect s = Source.Intersected(pm->DrawPort().Size());
if (!s.IsEmpty()) {
cPoint v = Dest - Source.Point();
cRect d = s.Shifted(v).Intersected(DrawPort().Size());
if (!d.IsEmpty()) {
s = d.Shifted(-v);
int ws = pm->DrawPort().Width();
int wd = DrawPort().Width();
int w = d.Width() * sizeof(tColor);
const tColor *ps = pm->data + ws * s.Top() + s.Left();
tColor *pd = data + wd * d.Top() + d.Left();
for (int y = d.Height(); y-- > 0; ) {
memcpy(pd, ps, w);
ps += ws;
pd += wd;
}
MarkDrawPortDirty(d);
}
}
}
Unlock();
}
void cPixmapMemory::Scroll(const cPoint &Dest, const cRect &Source)
{
Lock();
cRect s;
if (&Source == &cRect::Null)
s = DrawPort().Shifted(-DrawPort().Point());
else
s = Source.Intersected(DrawPort().Size());
if (!s.IsEmpty()) {
cPoint v = Dest - Source.Point();
cRect d = s.Shifted(v).Intersected(DrawPort().Size());
if (!d.IsEmpty()) {
s = d.Shifted(-v);
if (d.Point() != s.Point()) {
int ws = DrawPort().Width();
int wd = ws;
int w = d.Width() * sizeof(tColor);
const tColor *ps = data + ws * s.Top() + s.Left();
tColor *pd = data + wd * d.Top() + d.Left();
for (int y = d.Height(); y-- > 0; ) {
memmove(pd, ps, w); // source and destination might overlap!
ps += ws;
pd += wd;
}
if (panning)
SetDrawPortPoint(DrawPort().Point().Shifted(s.Point() - d.Point()), false);
else
MarkDrawPortDirty(d);
}
}
}
Unlock();
}
void cPixmapMemory::Pan(const cPoint &Dest, const cRect &Source)
{
Lock();
panning = true;
Scroll(Dest, Source);
panning = false;
Unlock();
}
// --- cOsd ------------------------------------------------------------------
static const char *OsdErrorTexts[] = {
"ok",
"too many areas",
"too many colors",
"bpp not supported",
"areas overlap",
"wrong alignment",
"out of memory",
"wrong area size",
"unknown",
};
int cOsd::osdLeft = 0;
int cOsd::osdTop = 0;
int cOsd::osdWidth = 0;
int cOsd::osdHeight = 0;
cVector<cOsd *> cOsd::Osds;
cMutex cOsd::mutex;
cOsd::cOsd(int Left, int Top, uint Level)
{
cMutexLock MutexLock(&mutex);
isTrueColor = false;
savedBitmap = NULL;
numBitmaps = 0;
savedPixmap = NULL;
numPixmaps = 0;
left = Left;
top = Top;
width = height = 0;
level = Level;
active = false;
for (int i = 0; i < Osds.Size(); i++) {
if (Osds[i]->level > level) {
Osds.Insert(this, i);
return;
}
}
Osds.Append(this);
}
cOsd::~cOsd()
{
cMutexLock MutexLock(&mutex);
for (int i = 0; i < numBitmaps; i++)
delete bitmaps[i];
delete savedBitmap;
delete savedPixmap;
for (int i = 0; i < numPixmaps; i++)
delete pixmaps[i];
for (int i = 0; i < Osds.Size(); i++) {
if (Osds[i] == this) {
Osds.Remove(i);
if (Osds.Size())
Osds[0]->SetActive(true);
break;
}
}
}
void cOsd::SetOsdPosition(int Left, int Top, int Width, int Height)
{
osdLeft = Left;
osdTop = Top;
osdWidth = min(max(Width, MINOSDWIDTH), MAXOSDWIDTH);
osdHeight = min(max(Height, MINOSDHEIGHT), MAXOSDHEIGHT);
}
void cOsd::SetAntiAliasGranularity(uint FixedColors, uint BlendColors)
{
if (isTrueColor)
return;
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->SetAntiAliasGranularity(FixedColors, BlendColors);
}
cBitmap *cOsd::GetBitmap(int Area)
{
if (isTrueColor)
Area = 0; // returns the dummy bitmap
return Area < numBitmaps ? bitmaps[Area] : NULL;
}
cPixmap *cOsd::CreatePixmap(int Layer, const cRect &ViewPort, const cRect &DrawPort)
{
if (isTrueColor) {
LOCK_PIXMAPS;
cPixmap *Pixmap = new cPixmapMemory(Layer, ViewPort, DrawPort);
if (AddPixmap(Pixmap))
return Pixmap;
delete Pixmap;
}
return NULL;
}
void cOsd::DestroyPixmap(cPixmap *Pixmap)
{
if (isTrueColor) {
LOCK_PIXMAPS;
for (int i = 1; i < numPixmaps; i++) { // begin at 1 - don't let the background pixmap be destroyed!
if (pixmaps[i] == Pixmap) {
pixmaps[0]->MarkViewPortDirty(Pixmap->ViewPort());
delete Pixmap;
while (i < numPixmaps - 1) {
pixmaps[i] = pixmaps[i + 1];
i++;
}
numPixmaps--;
return;
}
}
esyslog("ERROR: attempt to destroy an unregistered pixmap");
}
}
cPixmap *cOsd::AddPixmap(cPixmap *Pixmap)
{
LOCK_PIXMAPS;
if (numPixmaps < MAXOSDPIXMAPS)
return pixmaps[numPixmaps++] = Pixmap;
else
esyslog("ERROR: too many OSD pixmaps requested (maximum is %d)", MAXOSDPIXMAPS);
return NULL;
}
cPixmapMemory *cOsd::RenderPixmaps(void)
{
cPixmapMemory *Pixmap = NULL;
if (isTrueColor) {
LOCK_PIXMAPS;
// Collect overlapping dirty rectangles:
cRect d;
for (int i = 0; i < numPixmaps; i++) {
cPixmap *pm = pixmaps[i];
if (!pm->DirtyViewPort().IsEmpty()) {
if (d.IsEmpty() || d.Intersects(pm->DirtyViewPort())) {
d.Combine(pm->DirtyViewPort());
pm->SetClean();
}
}
}
if (!d.IsEmpty()) {
//#define DebugDirty
#ifdef DebugDirty
static cRect OldDirty;
cRect NewDirty = d;
d.Combine(OldDirty);
OldDirty = NewDirty;
#endif
Pixmap = new cPixmapMemory(0, d);
Pixmap->Clear();
// Render the individual pixmaps into the resulting pixmap:
for (int Layer = 0; Layer < MAXPIXMAPLAYERS; Layer++) {
for (int i = 0; i < numPixmaps; i++) {
cPixmap *pm = pixmaps[i];
if (pm->Layer() == Layer)
Pixmap->DrawPixmap(pm, d);
}
}
#ifdef DebugDirty
cPixmapMemory DirtyIndicator(7, NewDirty);
static tColor DirtyIndicatorColors[] = { 0x7FFFFF00, 0x7F00FFFF };
static int DirtyIndicatorIndex = 0;
DirtyIndicator.Fill(DirtyIndicatorColors[DirtyIndicatorIndex]);
DirtyIndicatorIndex = 1 - DirtyIndicatorIndex;
Pixmap->Render(&DirtyIndicator, DirtyIndicator.DrawPort(), DirtyIndicator.ViewPort().Point().Shifted(-Pixmap->ViewPort().Point()));
#endif
}
}
return Pixmap;
}
eOsdError cOsd::CanHandleAreas(const tArea *Areas, int NumAreas)
{
if (NumAreas > MAXOSDAREAS)
return oeTooManyAreas;
eOsdError Result = oeOk;
for (int i = 0; i < NumAreas; i++) {
if (Areas[i].x1 > Areas[i].x2 || Areas[i].y1 > Areas[i].y2 || Areas[i].x1 < 0 || Areas[i].y1 < 0)
return oeWrongAlignment;
for (int j = i + 1; j < NumAreas; j++) {
if (Areas[i].Intersects(Areas[j])) {
Result = oeAreasOverlap;
break;
}
}
if (Areas[i].bpp == 32) {
if (NumAreas > 1)
return oeTooManyAreas;
}
}
return Result;
}
eOsdError cOsd::SetAreas(const tArea *Areas, int NumAreas)
{
eOsdError Result = CanHandleAreas(Areas, NumAreas);
if (Result == oeOk) {
while (numBitmaps)
delete bitmaps[--numBitmaps];
width = height = 0;
isTrueColor = NumAreas == 1 && Areas[0].bpp == 32;
if (isTrueColor) {
width = Areas[0].x2 - Areas[0].x1 + 1;
height = Areas[0].y2 - Areas[0].y1 + 1;
cPixmap *Pixmap = CreatePixmap(0, cRect(Areas[0].x1, Areas[0].y1, width, height));
Pixmap->Clear();
bitmaps[numBitmaps++] = new cBitmap(10, 10, 8); // dummy bitmap for GetBitmap()
}
else {
for (int i = 0; i < NumAreas; i++) {
bitmaps[numBitmaps++] = new cBitmap(Areas[i].Width(), Areas[i].Height(), Areas[i].bpp, Areas[i].x1, Areas[i].y1);
width = max(width, Areas[i].x2 + 1);
height = max(height, Areas[i].y2 + 1);
}
}
}
else
esyslog("ERROR: cOsd::SetAreas returned %d (%s)", Result, Result < oeUnknown ? OsdErrorTexts[Result] : OsdErrorTexts[oeUnknown]);
return Result;
}
void cOsd::SaveRegion(int x1, int y1, int x2, int y2)
{
if (isTrueColor) {
delete savedPixmap;
cRect r(x1, y1, x2 - x1 + 1, y2 - y1 + 1);
savedPixmap = new cPixmapMemory(0, r);
savedPixmap->Copy(pixmaps[0], r, cPoint(0, 0));
}
else {
delete savedBitmap;
savedBitmap = new cBitmap(x2 - x1 + 1, y2 - y1 + 1, 8, x1, y1);
for (int i = 0; i < numBitmaps; i++)
savedBitmap->DrawBitmap(bitmaps[i]->X0(), bitmaps[i]->Y0(), *bitmaps[i]);
}
}
void cOsd::RestoreRegion(void)
{
if (isTrueColor) {
if (savedPixmap) {
pixmaps[0]->Copy(savedPixmap, savedPixmap->DrawPort(), savedPixmap->ViewPort().Point());
delete savedPixmap;
savedPixmap = NULL;
}
}
else {
if (savedBitmap) {
DrawBitmap(savedBitmap->X0(), savedBitmap->Y0(), *savedBitmap);
delete savedBitmap;
savedBitmap = NULL;
}
}
}
eOsdError cOsd::SetPalette(const cPalette &Palette, int Area)
{
if (isTrueColor)
return oeOk;
if (Area < numBitmaps) {
bitmaps[Area]->Take(Palette);
return oeOk;
}
return oeUnknown;
}
void cOsd::DrawImage(const cPoint &Point, const cImage &Image)
{
if (isTrueColor)
pixmaps[0]->DrawImage(Point, Image);
}
void cOsd::DrawImage(const cPoint &Point, int ImageHandle)
{
if (isTrueColor)
pixmaps[0]->DrawImage(Point, ImageHandle);
}
void cOsd::DrawPixel(int x, int y, tColor Color)
{
if (isTrueColor)
pixmaps[0]->DrawPixel(cPoint(x, y), Color);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawPixel(x, y, Color);
}
}
void cOsd::DrawBitmap(int x, int y, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool ReplacePalette, bool Overlay)
{
if (isTrueColor)
pixmaps[0]->DrawBitmap(cPoint(x, y), Bitmap, ColorFg, ColorBg, Overlay);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawBitmap(x, y, Bitmap, ColorFg, ColorBg, ReplacePalette, Overlay);
}
}
void cOsd::DrawText(int x, int y, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width, int Height, int Alignment)
{
if (isTrueColor)
pixmaps[0]->DrawText(cPoint(x, y), s, ColorFg, ColorBg, Font, Width, Height, Alignment);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawText(x, y, s, ColorFg, ColorBg, Font, Width, Height, Alignment);
}
}
void cOsd::DrawRectangle(int x1, int y1, int x2, int y2, tColor Color)
{
if (isTrueColor)
pixmaps[0]->DrawRectangle(cRect(x1, y1, x2 - x1 + 1, y2 - y1 + 1), Color);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawRectangle(x1, y1, x2, y2, Color);
}
}
void cOsd::DrawEllipse(int x1, int y1, int x2, int y2, tColor Color, int Quadrants)
{
if (isTrueColor)
pixmaps[0]->DrawEllipse(cRect(x1, y1, x2 - x1 + 1, y2 - y1 + 1), Color, Quadrants);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawEllipse(x1, y1, x2, y2, Color, Quadrants);
}
}
void cOsd::DrawSlope(int x1, int y1, int x2, int y2, tColor Color, int Type)
{
if (isTrueColor)
pixmaps[0]->DrawSlope(cRect(x1, y1, x2 - x1 + 1, y2 - y1 + 1), Color, Type);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawSlope(x1, y1, x2, y2, Color, Type);
}
}
void cOsd::Flush(void)
{
}
// --- cOsdProvider ----------------------------------------------------------
cOsdProvider *cOsdProvider::osdProvider = NULL;
int cOsdProvider::oldWidth = 0;
int cOsdProvider::oldHeight = 0;
double cOsdProvider::oldAspect = 1.0;
cImage *cOsdProvider::images[MAXOSDIMAGES] = { NULL };
cOsdProvider::cOsdProvider(void)
{
delete osdProvider;
osdProvider = this;
}
cOsdProvider::~cOsdProvider()
{
osdProvider = NULL;
}
cOsd *cOsdProvider::NewOsd(int Left, int Top, uint Level)
{
cMutexLock MutexLock(&cOsd::mutex);
if (Level == OSD_LEVEL_DEFAULT && cOsd::IsOpen())
esyslog("ERROR: attempt to open OSD while it is already open - using dummy OSD!");
else if (osdProvider) {
cOsd *ActiveOsd = cOsd::Osds.Size() ? cOsd::Osds[0] : NULL;
cOsd *Osd = osdProvider->CreateOsd(Left, Top, Level);
if (Osd == cOsd::Osds[0]) {
if (ActiveOsd)
ActiveOsd->SetActive(false);
Osd->SetActive(true);
}
return Osd;
}
else
esyslog("ERROR: no OSD provider available - using dummy OSD!");
return new cOsd(Left, Top, 999); // create a dummy cOsd, so that access won't result in a segfault
}
void cOsdProvider::UpdateOsdSize(bool Force)
{
int Width;
int Height;
double Aspect;
cDevice::PrimaryDevice()->GetOsdSize(Width, Height, Aspect);
if (Width != oldWidth || Height != oldHeight || !DoubleEqual(Aspect, oldAspect) || Force) {
Setup.OSDLeft = int(round(Width * Setup.OSDLeftP));
Setup.OSDTop = int(round(Height * Setup.OSDTopP));
Setup.OSDWidth = int(round(Width * Setup.OSDWidthP)) & ~0x07; // OSD width must be a multiple of 8
Setup.OSDHeight = int(round(Height * Setup.OSDHeightP));
Setup.OSDAspect = Aspect;
Setup.FontOsdSize = int(round(Height * Setup.FontOsdSizeP));
Setup.FontFixSize = int(round(Height * Setup.FontFixSizeP));
Setup.FontSmlSize = int(round(Height * Setup.FontSmlSizeP));
cFont::SetFont(fontOsd, Setup.FontOsd, Setup.FontOsdSize);
cFont::SetFont(fontFix, Setup.FontFix, Setup.FontFixSize);
cFont::SetFont(fontSml, Setup.FontSml, Setup.FontSmlSize);
oldWidth = Width;
oldHeight = Height;
oldAspect = Aspect;
dsyslog("OSD size changed to %dx%d @ %g", Width, Height, Aspect);
}
}
bool cOsdProvider::SupportsTrueColor(void)
{
if (osdProvider) {
return osdProvider->ProvidesTrueColor();
}
else
esyslog("ERROR: no OSD provider available in call to SupportsTrueColor()");
return false;
}
int cOsdProvider::StoreImageData(const cImage &Image)
{
LOCK_PIXMAPS;
for (int i = 1; i < MAXOSDIMAGES; i++) {
if (!images[i]) {
images[i] = new cImage(Image);
return i;
}
}
return 0;
}
void cOsdProvider::DropImageData(int ImageHandle)
{
LOCK_PIXMAPS;
if (0 < ImageHandle && ImageHandle < MAXOSDIMAGES) {
delete images[ImageHandle];
images[ImageHandle] = NULL;
}
}
const cImage *cOsdProvider::GetImageData(int ImageHandle)
{
LOCK_PIXMAPS;
if (0 < ImageHandle && ImageHandle < MAXOSDIMAGES)
return images[ImageHandle];
return NULL;
}
int cOsdProvider::StoreImage(const cImage &Image)
{
if (osdProvider)
return osdProvider->StoreImageData(Image);
return -1;
}
void cOsdProvider::DropImage(int ImageHandle)
{
if (osdProvider)
osdProvider->DropImageData(ImageHandle);
}
void cOsdProvider::Shutdown(void)
{
delete osdProvider;
osdProvider = NULL;
}
// --- cTextScroller ---------------------------------------------------------
cTextScroller::cTextScroller(void)
{
osd = NULL;
left = top = width = height = 0;
font = NULL;
colorFg = 0;
colorBg = 0;
offset = 0;
shown = 0;
}
cTextScroller::cTextScroller(cOsd *Osd, int Left, int Top, int Width, int Height, const char *Text, const cFont *Font, tColor ColorFg, tColor ColorBg)
{
Set(Osd, Left, Top, Width, Height, Text, Font, ColorFg, ColorBg);
}
void cTextScroller::Set(cOsd *Osd, int Left, int Top, int Width, int Height, const char *Text, const cFont *Font, tColor ColorFg, tColor ColorBg)
{
osd = Osd;
left = Left;
top = Top;
width = Width;
height = Height;
font = Font;
colorFg = ColorFg;
colorBg = ColorBg;
offset = 0;
textWrapper.Set(Text, Font, Width);
shown = min(Total(), height / font->Height());
height = shown * font->Height(); // sets height to the actually used height, which may be less than Height
DrawText();
}
void cTextScroller::Reset(void)
{
osd = NULL; // just makes sure it won't draw anything
}
void cTextScroller::DrawText(void)
{
if (osd) {
for (int i = 0; i < shown; i++)
osd->DrawText(left, top + i * font->Height(), textWrapper.GetLine(offset + i), colorFg, colorBg, font, width);
}
}
void cTextScroller::Scroll(bool Up, bool Page)
{
if (Up) {
if (CanScrollUp()) {
offset -= Page ? shown : 1;
if (offset < 0)
offset = 0;
DrawText();
}
}
else {
if (CanScrollDown()) {
offset += Page ? shown : 1;
if (offset + shown > Total())
offset = Total() - shown;
DrawText();
}
}
}