vdr/osd.c
Klaus Schmidinger 7df66b0587 Version 1.7.20
Original announce message:
VDR developer version 1.7.20 is now available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-1.7.20.tar.bz2

A 'diff' against the previous version is available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-1.7.19-1.7.20.diff

MD5 checksums:

eda2911fff1715ba5b1482b20ad18188  vdr-1.7.20.tar.bz2
a8f5bcaf3294cc9fce87283a618d5ce1  vdr-1.7.19-1.7.20.diff

WARNING:
========

This is a developer version. Even though I use it in my productive
environment. I strongly recommend that you only use it under controlled
conditions and for testing and debugging.

This version contains functions to determine the "signal strength"
and "signal quality" through cDevice. If you are using a DVB card that
contains an stb0899 frontend chip (like the TT-budget S2-3200) you may
want to apply the patches from

   ftp://ftp.tvdr.de/vdr/Developer/Driver-Patches

to the LinuxDVB driver source in order to receive useful results from
that frontend.

From the HISTORY file:
- Added some missing 'const' to tChannelID (reported by Sundararaj Reel).
- The isnumber() function now checks the given pointer for NULL (thanks to Holger
  Dengler).
- Now checking Setup.InitialChannel for NULL before using it (reported by
  Christoph Haubrich).
- cSkins::Message() now blocks calls from background threads (thanks to Michael
  Eiler for reporting a crash in such a scenario).
- Fixed the return value of the svdrpsend.pl script in case of an error (thanks to
  Jonas Diemer).
- Increased MAXCAIDS to 12 (thanks to Jerome Lacarriere).
- Fixed handling DiSEqC codes (thanks to Mark Hawes for reporting the bug, and
  Udo Richter for suggesting the fix).
- Added a mechanism to defer timer handling in case of problems (reported by
  Frank Niederwipper).
- Fixed distortions that happened when splitting recording into several files
  (was a side effect of "Fixed detecting frames in case the Picture Start Code or
  Access Unit Delimiter extends over TS packet boundaries" in version 1.7.19).
  cRecorder::Action() now buffers TS packets in case the frame type is
  not yet known when a new payload starts. This adds no overhead for channels
  that broadcast the frame type within the first TS packet of a payload; it only
  kicks in if that information is not in the first TS packet.
- Fixed handling the channelID in cMenuEditChanItem (thanks to Udo Richter).
- cStringList::Sort() can now be called with a boolean parameter that controls
  case insensitive sorting (suggested by Sundararaj Reel).
- Now scanning new transponders before old ones, to make sure transponder changes
  are recognized (thanks to Reinhard Nissl).
- Implemented static cIndexFile::IndexFileName().
- The length (as number of frames) of a recording's index file can now be determined
  by a call to cIndexFile::GetLength() (suggested by Christoph Haubrich).
- Fixed some crashes in subtitle display (thanks to Rolf Ahrenberg).
- Made DELETENULL() thread safe (reported by Rolf Ahrenberg).
- The pic2mpg script of the 'pictures' plugin now generates HD images (thanks to
  Andre Weidemann for his support in using convert/ffmpeg). The old SD version is
  still available as pic2mpg-sd.
- Added a mutex to protect cOsd::Osds from simultaneous access from different threads
  (reported by Rolf Ahrenberg).
- The cutter now sets the 'broken link' flag for MPEG2 TS recordings (thanks to
  Oliver Endriss).
- Fixed language code entry for Portuguese.
- The new command line options --filesize (suggested by Marco Göbenich) and --split
  can be used together with --edit to set the maximum video file size and turn on
  splitting edited files at the editing marks. These options must be given before
  --edit to have an effect.
- cTimeMs is no longer initialized to the current time if the value given to the
  constructor is negative (avoids the "cTimeMs: using monotonic clock..." log message
  before VDR's starting log message).
2011-08-16 20:32:01 +02:00

2118 lines
61 KiB
C

/*
* osd.c: Abstract On Screen Display layer
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: osd.c 2.23 2011/08/15 09:27:39 kls Exp $
*/
#include "osd.h"
#include <math.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/unistd.h>
#include "device.h"
#include "tools.h"
tColor HsvToColor(double H, double S, double V)
{
if (S > 0) {
H /= 60;
int i = floor(H);
double f = H - i;
double p = V * (1 - S);
double q = V * (1 - S * f);
double t = V * (1 - S * (1 - f));
switch (i) {
case 0: return RgbToColor(V, t, p);
case 1: return RgbToColor(q, V, p);
case 2: return RgbToColor(p, V, t);
case 3: return RgbToColor(p, q, V);
case 4: return RgbToColor(t, p, V);
default: return RgbToColor(V, p, q);
}
}
else { // greyscale
uint8_t n = V * 0xFF;
return RgbToColor(n, n, n);
}
}
#define USE_ALPHA_LUT
#ifdef USE_ALPHA_LUT
// Alpha blending with lookup table (by Reinhard Nissl <rnissl@gmx.de>)
// A little slower (138 %) on fast machines than the implementation below and faster
// on slow machines (79 %), but requires some 318KB of RAM for the lookup table.
static uint16_t AlphaLutFactors[255][256][2];
static uint8_t AlphaLutAlpha[255][256];
class cInitAlphaLut {
public:
cInitAlphaLut(void)
{
for (int alphaA = 0; alphaA < 255; alphaA++) {
int range = (alphaA == 255 ? 255 : 254);
for (int alphaB = 0; alphaB < 256; alphaB++) {
int alphaO_x_range = 255 * alphaA + alphaB * (range - alphaA);
if (!alphaO_x_range)
alphaO_x_range++;
int factorA = (256 * 255 * alphaA + alphaO_x_range / 2) / alphaO_x_range;
int factorB = (256 * alphaB * (range - alphaA) + alphaO_x_range / 2) / alphaO_x_range;
AlphaLutFactors[alphaA][alphaB][0] = factorA;
AlphaLutFactors[alphaA][alphaB][1] = factorB;
AlphaLutAlpha[alphaA][alphaB] = alphaO_x_range / range;
}
}
}
} InitAlphaLut;
tColor AlphaBlend(tColor ColorFg, tColor ColorBg, uint8_t AlphaLayer)
{
tColor Alpha = (ColorFg & 0xFF000000) >> 24;
Alpha *= AlphaLayer;
Alpha >>= 8;
uint16_t *lut = &AlphaLutFactors[Alpha][(ColorBg & 0xFF000000) >> 24][0];
return (tColor)((AlphaLutAlpha[Alpha][(ColorBg & 0xFF000000) >> 24] << 24)
| (((((ColorFg & 0x00FF00FF) * lut[0] + (ColorBg & 0x00FF00FF) * lut[1])) & 0xFF00FF00)
| ((((ColorFg & 0x0000FF00) * lut[0] + (ColorBg & 0x0000FF00) * lut[1])) & 0x00FF0000)) >> 8);
}
#else
// Alpha blending without lookup table.
// Also works fast, but doesn't return the theoretically correct result.
// It's "good enough", though.
static tColor Multiply(tColor Color, uint8_t Alpha)
{
tColor RB = (Color & 0x00FF00FF) * Alpha;
RB = ((RB + ((RB >> 8) & 0x00FF00FF) + 0x00800080) >> 8) & 0x00FF00FF;
tColor AG = ((Color >> 8) & 0x00FF00FF) * Alpha;
AG = ((AG + ((AG >> 8) & 0x00FF00FF) + 0x00800080)) & 0xFF00FF00;
return AG | RB;
}
tColor AlphaBlend(tColor ColorFg, tColor ColorBg, uint8_t AlphaLayer)
{
tColor Alpha = (ColorFg & 0xFF000000) >> 24;
if (AlphaLayer < ALPHA_OPAQUE) {
Alpha *= AlphaLayer;
Alpha = ((Alpha + ((Alpha >> 8) & 0x000000FF) + 0x00000080) >> 8) & 0x000000FF;
}
return Multiply(ColorFg, Alpha) + Multiply(ColorBg, 255 - Alpha);
}
#endif
// --- cPalette --------------------------------------------------------------
cPalette::cPalette(int Bpp)
{
SetBpp(Bpp);
SetAntiAliasGranularity(10, 10);
}
cPalette::~cPalette()
{
}
void cPalette::SetAntiAliasGranularity(uint FixedColors, uint BlendColors)
{
if (FixedColors >= MAXNUMCOLORS || BlendColors == 0)
antiAliasGranularity = MAXNUMCOLORS - 1;
else {
int ColorsForBlending = MAXNUMCOLORS - FixedColors;
int ColorsPerBlend = ColorsForBlending / BlendColors + 2; // +2 = the full foreground and background colors, which are amoung the fixed colors
antiAliasGranularity = double(MAXNUMCOLORS - 1) / (ColorsPerBlend - 1);
}
}
void cPalette::Reset(void)
{
numColors = 0;
modified = false;
}
int cPalette::Index(tColor Color)
{
// Check if color is already defined:
for (int i = 0; i < numColors; i++) {
if (color[i] == Color)
return i;
}
// No exact color, try a close one:
int i = ClosestColor(Color, 4);
if (i >= 0)
return i;
// No close one, try to define a new one:
if (numColors < maxColors) {
color[numColors++] = Color;
modified = true;
return numColors - 1;
}
// Out of colors, so any close color must do:
return ClosestColor(Color);
}
void cPalette::SetBpp(int Bpp)
{
bpp = Bpp;
maxColors = 1 << bpp;
Reset();
}
void cPalette::SetColor(int Index, tColor Color)
{
if (Index < maxColors) {
if (numColors <= Index) {
numColors = Index + 1;
modified = true;
}
else
modified |= color[Index] != Color;
color[Index] = Color;
}
}
const tColor *cPalette::Colors(int &NumColors) const
{
NumColors = numColors;
return numColors ? color : NULL;
}
void cPalette::Take(const cPalette &Palette, tIndexes *Indexes, tColor ColorFg, tColor ColorBg)
{
for (int i = 0; i < Palette.numColors; i++) {
tColor Color = Palette.color[i];
if (ColorFg || ColorBg) {
switch (i) {
case 0: Color = ColorBg; break;
case 1: Color = ColorFg; break;
default: ;
}
}
int n = Index(Color);
if (Indexes)
(*Indexes)[i] = n;
}
}
void cPalette::Replace(const cPalette &Palette)
{
for (int i = 0; i < Palette.numColors; i++)
SetColor(i, Palette.color[i]);
numColors = Palette.numColors;
antiAliasGranularity = Palette.antiAliasGranularity;
}
tColor cPalette::Blend(tColor ColorFg, tColor ColorBg, uint8_t Level) const
{
if (antiAliasGranularity > 0)
Level = uint8_t(int(Level / antiAliasGranularity + 0.5) * antiAliasGranularity);
int Af = (ColorFg & 0xFF000000) >> 24;
int Rf = (ColorFg & 0x00FF0000) >> 16;
int Gf = (ColorFg & 0x0000FF00) >> 8;
int Bf = (ColorFg & 0x000000FF);
int Ab = (ColorBg & 0xFF000000) >> 24;
int Rb = (ColorBg & 0x00FF0000) >> 16;
int Gb = (ColorBg & 0x0000FF00) >> 8;
int Bb = (ColorBg & 0x000000FF);
int A = (Ab + (Af - Ab) * Level / 0xFF) & 0xFF;
int R = (Rb + (Rf - Rb) * Level / 0xFF) & 0xFF;
int G = (Gb + (Gf - Gb) * Level / 0xFF) & 0xFF;
int B = (Bb + (Bf - Bb) * Level / 0xFF) & 0xFF;
return (A << 24) | (R << 16) | (G << 8) | B;
}
int cPalette::ClosestColor(tColor Color, int MaxDiff) const
{
int n = 0;
int d = INT_MAX;
int A1 = (Color & 0xFF000000) >> 24;
int R1 = (Color & 0x00FF0000) >> 16;
int G1 = (Color & 0x0000FF00) >> 8;
int B1 = (Color & 0x000000FF);
for (int i = 0; i < numColors && d > 0; i++) {
int A2 = (color[i] & 0xFF000000) >> 24;
int R2 = (color[i] & 0x00FF0000) >> 16;
int G2 = (color[i] & 0x0000FF00) >> 8;
int B2 = (color[i] & 0x000000FF);
int diff = 0;
if (A1 || A2) // fully transparent colors are considered equal
diff = (abs(A1 - A2) << 1) + (abs(R1 - R2) << 1) + (abs(G1 - G2) << 1) + (abs(B1 - B2) << 1);
if (diff < d) {
d = diff;
n = i;
}
}
return d <= MaxDiff ? n : -1;
}
// --- cBitmap ---------------------------------------------------------------
cBitmap::cBitmap(int Width, int Height, int Bpp, int X0, int Y0)
:cPalette(Bpp)
{
bitmap = NULL;
x0 = X0;
y0 = Y0;
SetSize(Width, Height);
}
cBitmap::cBitmap(const char *FileName)
{
bitmap = NULL;
x0 = 0;
y0 = 0;
LoadXpm(FileName);
}
cBitmap::cBitmap(const char *const Xpm[])
{
bitmap = NULL;
x0 = 0;
y0 = 0;
SetXpm(Xpm);
}
cBitmap::~cBitmap()
{
free(bitmap);
}
void cBitmap::SetSize(int Width, int Height)
{
if (bitmap && Width == width && Height == height)
return;
width = Width;
height = Height;
free(bitmap);
bitmap = NULL;
dirtyX1 = 0;
dirtyY1 = 0;
dirtyX2 = width - 1;
dirtyY2 = height - 1;
if (width > 0 && height > 0) {
bitmap = MALLOC(tIndex, width * height);
if (bitmap)
memset(bitmap, 0x00, width * height);
else
esyslog("ERROR: can't allocate bitmap!");
}
else
esyslog("ERROR: invalid bitmap parameters (%d, %d)!", width, height);
}
bool cBitmap::Contains(int x, int y) const
{
x -= x0;
y -= y0;
return 0 <= x && x < width && 0 <= y && y < height;
}
bool cBitmap::Covers(int x1, int y1, int x2, int y2) const
{
x1 -= x0;
y1 -= y0;
x2 -= x0;
y2 -= y0;
return x1 <= 0 && y1 <= 0 && x2 >= width - 1 && y2 >= height - 1;
}
bool cBitmap::Intersects(int x1, int y1, int x2, int y2) const
{
x1 -= x0;
y1 -= y0;
x2 -= x0;
y2 -= y0;
return !(x2 < 0 || x1 >= width || y2 < 0 || y1 >= height);
}
bool cBitmap::Dirty(int &x1, int &y1, int &x2, int &y2)
{
if (dirtyX2 >= 0) {
x1 = dirtyX1;
y1 = dirtyY1;
x2 = dirtyX2;
y2 = dirtyY2;
return true;
}
return false;
}
void cBitmap::Clean(void)
{
dirtyX1 = width;
dirtyY1 = height;
dirtyX2 = -1;
dirtyY2 = -1;
}
bool cBitmap::LoadXpm(const char *FileName)
{
bool Result = false;
FILE *f = fopen(FileName, "r");
if (f) {
char **Xpm = NULL;
bool isXpm = false;
int lines = 0;
int index = 0;
char *s;
cReadLine ReadLine;
while ((s = ReadLine.Read(f)) != NULL) {
s = skipspace(s);
if (!isXpm) {
if (strcmp(s, "/* XPM */") != 0) {
esyslog("ERROR: invalid header in XPM file '%s'", FileName);
break;
}
isXpm = true;
}
else if (*s++ == '"') {
if (!lines) {
int w, h, n, c;
if (4 != sscanf(s, "%d %d %d %d", &w, &h, &n, &c)) {
esyslog("ERROR: faulty 'values' line in XPM file '%s'", FileName);
isXpm = false;
break;
}
lines = h + n + 1;
Xpm = MALLOC(char *, lines);
memset(Xpm, 0, lines * sizeof(char*));
}
char *q = strchr(s, '"');
if (!q) {
esyslog("ERROR: missing quotes in XPM file '%s'", FileName);
isXpm = false;
break;
}
*q = 0;
if (index < lines)
Xpm[index++] = strdup(s);
else {
esyslog("ERROR: too many lines in XPM file '%s'", FileName);
isXpm = false;
break;
}
}
}
if (isXpm) {
if (index == lines)
Result = SetXpm(Xpm);
else
esyslog("ERROR: too few lines in XPM file '%s'", FileName);
}
if (Xpm) {
for (int i = 0; i < index; i++)
free(Xpm[i]);
}
free(Xpm);
fclose(f);
}
else
esyslog("ERROR: can't open XPM file '%s'", FileName);
return Result;
}
bool cBitmap::SetXpm(const char *const Xpm[], bool IgnoreNone)
{
if (!Xpm)
return false;
const char *const *p = Xpm;
int w, h, n, c;
if (4 != sscanf(*p, "%d %d %d %d", &w, &h, &n, &c)) {
esyslog("ERROR: faulty 'values' line in XPM: '%s'", *p);
return false;
}
if (n > MAXNUMCOLORS) {
esyslog("ERROR: too many colors in XPM: %d", n);
return false;
}
int b = 0;
while (1 << (1 << b) < (IgnoreNone ? n - 1 : n))
b++;
SetBpp(1 << b);
SetSize(w, h);
int NoneColorIndex = MAXNUMCOLORS;
for (int i = 0; i < n; i++) {
const char *s = *++p;
if (int(strlen(s)) < c) {
esyslog("ERROR: faulty 'colors' line in XPM: '%s'", s);
return false;
}
s = skipspace(s + c);
if (*s != 'c') {
esyslog("ERROR: unknown color key in XPM: '%c'", *s);
return false;
}
s = skipspace(s + 1);
if (strcasecmp(s, "none") == 0) {
NoneColorIndex = i;
if (!IgnoreNone)
SetColor(i, clrTransparent);
continue;
}
if (*s != '#') {
esyslog("ERROR: unknown color code in XPM: '%c'", *s);
return false;
}
tColor color = strtoul(++s, NULL, 16) | 0xFF000000;
SetColor((IgnoreNone && i > NoneColorIndex) ? i - 1 : i, color);
}
for (int y = 0; y < h; y++) {
const char *s = *++p;
if (int(strlen(s)) != w * c) {
esyslog("ERROR: faulty pixel line in XPM: %d '%s'", y, s);
return false;
}
for (int x = 0; x < w; x++) {
for (int i = 0; i <= n; i++) {
if (i == n) {
esyslog("ERROR: undefined pixel color in XPM: %d %d '%s'", x, y, s);
return false;
}
if (strncmp(Xpm[i + 1], s, c) == 0) {
if (i == NoneColorIndex)
NoneColorIndex = MAXNUMCOLORS;
SetIndex(x, y, (IgnoreNone && i > NoneColorIndex) ? i - 1 : i);
break;
}
}
s += c;
}
}
if (NoneColorIndex < MAXNUMCOLORS && !IgnoreNone)
return SetXpm(Xpm, true);
return true;
}
void cBitmap::SetIndex(int x, int y, tIndex Index)
{
if (bitmap) {
if (0 <= x && x < width && 0 <= y && y < height) {
if (bitmap[width * y + x] != Index) {
bitmap[width * y + x] = Index;
if (dirtyX1 > x) dirtyX1 = x;
if (dirtyY1 > y) dirtyY1 = y;
if (dirtyX2 < x) dirtyX2 = x;
if (dirtyY2 < y) dirtyY2 = y;
}
}
}
}
void cBitmap::DrawPixel(int x, int y, tColor Color)
{
x -= x0;
y -= y0;
SetIndex(x, y, Index(Color));
}
void cBitmap::DrawBitmap(int x, int y, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool ReplacePalette, bool Overlay)
{
if (bitmap && Bitmap.bitmap && Intersects(x, y, x + Bitmap.Width() - 1, y + Bitmap.Height() - 1)) {
if (Covers(x, y, x + Bitmap.Width() - 1, y + Bitmap.Height() - 1))
Reset();
x -= x0;
y -= y0;
if (ReplacePalette && Covers(x + x0, y + y0, x + x0 + Bitmap.Width() - 1, y + y0 + Bitmap.Height() - 1)) {
Replace(Bitmap);
for (int ix = 0; ix < Bitmap.width; ix++) {
for (int iy = 0; iy < Bitmap.height; iy++) {
if (!Overlay || Bitmap.bitmap[Bitmap.width * iy + ix] != 0)
SetIndex(x + ix, y + iy, Bitmap.bitmap[Bitmap.width * iy + ix]);
}
}
}
else {
tIndexes Indexes;
Take(Bitmap, &Indexes, ColorFg, ColorBg);
for (int ix = 0; ix < Bitmap.width; ix++) {
for (int iy = 0; iy < Bitmap.height; iy++) {
if (!Overlay || Bitmap.bitmap[Bitmap.width * iy + ix] != 0)
SetIndex(x + ix, y + iy, Indexes[int(Bitmap.bitmap[Bitmap.width * iy + ix])]);
}
}
}
}
}
void cBitmap::DrawText(int x, int y, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width, int Height, int Alignment)
{
if (bitmap) {
int w = Font->Width(s);
int h = Font->Height();
int limit = 0;
int cw = Width ? Width : w;
int ch = Height ? Height : h;
if (!Intersects(x, y, x + cw - 1, y + ch - 1))
return;
if (ColorBg != clrTransparent)
DrawRectangle(x, y, x + cw - 1, y + ch - 1, ColorBg);
if (Width || Height) {
limit = x + cw - x0;
if (Width) {
if ((Alignment & taLeft) != 0)
;
else if ((Alignment & taRight) != 0) {
if (w < Width)
x += Width - w;
}
else { // taCentered
if (w < Width)
x += (Width - w) / 2;
}
}
if (Height) {
if ((Alignment & taTop) != 0)
;
else if ((Alignment & taBottom) != 0) {
if (h < Height)
y += Height - h;
}
else { // taCentered
if (h < Height)
y += (Height - h) / 2;
}
}
}
x -= x0;
y -= y0;
Font->DrawText(this, x, y, s, ColorFg, ColorBg, limit);
}
}
void cBitmap::DrawRectangle(int x1, int y1, int x2, int y2, tColor Color)
{
if (bitmap && Intersects(x1, y1, x2, y2)) {
if (Covers(x1, y1, x2, y2))
Reset();
x1 -= x0;
y1 -= y0;
x2 -= x0;
y2 -= y0;
x1 = max(x1, 0);
y1 = max(y1, 0);
x2 = min(x2, width - 1);
y2 = min(y2, height - 1);
tIndex c = Index(Color);
for (int y = y1; y <= y2; y++) {
for (int x = x1; x <= x2; x++)
SetIndex(x, y, c);
}
}
}
void cBitmap::DrawEllipse(int x1, int y1, int x2, int y2, tColor Color, int Quadrants)
{
if (!Intersects(x1, y1, x2, y2))
return;
// Algorithm based on http://homepage.smc.edu/kennedy_john/BELIPSE.PDF
int rx = x2 - x1;
int ry = y2 - y1;
int cx = (x1 + x2) / 2;
int cy = (y1 + y2) / 2;
switch (abs(Quadrants)) {
case 0: rx /= 2; ry /= 2; break;
case 1: cx = x1; cy = y2; break;
case 2: cx = x2; cy = y2; break;
case 3: cx = x2; cy = y1; break;
case 4: cx = x1; cy = y1; break;
case 5: cx = x1; ry /= 2; break;
case 6: cy = y2; rx /= 2; break;
case 7: cx = x2; ry /= 2; break;
case 8: cy = y1; rx /= 2; break;
default: ;
}
int TwoASquare = 2 * rx * rx;
int TwoBSquare = 2 * ry * ry;
int x = rx;
int y = 0;
int XChange = ry * ry * (1 - 2 * rx);
int YChange = rx * rx;
int EllipseError = 0;
int StoppingX = TwoBSquare * rx;
int StoppingY = 0;
while (StoppingX >= StoppingY) {
switch (Quadrants) {
case 5: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); // no break
case 1: DrawRectangle(cx, cy - y, cx + x, cy - y, Color); break;
case 7: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); // no break
case 2: DrawRectangle(cx - x, cy - y, cx, cy - y, Color); break;
case 3: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); break;
case 4: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); break;
case 0:
case 6: DrawRectangle(cx - x, cy - y, cx + x, cy - y, Color); if (Quadrants == 6) break;
case 8: DrawRectangle(cx - x, cy + y, cx + x, cy + y, Color); break;
case -1: DrawRectangle(cx + x, cy - y, x2, cy - y, Color); break;
case -2: DrawRectangle(x1, cy - y, cx - x, cy - y, Color); break;
case -3: DrawRectangle(x1, cy + y, cx - x, cy + y, Color); break;
case -4: DrawRectangle(cx + x, cy + y, x2, cy + y, Color); break;
default: ;
}
y++;
StoppingY += TwoASquare;
EllipseError += YChange;
YChange += TwoASquare;
if (2 * EllipseError + XChange > 0) {
x--;
StoppingX -= TwoBSquare;
EllipseError += XChange;
XChange += TwoBSquare;
}
}
x = 0;
y = ry;
XChange = ry * ry;
YChange = rx * rx * (1 - 2 * ry);
EllipseError = 0;
StoppingX = 0;
StoppingY = TwoASquare * ry;
while (StoppingX <= StoppingY) {
switch (Quadrants) {
case 5: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); // no break
case 1: DrawRectangle(cx, cy - y, cx + x, cy - y, Color); break;
case 7: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); // no break
case 2: DrawRectangle(cx - x, cy - y, cx, cy - y, Color); break;
case 3: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); break;
case 4: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); break;
case 0:
case 6: DrawRectangle(cx - x, cy - y, cx + x, cy - y, Color); if (Quadrants == 6) break;
case 8: DrawRectangle(cx - x, cy + y, cx + x, cy + y, Color); break;
case -1: DrawRectangle(cx + x, cy - y, x2, cy - y, Color); break;
case -2: DrawRectangle(x1, cy - y, cx - x, cy - y, Color); break;
case -3: DrawRectangle(x1, cy + y, cx - x, cy + y, Color); break;
case -4: DrawRectangle(cx + x, cy + y, x2, cy + y, Color); break;
default: ;
}
x++;
StoppingX += TwoBSquare;
EllipseError += XChange;
XChange += TwoBSquare;
if (2 * EllipseError + YChange > 0) {
y--;
StoppingY -= TwoASquare;
EllipseError += YChange;
YChange += TwoASquare;
}
}
}
void cBitmap::DrawSlope(int x1, int y1, int x2, int y2, tColor Color, int Type)
{
if (!Intersects(x1, y1, x2, y2))
return;
bool upper = Type & 0x01;
bool falling = Type & 0x02;
bool vertical = Type & 0x04;
if (vertical) {
for (int y = y1; y <= y2; y++) {
double c = cos((y - y1) * M_PI / (y2 - y1 + 1));
if (falling)
c = -c;
int x = int((x2 - x1 + 1) * c / 2);
if (upper && !falling || !upper && falling)
DrawRectangle(x1, y, (x1 + x2) / 2 + x, y, Color);
else
DrawRectangle((x1 + x2) / 2 + x, y, x2, y, Color);
}
}
else {
for (int x = x1; x <= x2; x++) {
double c = cos((x - x1) * M_PI / (x2 - x1 + 1));
if (falling)
c = -c;
int y = int((y2 - y1 + 1) * c / 2);
if (upper)
DrawRectangle(x, y1, x, (y1 + y2) / 2 + y, Color);
else
DrawRectangle(x, (y1 + y2) / 2 + y, x, y2, Color);
}
}
}
const tIndex *cBitmap::Data(int x, int y) const
{
return &bitmap[y * width + x];
}
void cBitmap::ReduceBpp(const cPalette &Palette)
{
int NewBpp = Palette.Bpp();
if (Bpp() == 4 && NewBpp == 2) {
for (int i = width * height; i--; ) {
tIndex p = bitmap[i];
bitmap[i] = (p >> 2) | ((p & 0x03) != 0);
}
}
else if (Bpp() == 8) {
if (NewBpp == 2) {
for (int i = width * height; i--; ) {
tIndex p = bitmap[i];
bitmap[i] = (p >> 6) | ((p & 0x30) != 0);
}
}
else if (NewBpp == 4) {
for (int i = width * height; i--; ) {
tIndex p = bitmap[i];
bitmap[i] = p >> 4;
}
}
else
return;
}
else
return;
SetBpp(NewBpp);
Replace(Palette);
}
void cBitmap::ShrinkBpp(int NewBpp)
{
int NumOldColors;
const tColor *Colors = this->Colors(NumOldColors);
if (Colors) {
// Find the most frequently used colors and create a map table:
int Used[MAXNUMCOLORS] = { 0 };
int Map[MAXNUMCOLORS] = { 0 };
for (int i = width * height; i--; )
Used[bitmap[i]]++;
int MaxNewColors = (NewBpp == 4) ? 16 : 4;
cPalette NewPalette(NewBpp);
for (int i = 0; i < MaxNewColors; i++) {
int Max = 0;
int Index = -1;
for (int n = 0; n < NumOldColors; n++) {
if (Used[n] > Max) {
Max = Used[n];
Index = n;
}
}
if (Index >= 0) {
Used[Index] = 0;
Map[Index] = i;
NewPalette.SetColor(i, Colors[Index]);
}
else
break;
}
// Complete the map table for all other colors (will be set to closest match):
for (int n = 0; n < NumOldColors; n++) {
if (Used[n])
Map[n] = NewPalette.Index(Colors[n]);
}
// Do the actual index mapping:
for (int i = width * height; i--; )
bitmap[i] = Map[bitmap[i]];
SetBpp(NewBpp);
Replace(NewPalette);
}
}
cBitmap *cBitmap::Scaled(double FactorX, double FactorY, bool AntiAlias)
{
// Fixed point scaling code based on www.inversereality.org/files/bitmapscaling.pdf
// by deltener@mindtremors.com
cBitmap *b = new cBitmap(int(round(Width() * FactorX)), int(round(Height() * FactorY)), Bpp(), X0(), Y0());
b->Replace(*this); // copy palette
int RatioX = (Width() << 16) / b->Width();
int RatioY = (Height() << 16) / b->Height();
if (!AntiAlias || FactorX <= 1.0 && FactorY <= 1.0) {
// Downscaling - no anti-aliasing:
tIndex *DestRow = b->bitmap;
int SourceY = 0;
for (int y = 0; y < b->Height(); y++) {
int SourceX = 0;
tIndex *SourceRow = bitmap + (SourceY >> 16) * Width();
tIndex *Dest = DestRow;
for (int x = 0; x < b->Width(); x++) {
*Dest++ = SourceRow[SourceX >> 16];
SourceX += RatioX;
}
SourceY += RatioY;
DestRow += b->Width();
}
}
else {
// Upscaling - anti-aliasing:
b->SetBpp(8);
int SourceY = 0;
for (int y = 0; y < b->Height() - 1; y++) {
int SourceX = 0;
int sy = SourceY >> 16;
uint8_t BlendY = 0xFF - ((SourceY >> 8) & 0xFF);
for (int x = 0; x < b->Width() - 1; x++) {
int sx = SourceX >> 16;
uint8_t BlendX = 0xFF - ((SourceX >> 8) & 0xFF);
tColor c1 = b->Blend(GetColor(sx, sy), GetColor(sx + 1, sy), BlendX);
tColor c2 = b->Blend(GetColor(sx, sy + 1), GetColor(sx + 1, sy + 1), BlendX);
tColor c3 = b->Blend(c1, c2, BlendY);
b->DrawPixel(x + X0(), y + Y0(), c3);
SourceX += RatioX;
}
SourceY += RatioY;
}
}
return b;
}
// --- cRect -----------------------------------------------------------------
const cRect cRect::Null;
void cRect::Grow(int Dx, int Dy)
{
point.Shift(-Dx, -Dy);
size.Grow(Dx, Dy);
}
bool cRect::Contains(const cPoint &Point) const
{
return Left() <= Point.X() &&
Top() <= Point.Y() &&
Right() >= Point.X() &&
Bottom() >= Point.Y();
}
bool cRect::Contains(const cRect &Rect) const
{
return Left() <= Rect.Left() &&
Top() <= Rect.Top() &&
Right() >= Rect.Right() &&
Bottom() >= Rect.Bottom();
}
bool cRect::Intersects(const cRect &Rect) const
{
return !(Left() > Rect.Right() ||
Top() > Rect.Bottom() ||
Right() < Rect.Left() ||
Bottom() < Rect.Top());
}
cRect cRect::Intersected(const cRect &Rect) const
{
cRect r;
if (!IsEmpty() && !Rect.IsEmpty()) {
r.SetLeft(max(Left(), Rect.Left()));
r.SetTop(max(Top(), Rect.Top()));
r.SetRight(min(Right(), Rect.Right()));
r.SetBottom(min(Bottom(), Rect.Bottom()));
}
return r;
}
void cRect::Combine(const cRect &Rect)
{
if (IsEmpty())
*this = Rect;
if (Rect.IsEmpty())
return;
// must set right/bottom *before* top/left!
SetRight(max(Right(), Rect.Right()));
SetBottom(max(Bottom(), Rect.Bottom()));
SetLeft(min(Left(), Rect.Left()));
SetTop(min(Top(), Rect.Top()));
}
void cRect::Combine(const cPoint &Point)
{
if (IsEmpty())
Set(Point.X(), Point.Y(), 1, 1);
// must set right/bottom *before* top/left!
SetRight(max(Right(), Point.X()));
SetBottom(max(Bottom(), Point.Y()));
SetLeft(min(Left(), Point.X()));
SetTop(min(Top(), Point.Y()));
}
// --- cPixmap ---------------------------------------------------------------
cMutex cPixmap::mutex;
cPixmap::cPixmap(void)
{
layer = -1;
alpha = ALPHA_OPAQUE;
tile = false;
}
cPixmap::cPixmap(int Layer, const cRect &ViewPort, const cRect &DrawPort)
{
layer = Layer;
if (layer >= MAXPIXMAPLAYERS) {
layer = MAXPIXMAPLAYERS - 1;
esyslog("ERROR: pixmap layer %d limited to %d", Layer, layer);
}
viewPort = ViewPort;
if (!DrawPort.IsEmpty())
drawPort = DrawPort;
else {
drawPort = viewPort;
drawPort.SetPoint(0, 0);
}
alpha = ALPHA_OPAQUE;
tile = false;
}
void cPixmap::MarkViewPortDirty(const cRect &Rect)
{
dirtyViewPort.Combine(Rect.Intersected(viewPort));
}
void cPixmap::MarkViewPortDirty(const cPoint &Point)
{
if (viewPort.Contains(Point))
dirtyViewPort.Combine(Point);
}
void cPixmap::MarkDrawPortDirty(const cRect &Rect)
{
dirtyDrawPort.Combine(Rect.Intersected(drawPort));
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(Rect.Shifted(viewPort.Point()));
}
void cPixmap::MarkDrawPortDirty(const cPoint &Point)
{
if (drawPort.Contains(Point)) {
dirtyDrawPort.Combine(Point);
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(Point.Shifted(viewPort.Point()));
}
}
void cPixmap::SetClean(void)
{
dirtyViewPort = dirtyDrawPort = cRect();
}
void cPixmap::SetLayer(int Layer)
{
Lock();
if (Layer >= MAXPIXMAPLAYERS) {
esyslog("ERROR: pixmap layer %d limited to %d", Layer, MAXPIXMAPLAYERS - 1);
Layer = MAXPIXMAPLAYERS - 1;
}
if (Layer != layer) {
if (Layer > 0 || layer > 0)
MarkViewPortDirty(viewPort);
layer = Layer;
}
Unlock();
}
void cPixmap::SetAlpha(int Alpha)
{
Lock();
Alpha = min(max(Alpha, ALPHA_TRANSPARENT), ALPHA_OPAQUE);
if (Alpha != alpha) {
MarkViewPortDirty(viewPort);
alpha = Alpha;
}
Unlock();
}
void cPixmap::SetTile(bool Tile)
{
Lock();
if (Tile != tile) {
if (drawPort.Point() != cPoint(0, 0) || drawPort.Width() < viewPort.Width() || drawPort.Height() < viewPort.Height())
MarkViewPortDirty(viewPort);
tile = Tile;
}
Unlock();
}
void cPixmap::SetViewPort(const cRect &Rect)
{
Lock();
if (Rect != viewPort) {
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
viewPort = Rect;
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
}
Unlock();
}
void cPixmap::SetDrawPortPoint(const cPoint &Point, bool Dirty)
{
Lock();
if (Point != drawPort.Point()) {
if (Dirty) {
if (tile)
MarkViewPortDirty(viewPort);
else
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
}
drawPort.SetPoint(Point);
if (Dirty && !tile)
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
}
Unlock();
}
// --- cImage ----------------------------------------------------------------
cImage::cImage(void)
{
data = NULL;
}
cImage::cImage(const cImage &Image)
{
size = Image.Size();
int l = size.Width() * size.Height() * sizeof(tColor);
data = MALLOC(tColor, l);
memcpy(data, Image.Data(), l);
}
cImage::cImage(const cSize &Size, const tColor *Data)
{
size = Size;
int l = size.Width() * size.Height() * sizeof(tColor);
data = MALLOC(tColor, l);
if (Data)
memcpy(data, Data, l);
}
cImage::~cImage()
{
free(data);
}
void cImage::Clear(void)
{
memset(data, 0x00, Width() * Height() * sizeof(tColor));
}
void cImage::Fill(tColor Color)
{
for (int i = Width() * Height() - 1; i >= 0; i--)
data[i] = Color;
}
// --- cPixmapMemory ---------------------------------------------------------
cPixmapMemory::cPixmapMemory(void)
{
data = NULL;
panning = false;
}
cPixmapMemory::cPixmapMemory(int Layer, const cRect &ViewPort, const cRect &DrawPort)
:cPixmap(Layer, ViewPort, DrawPort)
{
data = MALLOC(tColor, this->DrawPort().Width() * this->DrawPort().Height());
}
cPixmapMemory::~cPixmapMemory()
{
free(data);
}
void cPixmapMemory::Clear(void)
{
Lock();
memset(data, 0x00, DrawPort().Width() * DrawPort().Height() * sizeof(tColor));
MarkDrawPortDirty(DrawPort());
Unlock();
}
void cPixmapMemory::Fill(tColor Color)
{
Lock();
for (int i = DrawPort().Width() * DrawPort().Height() - 1; i >= 0; i--)
data[i] = Color;
MarkDrawPortDirty(DrawPort());
Unlock();
}
void cPixmap::DrawPixmap(const cPixmap *Pixmap, const cRect &Dirty)
{
if (Pixmap->Tile() && (Pixmap->DrawPort().Point() != cPoint(0, 0) || Pixmap->DrawPort().Size() < Pixmap->ViewPort().Size())) {
cPoint t0 = Pixmap->DrawPort().Point().Shifted(Pixmap->ViewPort().Point()); // the origin of the draw port in absolute OSD coordinates
// Find the top/leftmost location where the draw port touches the view port:
while (t0.X() > Pixmap->ViewPort().Left())
t0.Shift(-Pixmap->DrawPort().Width(), 0);
while (t0.Y() > Pixmap->ViewPort().Top())
t0.Shift(0, -Pixmap->DrawPort().Height());
cPoint t = t0;;
while (t.Y() <= Pixmap->ViewPort().Bottom()) {
while (t.X() <= Pixmap->ViewPort().Right()) {
cRect Source = Pixmap->DrawPort(); // assume the entire pixmap needs to be rendered
Source.Shift(Pixmap->ViewPort().Point()); // Source is now in absolute OSD coordinates
cPoint Delta = Source.Point() - t;
Source.SetPoint(t); // Source is now where the pixmap's data shall be drawn
Source = Source.Intersected(Pixmap->ViewPort()); // Source is now limited to the pixmap's view port
Source = Source.Intersected(Dirty); // Source is now limited to the actual dirty rectangle
if (!Source.IsEmpty()) {
cPoint Dest = Source.Point().Shifted(-ViewPort().Point()); // remember the destination point
Source.Shift(Delta); // Source is now back at the pixmap's draw port location, still in absolute OSD coordinates
Source.Shift(-Pixmap->ViewPort().Point()); // Source is now relative to the pixmap's view port again
Source.Shift(-Pixmap->DrawPort().Point()); // Source is now relative to the pixmap's data
if (Pixmap->Layer() == 0)
Copy(Pixmap, Source, Dest); // this is the "background" pixmap
else
Render(Pixmap, Source, Dest); // all others are alpha blended over the background
}
t.Shift(Pixmap->DrawPort().Width(), 0); // increase one draw port width to the right
}
t.SetX(t0.X()); // go back to the leftmost position
t.Shift(0, Pixmap->DrawPort().Height()); // increase one draw port height down
}
}
else {
cRect Source = Pixmap->DrawPort(); // assume the entire pixmap needs to be rendered
Source.Shift(Pixmap->ViewPort().Point()); // Source is now in absolute OSD coordinates
Source = Source.Intersected(Pixmap->ViewPort()); // Source is now limited to the pixmap's view port
Source = Source.Intersected(Dirty); // Source is now limited to the actual dirty rectangle
if (!Source.IsEmpty()) {
cPoint Dest = Source.Point().Shifted(-ViewPort().Point()); // remember the destination point
Source.Shift(-Pixmap->ViewPort().Point()); // Source is now relative to the pixmap's draw port again
Source.Shift(-Pixmap->DrawPort().Point()); // Source is now relative to the pixmap's data
if (Pixmap->Layer() == 0)
Copy(Pixmap, Source, Dest); // this is the "background" pixmap
else
Render(Pixmap, Source, Dest); // all others are alpha blended over the background
}
}
}
void cPixmapMemory::DrawImage(const cPoint &Point, const cImage &Image)
{
Lock();
cRect r = cRect(Point, Image.Size()).Intersected(DrawPort().Size());
if (!r.IsEmpty()) {
int ws = Image.Size().Width();
int wd = DrawPort().Width();
int w = r.Width() * sizeof(tColor);
const tColor *ps = Image.Data();
if (Point.Y() < 0)
ps -= Point.Y() * ws;
if (Point.X() < 0)
ps -= Point.X();
tColor *pd = data + wd * r.Top() + r.Left();
for (int y = r.Height(); y-- > 0; ) {
memcpy(pd, ps, w);
ps += ws;
pd += wd;
}
MarkDrawPortDirty(r);
}
Unlock();
}
void cPixmapMemory::DrawImage(const cPoint &Point, int ImageHandle)
{
Lock();
if (const cImage *Image = cOsdProvider::GetImageData(ImageHandle))
DrawImage(Point, *Image);
Unlock();
}
void cPixmapMemory::DrawPixel(const cPoint &Point, tColor Color)
{
Lock();
if (DrawPort().Size().Contains(Point)) {
int p = Point.Y() * DrawPort().Width() + Point.X();
if (Layer() == 0 && !IS_OPAQUE(Color))
data[p] = AlphaBlend(Color, data[p]);
else
data[p] = Color;
MarkDrawPortDirty(Point);
}
Unlock();
}
void cPixmapMemory::DrawBitmap(const cPoint &Point, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool Overlay)
{
Lock();
cRect r = cRect(Point, cSize(Bitmap.Width(), Bitmap.Height())).Intersected(DrawPort().Size());
if (!r.IsEmpty()) {
bool UseColors = ColorFg || ColorBg;
int wd = DrawPort().Width();
tColor *pd = data + wd * r.Top() + r.Left();
for (int y = r.Top(); y <= r.Bottom(); y++) {
tColor *cd = pd;
for (int x = r.Left(); x <= r.Right(); x++) {
tIndex Index = *Bitmap.Data(x - Point.X(), y - Point.Y());
if (Index || !Overlay) {
if (UseColors)
*cd = Index ? ColorFg : ColorBg;
else
*cd = Bitmap.Color(Index);
}
cd++;
}
pd += wd;
}
MarkDrawPortDirty(r);
}
Unlock();
}
void cPixmapMemory::DrawText(const cPoint &Point, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width, int Height, int Alignment)
{
Lock();
int x = Point.X();
int y = Point.Y();
int w = Font->Width(s);
int h = Font->Height();
int limit = 0;
int cw = Width ? Width : w;
int ch = Height ? Height : h;
cRect r(x, y, cw, ch);
if (ColorBg != clrTransparent)
DrawRectangle(r, ColorBg);
if (Width || Height) {
limit = x + cw;
if (Width) {
if ((Alignment & taLeft) != 0)
;
else if ((Alignment & taRight) != 0) {
if (w < Width)
x += Width - w;
}
else { // taCentered
if (w < Width)
x += (Width - w) / 2;
}
}
if (Height) {
if ((Alignment & taTop) != 0)
;
else if ((Alignment & taBottom) != 0) {
if (h < Height)
y += Height - h;
}
else { // taCentered
if (h < Height)
y += (Height - h) / 2;
}
}
}
Font->DrawText(this, x, y, s, ColorFg, ColorBg, limit);
MarkDrawPortDirty(r);
Unlock();
}
void cPixmapMemory::DrawRectangle(const cRect &Rect, tColor Color)
{
Lock();
cRect r = Rect.Intersected(DrawPort().Size());
if (!r.IsEmpty()) {
int wd = DrawPort().Width();
int w = r.Width() * sizeof(tColor);
tColor *ps = NULL;
tColor *pd = data + wd * r.Top() + r.Left();
for (int y = r.Height(); y-- > 0; ) {
if (ps)
memcpy(pd, ps, w); // all other lines are copied fast from the first one
else {
// explicitly fill the first line:
tColor *cd = ps = pd;
for (int x = r.Width(); x-- > 0; ) {
*cd = Color;
cd++;
}
}
pd += wd;
}
MarkDrawPortDirty(r);
}
Unlock();
}
void cPixmapMemory::DrawEllipse(const cRect &Rect, tColor Color, int Quadrants)
{
//TODO use anti-aliasing?
//TODO fix alignment
Lock();
// Algorithm based on http://homepage.smc.edu/kennedy_john/BELIPSE.PDF
int x1 = Rect.Left();
int y1 = Rect.Top();
int x2 = Rect.Right();
int y2 = Rect.Bottom();
int rx = x2 - x1;
int ry = y2 - y1;
int cx = (x1 + x2) / 2;
int cy = (y1 + y2) / 2;
switch (abs(Quadrants)) {
case 0: rx /= 2; ry /= 2; break;
case 1: cx = x1; cy = y2; break;
case 2: cx = x2; cy = y2; break;
case 3: cx = x2; cy = y1; break;
case 4: cx = x1; cy = y1; break;
case 5: cx = x1; ry /= 2; break;
case 6: cy = y2; rx /= 2; break;
case 7: cx = x2; ry /= 2; break;
case 8: cy = y1; rx /= 2; break;
default: ;
}
int TwoASquare = 2 * rx * rx;
int TwoBSquare = 2 * ry * ry;
int x = rx;
int y = 0;
int XChange = ry * ry * (1 - 2 * rx);
int YChange = rx * rx;
int EllipseError = 0;
int StoppingX = TwoBSquare * rx;
int StoppingY = 0;
while (StoppingX >= StoppingY) {
switch (Quadrants) {
case 5: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); // no break
case 1: DrawRectangle(cRect(cx, cy - y, x + 1, 1), Color); break;
case 7: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); // no break
case 2: DrawRectangle(cRect(cx - x, cy - y, x + 1, 1), Color); break;
case 3: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); break;
case 4: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); break;
case 0:
case 6: DrawRectangle(cRect(cx - x, cy - y, 2 * x + 1, 1), Color); if (Quadrants == 6) break;
case 8: DrawRectangle(cRect(cx - x, cy + y, 2 * x + 1, 1), Color); break;
case -1: DrawRectangle(cRect(cx + x, cy - y, x2 - x + 1, 1), Color); break;
case -2: DrawRectangle(cRect(x1, cy - y, cx - x - x1 + 1, 1), Color); break;
case -3: DrawRectangle(cRect(x1, cy + y, cx - x - x1 + 1, 1), Color); break;
case -4: DrawRectangle(cRect(cx + x, cy + y, x2 - x + 1, 1), Color); break;
default: ;
}
y++;
StoppingY += TwoASquare;
EllipseError += YChange;
YChange += TwoASquare;
if (2 * EllipseError + XChange > 0) {
x--;
StoppingX -= TwoBSquare;
EllipseError += XChange;
XChange += TwoBSquare;
}
}
x = 0;
y = ry;
XChange = ry * ry;
YChange = rx * rx * (1 - 2 * ry);
EllipseError = 0;
StoppingX = 0;
StoppingY = TwoASquare * ry;
while (StoppingX <= StoppingY) {
switch (Quadrants) {
case 5: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); // no break
case 1: DrawRectangle(cRect(cx, cy - y, x + 1, 1), Color); break;
case 7: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); // no break
case 2: DrawRectangle(cRect(cx - x, cy - y, x + 1, 1), Color); break;
case 3: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); break;
case 4: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); break;
case 0:
case 6: DrawRectangle(cRect(cx - x, cy - y, 2 * x + 1, 1), Color); if (Quadrants == 6) break;
case 8: DrawRectangle(cRect(cx - x, cy + y, 2 * x + 1, 1), Color); break;
case -1: DrawRectangle(cRect(cx + x, cy - y, x2 - x + 1, 1), Color); break;
case -2: DrawRectangle(cRect(x1, cy - y, cx - x - x1 + 1, 1), Color); break;
case -3: DrawRectangle(cRect(x1, cy + y, cx - x - x1 + 1, 1), Color); break;
case -4: DrawRectangle(cRect(cx + x, cy + y, x2 - x + 1, 1), Color); break;
default: ;
}
x++;
StoppingX += TwoBSquare;
EllipseError += XChange;
XChange += TwoBSquare;
if (2 * EllipseError + YChange > 0) {
y--;
StoppingY -= TwoASquare;
EllipseError += YChange;
YChange += TwoASquare;
}
}
MarkDrawPortDirty(Rect);
Unlock();
}
void cPixmapMemory::DrawSlope(const cRect &Rect, tColor Color, int Type)
{
//TODO anti-aliasing?
//TODO also simplify cBitmap::DrawSlope()
Lock();
bool upper = Type & 0x01;
bool falling = Type & 0x02;
bool vertical = Type & 0x04;
int x1 = Rect.Left();
int y1 = Rect.Top();
int x2 = Rect.Right();
int y2 = Rect.Bottom();
int w = Rect.Width();
int h = Rect.Height();
if (vertical) {
for (int y = y1; y <= y2; y++) {
double c = cos((y - y1) * M_PI / h);
if (falling)
c = -c;
int x = (x1 + x2) / 2 + int(w * c / 2);
if (upper && !falling || !upper && falling)
DrawRectangle(cRect(x1, y, x - x1 + 1, 1), Color);
else
DrawRectangle(cRect(x, y, x2 - x + 1, 1), Color);
}
}
else {
for (int x = x1; x <= x2; x++) {
double c = cos((x - x1) * M_PI / w);
if (falling)
c = -c;
int y = (y1 + y2) / 2 + int(h * c / 2);
if (upper)
DrawRectangle(cRect(x, y1, 1, y - y1 + 1), Color);
else
DrawRectangle(cRect(x, y, 1, y2 - y + 1), Color);
}
}
MarkDrawPortDirty(Rect);
Unlock();
}
void cPixmapMemory::Render(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest)
{
Lock();
if (Pixmap->Alpha() != ALPHA_TRANSPARENT) {
if (const cPixmapMemory *pm = dynamic_cast<const cPixmapMemory *>(Pixmap)) {
cRect s = Source.Intersected(Pixmap->DrawPort().Size());
if (!s.IsEmpty()) {
cPoint v = Dest - Source.Point();
cRect d = s.Shifted(v).Intersected(DrawPort().Size());
if (!d.IsEmpty()) {
s = d.Shifted(-v);
int a = pm->Alpha();
int ws = pm->DrawPort().Width();
int wd = DrawPort().Width();
const tColor *ps = pm->data + ws * s.Top() + s.Left();
tColor *pd = data + wd * d.Top() + d.Left();
for (int y = d.Height(); y-- > 0; ) {
const tColor *cs = ps;
tColor *cd = pd;
for (int x = d.Width(); x-- > 0; ) {
*cd = AlphaBlend(*cs, *cd, a);
cs++;
cd++;
}
ps += ws;
pd += wd;
}
MarkDrawPortDirty(d);
}
}
}
}
Unlock();
}
void cPixmapMemory::Copy(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest)
{
Lock();
if (const cPixmapMemory *pm = dynamic_cast<const cPixmapMemory *>(Pixmap)) {
cRect s = Source.Intersected(pm->DrawPort().Size());
if (!s.IsEmpty()) {
cPoint v = Dest - Source.Point();
cRect d = s.Shifted(v).Intersected(DrawPort().Size());
if (!d.IsEmpty()) {
s = d.Shifted(-v);
int ws = pm->DrawPort().Width();
int wd = DrawPort().Width();
int w = d.Width() * sizeof(tColor);
const tColor *ps = pm->data + ws * s.Top() + s.Left();
tColor *pd = data + wd * d.Top() + d.Left();
for (int y = d.Height(); y-- > 0; ) {
memcpy(pd, ps, w);
ps += ws;
pd += wd;
}
MarkDrawPortDirty(d);
}
}
}
Unlock();
}
void cPixmapMemory::Scroll(const cPoint &Dest, const cRect &Source)
{
Lock();
cRect s;
if (&Source == &cRect::Null)
s = DrawPort().Shifted(-DrawPort().Point());
else
s = Source.Intersected(DrawPort().Size());
if (!s.IsEmpty()) {
cPoint v = Dest - Source.Point();
cRect d = s.Shifted(v).Intersected(DrawPort().Size());
if (!d.IsEmpty()) {
s = d.Shifted(-v);
if (d.Point() != s.Point()) {
int ws = DrawPort().Width();
int wd = ws;
int w = d.Width() * sizeof(tColor);
const tColor *ps = data + ws * s.Top() + s.Left();
tColor *pd = data + wd * d.Top() + d.Left();
for (int y = d.Height(); y-- > 0; ) {
memmove(pd, ps, w); // source and destination might overlap!
ps += ws;
pd += wd;
}
if (panning)
SetDrawPortPoint(DrawPort().Point().Shifted(s.Point() - d.Point()), false);
else
MarkDrawPortDirty(d);
}
}
}
Unlock();
}
void cPixmapMemory::Pan(const cPoint &Dest, const cRect &Source)
{
Lock();
panning = true;
Scroll(Dest, Source);
panning = false;
Unlock();
}
// --- cOsd ------------------------------------------------------------------
static const char *OsdErrorTexts[] = {
"ok",
"too many areas",
"too many colors",
"bpp not supported",
"areas overlap",
"wrong alignment",
"out of memory",
"wrong area size",
"unknown",
};
int cOsd::osdLeft = 0;
int cOsd::osdTop = 0;
int cOsd::osdWidth = 0;
int cOsd::osdHeight = 0;
cVector<cOsd *> cOsd::Osds;
cMutex cOsd::mutex;
cOsd::cOsd(int Left, int Top, uint Level)
{
cMutexLock MutexLock(&mutex);
isTrueColor = false;
savedBitmap = NULL;
numBitmaps = 0;
savedPixmap = NULL;
numPixmaps = 0;
left = Left;
top = Top;
width = height = 0;
level = Level;
active = false;
for (int i = 0; i < Osds.Size(); i++) {
if (Osds[i]->level > level) {
Osds.Insert(this, i);
return;
}
}
Osds.Append(this);
}
cOsd::~cOsd()
{
cMutexLock MutexLock(&mutex);
for (int i = 0; i < numBitmaps; i++)
delete bitmaps[i];
delete savedBitmap;
delete savedPixmap;
for (int i = 0; i < numPixmaps; i++)
delete pixmaps[i];
for (int i = 0; i < Osds.Size(); i++) {
if (Osds[i] == this) {
Osds.Remove(i);
if (Osds.Size())
Osds[0]->SetActive(true);
break;
}
}
}
void cOsd::SetOsdPosition(int Left, int Top, int Width, int Height)
{
osdLeft = Left;
osdTop = Top;
osdWidth = min(max(Width, MINOSDWIDTH), MAXOSDWIDTH);
osdHeight = min(max(Height, MINOSDHEIGHT), MAXOSDHEIGHT);
}
void cOsd::SetAntiAliasGranularity(uint FixedColors, uint BlendColors)
{
if (isTrueColor)
return;
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->SetAntiAliasGranularity(FixedColors, BlendColors);
}
cBitmap *cOsd::GetBitmap(int Area)
{
if (isTrueColor)
Area = 0; // returns the dummy bitmap
return Area < numBitmaps ? bitmaps[Area] : NULL;
}
cPixmap *cOsd::CreatePixmap(int Layer, const cRect &ViewPort, const cRect &DrawPort)
{
if (isTrueColor) {
LOCK_PIXMAPS;
cPixmap *Pixmap = new cPixmapMemory(Layer, ViewPort, DrawPort);
if (AddPixmap(Pixmap))
return Pixmap;
delete Pixmap;
}
return NULL;
}
void cOsd::DestroyPixmap(cPixmap *Pixmap)
{
if (isTrueColor) {
LOCK_PIXMAPS;
for (int i = 1; i < numPixmaps; i++) { // begin at 1 - don't let the background pixmap be destroyed!
if (pixmaps[i] == Pixmap) {
pixmaps[0]->MarkViewPortDirty(Pixmap->ViewPort());
delete Pixmap;
while (i < numPixmaps - 1) {
pixmaps[i] = pixmaps[i + 1];
i++;
}
numPixmaps--;
return;
}
}
esyslog("ERROR: attempt to destroy an unregistered pixmap");
}
}
cPixmap *cOsd::AddPixmap(cPixmap *Pixmap)
{
LOCK_PIXMAPS;
if (numPixmaps < MAXOSDPIXMAPS)
return pixmaps[numPixmaps++] = Pixmap;
else
esyslog("ERROR: too many OSD pixmaps requested (maximum is %d)", MAXOSDPIXMAPS);
return NULL;
}
cPixmapMemory *cOsd::RenderPixmaps(void)
{
cPixmapMemory *Pixmap = NULL;
if (isTrueColor) {
LOCK_PIXMAPS;
// Collect overlapping dirty rectangles:
cRect d;
for (int i = 0; i < numPixmaps; i++) {
cPixmap *pm = pixmaps[i];
if (!pm->DirtyViewPort().IsEmpty()) {
if (d.IsEmpty() || d.Intersects(pm->DirtyViewPort())) {
d.Combine(pm->DirtyViewPort());
pm->SetClean();
}
}
}
if (!d.IsEmpty()) {
//#define DebugDirty
#ifdef DebugDirty
static cRect OldDirty;
cRect NewDirty = d;
d.Combine(OldDirty);
OldDirty = NewDirty;
#endif
Pixmap = new cPixmapMemory(0, d);
Pixmap->Clear();
// Render the individual pixmaps into the resulting pixmap:
for (int Layer = 0; Layer < MAXPIXMAPLAYERS; Layer++) {
for (int i = 0; i < numPixmaps; i++) {
cPixmap *pm = pixmaps[i];
if (pm->Layer() == Layer)
Pixmap->DrawPixmap(pm, d);
}
}
#ifdef DebugDirty
cPixmapMemory DirtyIndicator(7, NewDirty);
static tColor DirtyIndicatorColors[] = { 0x7FFFFF00, 0x7F00FFFF };
static int DirtyIndicatorIndex = 0;
DirtyIndicator.Fill(DirtyIndicatorColors[DirtyIndicatorIndex]);
DirtyIndicatorIndex = 1 - DirtyIndicatorIndex;
Pixmap->Render(&DirtyIndicator, DirtyIndicator.DrawPort(), DirtyIndicator.ViewPort().Point().Shifted(-Pixmap->ViewPort().Point()));
#endif
}
}
return Pixmap;
}
eOsdError cOsd::CanHandleAreas(const tArea *Areas, int NumAreas)
{
if (NumAreas > MAXOSDAREAS)
return oeTooManyAreas;
eOsdError Result = oeOk;
for (int i = 0; i < NumAreas; i++) {
if (Areas[i].x1 > Areas[i].x2 || Areas[i].y1 > Areas[i].y2 || Areas[i].x1 < 0 || Areas[i].y1 < 0)
return oeWrongAlignment;
for (int j = i + 1; j < NumAreas; j++) {
if (Areas[i].Intersects(Areas[j])) {
Result = oeAreasOverlap;
break;
}
}
if (Areas[i].bpp == 32) {
if (NumAreas > 1)
return oeTooManyAreas;
}
}
return Result;
}
eOsdError cOsd::SetAreas(const tArea *Areas, int NumAreas)
{
eOsdError Result = CanHandleAreas(Areas, NumAreas);
if (Result == oeOk) {
while (numBitmaps)
delete bitmaps[--numBitmaps];
width = height = 0;
isTrueColor = NumAreas == 1 && Areas[0].bpp == 32;
if (isTrueColor) {
width = Areas[0].x2 - Areas[0].x1 + 1;
height = Areas[0].y2 - Areas[0].y1 + 1;
cPixmap *Pixmap = CreatePixmap(0, cRect(Areas[0].x1, Areas[0].y1, width, height));
Pixmap->Clear();
bitmaps[numBitmaps++] = new cBitmap(10, 10, 8); // dummy bitmap for GetBitmap()
}
else {
for (int i = 0; i < NumAreas; i++) {
bitmaps[numBitmaps++] = new cBitmap(Areas[i].Width(), Areas[i].Height(), Areas[i].bpp, Areas[i].x1, Areas[i].y1);
width = max(width, Areas[i].x2 + 1);
height = max(height, Areas[i].y2 + 1);
}
}
}
else
esyslog("ERROR: cOsd::SetAreas returned %d (%s)", Result, Result < oeUnknown ? OsdErrorTexts[Result] : OsdErrorTexts[oeUnknown]);
return Result;
}
void cOsd::SaveRegion(int x1, int y1, int x2, int y2)
{
if (isTrueColor) {
delete savedPixmap;
cRect r(x1, y1, x2 - x1 + 1, y2 - y1 + 1);
savedPixmap = new cPixmapMemory(0, r);
savedPixmap->Copy(pixmaps[0], r, cPoint(0, 0));
}
else {
delete savedBitmap;
savedBitmap = new cBitmap(x2 - x1 + 1, y2 - y1 + 1, 8, x1, y1);
for (int i = 0; i < numBitmaps; i++)
savedBitmap->DrawBitmap(bitmaps[i]->X0(), bitmaps[i]->Y0(), *bitmaps[i]);
}
}
void cOsd::RestoreRegion(void)
{
if (isTrueColor) {
if (savedPixmap) {
pixmaps[0]->Copy(savedPixmap, savedPixmap->DrawPort(), savedPixmap->ViewPort().Point());
delete savedPixmap;
savedPixmap = NULL;
}
}
else {
if (savedBitmap) {
DrawBitmap(savedBitmap->X0(), savedBitmap->Y0(), *savedBitmap);
delete savedBitmap;
savedBitmap = NULL;
}
}
}
eOsdError cOsd::SetPalette(const cPalette &Palette, int Area)
{
if (isTrueColor)
return oeOk;
if (Area < numBitmaps) {
bitmaps[Area]->Take(Palette);
return oeOk;
}
return oeUnknown;
}
void cOsd::DrawImage(const cPoint &Point, const cImage &Image)
{
if (isTrueColor)
pixmaps[0]->DrawImage(Point, Image);
}
void cOsd::DrawImage(const cPoint &Point, int ImageHandle)
{
if (isTrueColor)
pixmaps[0]->DrawImage(Point, ImageHandle);
}
void cOsd::DrawPixel(int x, int y, tColor Color)
{
if (isTrueColor)
pixmaps[0]->DrawPixel(cPoint(x, y), Color);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawPixel(x, y, Color);
}
}
void cOsd::DrawBitmap(int x, int y, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool ReplacePalette, bool Overlay)
{
if (isTrueColor)
pixmaps[0]->DrawBitmap(cPoint(x, y), Bitmap, ColorFg, ColorBg, Overlay);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawBitmap(x, y, Bitmap, ColorFg, ColorBg, ReplacePalette, Overlay);
}
}
void cOsd::DrawText(int x, int y, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width, int Height, int Alignment)
{
if (isTrueColor)
pixmaps[0]->DrawText(cPoint(x, y), s, ColorFg, ColorBg, Font, Width, Height, Alignment);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawText(x, y, s, ColorFg, ColorBg, Font, Width, Height, Alignment);
}
}
void cOsd::DrawRectangle(int x1, int y1, int x2, int y2, tColor Color)
{
if (isTrueColor)
pixmaps[0]->DrawRectangle(cRect(x1, y1, x2 - x1 + 1, y2 - y1 + 1), Color);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawRectangle(x1, y1, x2, y2, Color);
}
}
void cOsd::DrawEllipse(int x1, int y1, int x2, int y2, tColor Color, int Quadrants)
{
if (isTrueColor)
pixmaps[0]->DrawEllipse(cRect(x1, y1, x2 - x1 + 1, y2 - y1 + 1), Color, Quadrants);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawEllipse(x1, y1, x2, y2, Color, Quadrants);
}
}
void cOsd::DrawSlope(int x1, int y1, int x2, int y2, tColor Color, int Type)
{
if (isTrueColor)
pixmaps[0]->DrawSlope(cRect(x1, y1, x2 - x1 + 1, y2 - y1 + 1), Color, Type);
else {
for (int i = 0; i < numBitmaps; i++)
bitmaps[i]->DrawSlope(x1, y1, x2, y2, Color, Type);
}
}
void cOsd::Flush(void)
{
}
// --- cOsdProvider ----------------------------------------------------------
cOsdProvider *cOsdProvider::osdProvider = NULL;
int cOsdProvider::oldWidth = 0;
int cOsdProvider::oldHeight = 0;
double cOsdProvider::oldAspect = 1.0;
cImage *cOsdProvider::images[MAXOSDIMAGES] = { NULL };
cOsdProvider::cOsdProvider(void)
{
delete osdProvider;
osdProvider = this;
}
cOsdProvider::~cOsdProvider()
{
osdProvider = NULL;
}
cOsd *cOsdProvider::NewOsd(int Left, int Top, uint Level)
{
cMutexLock MutexLock(&cOsd::mutex);
if (Level == OSD_LEVEL_DEFAULT && cOsd::IsOpen())
esyslog("ERROR: attempt to open OSD while it is already open - using dummy OSD!");
else if (osdProvider) {
cOsd *ActiveOsd = cOsd::Osds.Size() ? cOsd::Osds[0] : NULL;
cOsd *Osd = osdProvider->CreateOsd(Left, Top, Level);
if (Osd == cOsd::Osds[0]) {
if (ActiveOsd)
ActiveOsd->SetActive(false);
Osd->SetActive(true);
}
return Osd;
}
else
esyslog("ERROR: no OSD provider available - using dummy OSD!");
return new cOsd(Left, Top, 999); // create a dummy cOsd, so that access won't result in a segfault
}
void cOsdProvider::UpdateOsdSize(bool Force)
{
int Width;
int Height;
double Aspect;
cDevice::PrimaryDevice()->GetOsdSize(Width, Height, Aspect);
if (Width != oldWidth || Height != oldHeight || !DoubleEqual(Aspect, oldAspect) || Force) {
Setup.OSDLeft = int(round(Width * Setup.OSDLeftP));
Setup.OSDTop = int(round(Height * Setup.OSDTopP));
Setup.OSDWidth = int(round(Width * Setup.OSDWidthP)) & ~0x07; // OSD width must be a multiple of 8
Setup.OSDHeight = int(round(Height * Setup.OSDHeightP));
Setup.OSDAspect = Aspect;
Setup.FontOsdSize = int(round(Height * Setup.FontOsdSizeP));
Setup.FontFixSize = int(round(Height * Setup.FontFixSizeP));
Setup.FontSmlSize = int(round(Height * Setup.FontSmlSizeP));
cFont::SetFont(fontOsd, Setup.FontOsd, Setup.FontOsdSize);
cFont::SetFont(fontFix, Setup.FontFix, Setup.FontFixSize);
cFont::SetFont(fontSml, Setup.FontSml, Setup.FontSmlSize);
oldWidth = Width;
oldHeight = Height;
oldAspect = Aspect;
dsyslog("OSD size changed to %dx%d @ %g", Width, Height, Aspect);
}
}
bool cOsdProvider::SupportsTrueColor(void)
{
if (osdProvider) {
return osdProvider->ProvidesTrueColor();
}
else
esyslog("ERROR: no OSD provider available in call to SupportsTrueColor()");
return false;
}
int cOsdProvider::StoreImageData(const cImage &Image)
{
LOCK_PIXMAPS;
for (int i = 1; i < MAXOSDIMAGES; i++) {
if (!images[i]) {
images[i] = new cImage(Image);
return i;
}
}
return 0;
}
void cOsdProvider::DropImageData(int ImageHandle)
{
LOCK_PIXMAPS;
if (0 < ImageHandle && ImageHandle < MAXOSDIMAGES) {
delete images[ImageHandle];
images[ImageHandle] = NULL;
}
}
const cImage *cOsdProvider::GetImageData(int ImageHandle)
{
LOCK_PIXMAPS;
if (0 < ImageHandle && ImageHandle < MAXOSDIMAGES)
return images[ImageHandle];
return NULL;
}
int cOsdProvider::StoreImage(const cImage &Image)
{
if (osdProvider)
return osdProvider->StoreImageData(Image);
return -1;
}
void cOsdProvider::DropImage(int ImageHandle)
{
if (osdProvider)
osdProvider->DropImageData(ImageHandle);
}
void cOsdProvider::Shutdown(void)
{
delete osdProvider;
osdProvider = NULL;
}
// --- cTextScroller ---------------------------------------------------------
cTextScroller::cTextScroller(void)
{
osd = NULL;
left = top = width = height = 0;
font = NULL;
colorFg = 0;
colorBg = 0;
offset = 0;
shown = 0;
}
cTextScroller::cTextScroller(cOsd *Osd, int Left, int Top, int Width, int Height, const char *Text, const cFont *Font, tColor ColorFg, tColor ColorBg)
{
Set(Osd, Left, Top, Width, Height, Text, Font, ColorFg, ColorBg);
}
void cTextScroller::Set(cOsd *Osd, int Left, int Top, int Width, int Height, const char *Text, const cFont *Font, tColor ColorFg, tColor ColorBg)
{
osd = Osd;
left = Left;
top = Top;
width = Width;
height = Height;
font = Font;
colorFg = ColorFg;
colorBg = ColorBg;
offset = 0;
textWrapper.Set(Text, Font, Width);
shown = min(Total(), height / font->Height());
height = shown * font->Height(); // sets height to the actually used height, which may be less than Height
DrawText();
}
void cTextScroller::Reset(void)
{
osd = NULL; // just makes sure it won't draw anything
}
void cTextScroller::DrawText(void)
{
if (osd) {
for (int i = 0; i < shown; i++)
osd->DrawText(left, top + i * font->Height(), textWrapper.GetLine(offset + i), colorFg, colorBg, font, width);
}
}
void cTextScroller::Scroll(bool Up, bool Page)
{
if (Up) {
if (CanScrollUp()) {
offset -= Page ? shown : 1;
if (offset < 0)
offset = 0;
DrawText();
}
}
else {
if (CanScrollDown()) {
offset += Page ? shown : 1;
if (offset + shown > Total())
offset = Total() - shown;
DrawText();
}
}
}