vdr/ac3dec/decode.c

270 lines
5.9 KiB
C

/*
* decode.c
*
* Copyright (C) Aaron Holtzman - May 1999
*
* Added support for DVB-s PCI card by:
* Matjaz Thaler <matjaz.thaler@rd.iskraemeco.si> - November 2000
*
* This file is part of ac3dec, a free Dolby AC-3 stream decoder.
*
* ac3dec is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* ac3dec is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "ac3.h"
#include "ac3_internal.h"
#include "bitstream.h"
#include "imdct.h"
#include "exponent.h"
#include "coeff.h"
#include "bit_allocate.h"
#include "parse.h"
#include "crc.h"
#include "stats.h"
#include "rematrix.h"
#include "sanity_check.h"
#include "downmix.h"
#include "debug.h"
#define AC3_BUFFER_SIZE (6*1024*16)
//our global config structure
ac3_config_t ac3_config;
uint_32 error_flag = 0;
static audblk_t audblk;
static bsi_t bsi;
static syncinfo_t syncinfo;
static uint_32 frame_count = 0;
//static uint_32 is_output_initialized = 0;
//the floating point samples for one audblk
static stream_samples_t samples;
//the integer samples for the entire frame (with enough space for 2 ch out)
//if this size change, be sure to change the size when muting
static sint_16 s16_samples[2 * 6 * 256];
//Storage for the syncframe
#define SYNC_BUFFER_MAX_SIZE 4096
static uint_8 sync_buffer[SYNC_BUFFER_MAX_SIZE];
static uint_32 sync_buffer_size = 0;;
uint_32
decode_sync_buffer_syncframe(syncinfo_t *syncinfo, uint_8 **start,uint_8 *end)
{
uint_8 *cur = *start;
uint_16 syncword = syncinfo->syncword;
uint_32 ret = 0;
//
// Find an ac3 sync frame.
//
resync:
while(syncword != 0x0b77)
{
if(cur >= end)
goto done;
syncword = (syncword << 8) + *cur++;
}
//need the next 3 bytes to decide how big the frame is
while(sync_buffer_size < 3)
{
if(cur >= end)
goto done;
sync_buffer[sync_buffer_size++] = *cur++;
}
parse_syncinfo(syncinfo,sync_buffer);
stats_print_syncinfo(syncinfo);
while(sync_buffer_size < syncinfo->frame_size * 2 - 2)
{
if(cur >= end)
goto done;
sync_buffer[sync_buffer_size++] = *cur++;
}
// Check the crc over the entire frame
crc_init();
crc_process_frame(sync_buffer,syncinfo->frame_size * 2 - 2);
if(!crc_validate())
{
fprintf(stderr,"** CRC failed - skipping frame **\n");
syncword = 0xffff;
sync_buffer_size = 0;
goto resync;
}
//
//if we got to this point, we found a valid ac3 frame to decode
//
bitstream_init(sync_buffer);
//get rid of the syncinfo struct as we already parsed it
bitstream_get(24);
//reset the syncword for next time
syncword = 0xffff;
sync_buffer_size = 0;
ret = 1;
done:
syncinfo->syncword = syncword;
*start = cur;
return ret;
}
void
decode_mute(void)
{
fprintf(stderr,"muting frame\n");
//mute the frame
memset(s16_samples,0,sizeof(sint_16) * 256 * 2 * 6);
error_flag = 0;
}
void
ac3_init(ac3_config_t *config)
{
memcpy(&ac3_config,config,sizeof(ac3_config_t));
imdct_init();
sanity_check_init(&syncinfo,&bsi,&audblk);
// ac3_output = *foo;
}
uint_32 ac3_decode_data(uint_8 *data_start,uint_8 *data_end, int ac3reset, int *input_pointer, int *output_pointer, char *ac3_data)
{
uint_32 i;
int datasize;
char *data;
if(ac3reset != 0){
syncinfo.syncword = 0xffff;
sync_buffer_size = 0;
}
while(decode_sync_buffer_syncframe(&syncinfo,&data_start,data_end))
{
dprintf("(decode) begin frame %d\n",frame_count++);
if(error_flag)
{
decode_mute();
continue;
}
parse_bsi(&bsi);
for(i=0; i < 6; i++)
{
//Initialize freq/time sample storage
memset(samples,0,sizeof(float) * 256 * (bsi.nfchans + bsi.lfeon));
// Extract most of the audblk info from the bitstream
// (minus the mantissas
parse_audblk(&bsi,&audblk);
// Take the differential exponent data and turn it into
// absolute exponents
exponent_unpack(&bsi,&audblk);
if(error_flag)
goto error;
// Figure out how many bits per mantissa
bit_allocate(syncinfo.fscod,&bsi,&audblk);
// Extract the mantissas from the stream and
// generate floating point frequency coefficients
coeff_unpack(&bsi,&audblk,samples);
if(error_flag)
goto error;
if(bsi.acmod == 0x2)
rematrix(&audblk,samples);
// Convert the frequency samples into time samples
imdct(&bsi,&audblk,samples);
// Downmix into the requested number of channels
// and convert floating point to sint_16
downmix(&bsi,samples,&s16_samples[i * 2 * 256]);
sanity_check(&syncinfo,&bsi,&audblk);
if(error_flag)
goto error;
continue;
}
parse_auxdata(&syncinfo);
/*
if(!is_output_initialized)
{
ac3_output.open(16,syncinfo.sampling_rate,2);
is_output_initialized = 1;
}
*/
data = (char *)s16_samples;
datasize = 0;
while(datasize < 6144){
if(((*input_pointer+1) % AC3_BUFFER_SIZE) != *output_pointer){ // There is room in the sync_buffer
ac3_data[*input_pointer]=data[datasize];
datasize++;
*input_pointer = (*input_pointer+1) % AC3_BUFFER_SIZE;
}
else{
*input_pointer = *output_pointer = 0;
break;
}
}
//write(1, s16_samples, 256 * 6 * 2* 2);
//ac3_output.play(s16_samples, 256 * 6 * 2);
error:
;
//find a new frame
}
return 0;
}