vdr/remux.c
Klaus Schmidinger a26aae3ce8 Version 2.3.1
VDR developer version 2.3.1 is now available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-2.3.1.tar.bz2

A 'diff' against the previous version is available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-2.2.0-2.3.1.diff

MD5 checksums:

391c2ed60e2f7d24563fe3ed5854bc4f  vdr-2.3.1.tar.bz2
983fd4bad7d19cd98301d54173107129  vdr-2.2.0-2.3.1.diff

WARNING:
========

This is a *developer* version. Even though *I* use it in my productive
environment, I strongly recommend that you only use it under controlled
conditions and for testing and debugging.

*** PLEASE BE VERY CAREFUL WHEN USING THIS DEVELOPER VERSION, ESPECIALLY
*** IF YOU ENABLE THE NEW SVDRP PEERING! KEEP BACKUPS OF ALL YOUR TIMERS
*** AND OBSERVE VERY CLOSELY WHETHER EVERYTHING WORKS AS EXPECTED. THIS
*** VERSION INTRODUCES SOME MAJOR CHANGES IN HANDLING GLOBAL LISTS AND
*** LOCKING, SO ANYTHING CAN HAPPEN! YOU HAVE BEEN WARNED!

The main focus of this developer version is on the new locking mechanism
for global lists, and the ability to handle remote timers.
Any plugins that access the global lists of timers, channels, schedules
or recordings, will need to be adjusted (see below for details). Please
do initial tests with plain vanilla VDR and just the output plugin you
need.

Known bugs/problems:

- After deleting the last recording in a sub folder, the cursor may not
   be positioned correctly.
- Instant recordings and pausing live video don't (yet) use the default
   SVDRP host for recording.

From the HISTORY file:
 - The new function cOsd::MaxPixmapSize() can be called to determine the maximum size
  a cPixmap may have on the current OSD. The 'osddemo' example has been modified
  accordingly. Plugin authors may want to use this function in case they use pixmaps
  that are larger than the full OSD size. The default implementation sets this limit
  to 2048x2048 pixel.
- The Setup/CAM menu now displays which device an individual CAM is currently
  assigned to (suggested by Frank Neumann).
- Added detection of 24fps (thanks to Thomas Reufer).
- Added a note about the VDR User Counter and VDR's facebook page to the README file.
- The dvbhddevice plugin is no longer part of the VDR source archive.
  You can get the latest version of this plugin from the author's repository at
  https://bitbucket.org/powARman/dvbhddevice.
- The dvbsddevice and rcu plugins are no longer part of the VDR source archive.
  You can get the latest versions of these plugins from ftp://ftp.tvdr.de/vdr/Plugins.
- Added a section about Output Devices to the INSTALL file.
- Fixed setting the source value of newly created channels, in case the NIT is
  received from a different, but very close satellite position (reported by Daniel
  Ribeiro). The code for handling different NITs has been removed from nit.c, because
  according to the DVB standard table id 0x40 carries only the NIT of the actual
  network.
- Added some comment to cPixmap about the relation between OSD, ViewPort and DrawPort
  (suggested by Thomas Reufer).
- Improved syncing on sections when parsing the NIT and SDT.
- Fixed scaling subtitles (their areas could sometimes extend outside the actual OSD).
- Reduced the priority of the "video directory scanner" thread (suggested by Thomas
  Reufer) and checking cIoThrottle::Engaged() when it is running.
- The script that gets called for recordings is now also called right before a
  recording is edited, with the first parameter being "editing" (suggested by
  Dieter Ferdinand).
- The new setup option "OSD/Default sort mode for recordings" can be used to define
  how recordings shall be sorted by default (either by time or by name, with "by time"
  being the default). If a particular sort mode has been selected for a folder by
  pressing '0', the default no longer applies to that folder. Repeating timers no
  longer write a ".sort" file into a recordings folder to have the recordings sorted
  by time.
- The command line option -D now accepts the value '-' (as in -D-), which prevents
  VDR from using any DVB devices (suggested by Dietmar Spingler).
- The -V and -h options now list the plugins in alphabetical order (suggested by
  Dietmar Spingler).
- Fixed a compiler warning in font.c.
- Commented out the line
  #define DEPRECATED_VIDEOSYSTEM
  in device.h. If a plugin doesn't compile with this version of VDR, you can uncomment
  this line as a quick workaround. In the long run the plugin will need to be adapted.
- The function cOsd::GetBitmap() is now 'protected'. If a plugin doesn't compile with
  this version of VDR, you can uncomment the line
  //#define DEPRECATED_GETBITMAP
  in osd.h as a quick workaround. In the long run the plugin will need to be adapted.
- The -u option now also accepts a numerical user id (suggested by Derek Kelly).
- The SVDRP port now accepts multiple concurrent connections. You can now keep an
  SVDRP connection open as long as you wish, without preventing others from
  connecting. Note, though, that SVDRP connections still get closed automatically
  if there has been no activity for 300 seconds (configurable via
  "Setup/Miscellaneous/SVDRP timeout (s)").
- The SVDRP log messages have been unified and now always contain the IP and port
  number of the remote host.
- SVDRP connections are now handled in a separate "SVDRP server handler" thread,
  which makes them more responsive. Note that there is only one thread that handles
  all concurrent SVDRP connections. That way each SVDRP command is guaranteed to be
  processed separately, without interfering with any other SVDRP commands that might
  be issued at the same time. Plugins that implement SVDRP commands may need to take
  care of proper locking if the commands access global data.
- VDR now sends out a broadcast to port 6419/udp, which was assigned to 'svdrp-disc'
  by the IANA. VDRs listening on that port will automatically initiate an SVDRP
  connection to the broadcasting VDR, and in turn send out a broadcast to make
  other VDRs connect to them. That way all VDRs within the local network will
  have permanent "peer-to-peer" SVDRP connections between each other. The
  configuration in the svdrphosts.conf file is taken into account when considering
  whether or not to respond to an SVDRP discover broadcast.
- The new SVDRP command PING is used by automatically established peer-to-peer
  connections to keep them alive.
- The new function GetSVDRPServerNames() can be used to get a list of all VDRs
  this VDR is connected to via SVDRP.
- The new function ExecSVDRPCommand() can be used to execute an SVDRP command on
  one of the servers this VDR is connected to, and retrieve the result.
  The helper functions SVDRPCode() and SVDRPValue() can be used to easily access
  the codes and values returned by ExecSVDRPCommand().
- The cTimer class now has a new member named 'remote', which holds the name of the
  remote server this timer will record on. If this is NULL, it is a local timer.
- Timers from other VDRs that are connected to this VDR via SVDRP are now
  automatically fetched and stored in the global Timers list. In order for this
  to work, all of the channels used by timers on the remote VDR must also be
  defined on the local VDR (however, not necessarily in the same sequence).
  Automatic channel syncing will be implemented later.
- The main menu of the LCARS skin now displays a small rectangle on the left side
  of a timer if this is a remote timer. The color of that rectangle changes if
  the timer is currently recording on the remote VDR.
- Accessing the global Timers list now has to be protected by proper locking,
  because SVDRP commands are now executed in a separate thread.
  The introduction of this locking mechanism required the following changes:
  + The new classes cStateLock and cStateKey are used to implement locking
    with quick detection of state changes.
  + cConfig::cConfig() now has a parameter that indicates whether this list
    requires locking.
  + The global lists of Timers, Channels, Schedules and Recordings are no longer
    static variables. They are now pointers that need to be retrieved through
    a call to cTimers::GetTimersRead/Write(), cChannels::GetChannelsRead/Write(),
    cSchedules::GetSchedulesRead/Write() and cRecordings::GetRecordingsRead/Write(),
    respectively.
  + References from/to link channels are now removed in cChannels::Del() rather
    than cChannel::~cChannel(), to make sure the caller holds a proper lock.
  + cChannel::HasTimer() has been removed. This information is now retrieved
    via cSchedule::HasTimer().
  + Several member functions of cChannel, cTimer, cMarks and cRecording have
    been made 'const', and some of them are now available as both 'const' and
    'non-const' versions.
  + The cChannel::Set...() functions are now 'bool' and return true if they have
    actually changed any of the channels's members.
  + cChannels::SetModified() has been renamed to cChannels::SetModifiedByUser().
  + cChannels::Modified() has been renamed to cChannels::ModifiedByUser(), and
    now has a 'State' parameter that allows the caller to see whether a channel
    has been modified since the last call to this function with the same State
    variable.
  + The macros CHANNELSMOD_NONE/_AUTO/_USER have been removed.
  + cMarks now requires locking via cStateKey.
  + cSortedTimers now requires a pointer to the list of timers.
  + cEvent::HasTimer() no longer scans the list of timers to check whether an event
    is referenced by a timer, but rather keeps score of how many timers reference
    it. This was necessary in order to avoid having to lock the list of timers from
    within a cEvent.
  + The new class cListGarbageCollector is used to temporary store any objects deleted
    from cLists that require locking. This allows pointers to such objects to be
    dereferenced even if the objects are no longer part of the list.
  + cListBase::Contains() can be used to check whether a particular object is still
    contained in that list.
  + Outdated events are no longer "phased out", but rather deleted right away and thus
    taken care of by the new "garbage collector" of the list.
  + Deleted cRecording objects are no longer kept in a list of "vanished" recordings,
    but are rather taken care of by the new "garbage collector" of the list.
  + cSchedules::ClearAll() has been removed. The functionality is now implemented
    directly in cSVDRPServer::CmdCLRE().
  + tEventID has been changed to u_int16_t in order to make room for the new member
    numTimers in cEvent.
  + cSchedule now has a member Modified(), which can be used with a State variable
    to quickly determine whether this schedule has been modified since the last call
    to this function with the same State variable.
  + cSchedulesLock has been removed. Locking the list of schedules is now done via
    the cList's new locking mechanism.
  + The 'OnlyRunningStatus' parameters in cEpgHandler::BeginSegmentTransfer() and
    cEpgHandler::EndSegmentTransfer() are now obsolete. They are still present in
    the interface for backward compatibility, but may be removed in a future version.
    Their value is always 'false'.
  + The constant tcMod is no longer used in cStatus::TimerChange(). The definition is
    still there for backward compatibility.
  Plugins that access the global lists of Timers, Channels, Recordings or Schedules
  will need to be adapted as follows:
  + Instead of directly accessing the global variables Timers, Channels or Recordings,
    they need to set up a cStateKey variable and call the proper getter function,
    as in
      cStateKey StateKey;
      if (const cTimers *Timers = cTimers::GetTimersRead(StateKey)) {
         // access the timers
         StateKey.Remove();
         }
    and
      cStateKey StateKey;
      if (cTimers *Timers = cTimers::GetTimersWrite(StateKey)) {
         // access the timers
         StateKey.Remove();
         }
    See timers.h, thread.h and tools.h for details on this new locking mechanism.
  + There are convenience macros for easily accessing these lists without having
    to explicitly set up a cStateKey and calling its Remove() function. These macros
    have the form LOCK_*_READ/WRITE (with '*' being TIMERS, CHANNELS, SCHEDULES or
    RECORDINGS). Simply put such a macro before the point where you need to access
    the respective list, and there will be a pointer named Timers, Channels, Schedules
    or Recordings, respectively, which is valid until the end of the current block.
  + If a plugin needs to access several of the global lists in parallel, locking must
    always be done in the sequence Timers, Channels, Recordings, Schedules. This is
    necessary to make sure that different threads that need to lock several lists at
    the same time don't end up in a deadlock.
  + Some pointer variables may need to be made 'const'. The compiler will tell you
    about these.
- cSectionSyncer has been improved to better handle missed sections.
- Added a missing initialization of 'seen' in cChannel's copy constructor.
- Background modifications of channels, timers and events are now displayed immediately
  in the corresponding menus.
- cEIT now checks the version of the tables before doing any processing, which saves
  a lot of locking and processing.
- If a timer is newly created with the Red button in the Schedule menu, and the timer
  is presented to the user in the "Edit timer" menu because it will start immediately,
  it now *must* be confirmed with "Ok" to set the timer. Otherwise the timer will not
  be created.
- Recordings and deleted recordings are now scanned in a single thread.
- The new SVDRP command POLL is used by automatically established peer-to-peer
  connections to trigger fetching remote timers.
- You can now set DumpSVDRPDataTransfer in svdrp.c to true to have all SVDRP
  communication printed to the console for debugging.
- Added a missing 'const' to cReceiver::Receive(), to protect the given Data from
  being modified.
- The SVDRP commands that deal with timers (DELT, LSTT, MODT, NEWT, NEXT and UPDT)
  as well as any log messages that refer to timers, now use a unique id for each
  timer, which remains valid as long as this instance of VDR is running. This means
  that timers are no longer continuously numbered from 1 to N in LSTT. There may be
  gaps in the sequence, in case timers have been deleted.
- The Timers menu now displays the name of the remote VDR in front of the timer's
  file name, if this is a remote timer.
- The new options "Setup/Miscellaneous/SVDRP peering", ".../SVDRP host name" and
  ".../SVDRP default host" can be used to configure automatic peering between VDRs
  in the same network. Peering is disabled by default and can be enabled by setting
  "SVDRP peering" to "yes".
- The function cTimer::ToText() no longer returns a newline character at the end of
  the string. The newline is now added by the caller as necessary. This was changed
  because cTimer::ToText() is now also needed in a context where the terminating
  newline can't be used. Consequently, cChannel::ToText() and cMark::ToText() have
  been modified accordingly.
- All timer related response strings from SVDRP commands now use the channel ID
  instead of channel numbers.
- The "Edit timer" menu now has a new parameter "Record on", which can be used to
  select the VDR on which this timer shall record. Timers can be freely moved
  between connected VDRs by simply selecting the desired machine in this field.
- The SVDRP command DELT no longer checks whether the timer that shall be deleted
  is currently recording.
- The character 0x0D is now stripped from EPG texts (reported by Janne Pänkälä).
- The EPG scanner no longer moves the dish if there is a positioner.
- The 'newplugin' script now creates the 'po' subdirectory for translations (thanks
  to Thomas Reufer).
- Skins can now implement cSkinDisplayMenu::MenuOrientation() to display horizontal
  menus (thanks to Stefan Braun).
- Fixed a possible stack overflow in cListBase::Sort() (thanks to Oliver Endriss).
- Changed the description of the --chartab option in the INSTALL file to refer to
  "DVB SI table strings" instead of "EPG data".
- The width and height of the OSD are now limited to the actual maximum dimensions
  of the output device, taking into account the top and left offset.
- The new setup option "Recording/Record key handling" can be used to define
  what happens if the Record key on the remote control is pressed during
  live tv (suggested by Dietmar Spingler).
- Empty adaptation field TS packets are now skipped when recording (thanks to
  Christopher Reimer, based on the "AFFcleaner" by Stefan Pöschel).
2015-09-18 00:04:12 +02:00

1590 lines
53 KiB
C

/*
* remux.c: Tools for detecting frames and handling PAT/PMT
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: remux.c 4.1 2015/03/11 09:49:38 kls Exp $
*/
#include "remux.h"
#include "device.h"
#include "libsi/si.h"
#include "libsi/section.h"
#include "libsi/descriptor.h"
#include "recording.h"
#include "shutdown.h"
#include "tools.h"
// Set these to 'true' for debug output:
static bool DebugPatPmt = false;
static bool DebugFrames = false;
#define dbgpatpmt(a...) if (DebugPatPmt) fprintf(stderr, a)
#define dbgframes(a...) if (DebugFrames) fprintf(stderr, a)
#define MAX_TS_PACKETS_FOR_VIDEO_FRAME_DETECTION 6
#define WRN_TS_PACKETS_FOR_VIDEO_FRAME_DETECTION (MAX_TS_PACKETS_FOR_VIDEO_FRAME_DETECTION / 2)
#define WRN_TS_PACKETS_FOR_FRAME_DETECTOR (MIN_TS_PACKETS_FOR_FRAME_DETECTOR / 2)
#define EMPTY_SCANNER (0xFFFFFFFF)
ePesHeader AnalyzePesHeader(const uchar *Data, int Count, int &PesPayloadOffset, bool *ContinuationHeader)
{
if (Count < 7)
return phNeedMoreData; // too short
if ((Data[6] & 0xC0) == 0x80) { // MPEG 2
if (Count < 9)
return phNeedMoreData; // too short
PesPayloadOffset = 6 + 3 + Data[8];
if (Count < PesPayloadOffset)
return phNeedMoreData; // too short
if (ContinuationHeader)
*ContinuationHeader = ((Data[6] == 0x80) && !Data[7] && !Data[8]);
return phMPEG2; // MPEG 2
}
// check for MPEG 1 ...
PesPayloadOffset = 6;
// skip up to 16 stuffing bytes
for (int i = 0; i < 16; i++) {
if (Data[PesPayloadOffset] != 0xFF)
break;
if (Count <= ++PesPayloadOffset)
return phNeedMoreData; // too short
}
// skip STD_buffer_scale/size
if ((Data[PesPayloadOffset] & 0xC0) == 0x40) {
PesPayloadOffset += 2;
if (Count <= PesPayloadOffset)
return phNeedMoreData; // too short
}
if (ContinuationHeader)
*ContinuationHeader = false;
if ((Data[PesPayloadOffset] & 0xF0) == 0x20) {
// skip PTS only
PesPayloadOffset += 5;
}
else if ((Data[PesPayloadOffset] & 0xF0) == 0x30) {
// skip PTS and DTS
PesPayloadOffset += 10;
}
else if (Data[PesPayloadOffset] == 0x0F) {
// continuation header
PesPayloadOffset++;
if (ContinuationHeader)
*ContinuationHeader = true;
}
else
return phInvalid; // unknown
if (Count < PesPayloadOffset)
return phNeedMoreData; // too short
return phMPEG1; // MPEG 1
}
#define VIDEO_STREAM_S 0xE0
// --- cRemux ----------------------------------------------------------------
void cRemux::SetBrokenLink(uchar *Data, int Length)
{
int PesPayloadOffset = 0;
if (AnalyzePesHeader(Data, Length, PesPayloadOffset) >= phMPEG1 && (Data[3] & 0xF0) == VIDEO_STREAM_S) {
for (int i = PesPayloadOffset; i < Length - 7; i++) {
if (Data[i] == 0 && Data[i + 1] == 0 && Data[i + 2] == 1 && Data[i + 3] == 0xB8) {
if (!(Data[i + 7] & 0x40)) // set flag only if GOP is not closed
Data[i + 7] |= 0x20;
return;
}
}
dsyslog("SetBrokenLink: no GOP header found in video packet");
}
else
dsyslog("SetBrokenLink: no video packet in frame");
}
// --- Some TS handling tools ------------------------------------------------
void TsHidePayload(uchar *p)
{
p[1] &= ~TS_PAYLOAD_START;
p[3] |= TS_ADAPT_FIELD_EXISTS;
p[3] &= ~TS_PAYLOAD_EXISTS;
p[4] = TS_SIZE - 5;
p[5] = 0x00;
memset(p + 6, 0xFF, TS_SIZE - 6);
}
void TsSetPcr(uchar *p, int64_t Pcr)
{
if (TsHasAdaptationField(p)) {
if (p[4] >= 7 && (p[5] & TS_ADAPT_PCR)) {
int64_t b = Pcr / PCRFACTOR;
int e = Pcr % PCRFACTOR;
p[ 6] = b >> 25;
p[ 7] = b >> 17;
p[ 8] = b >> 9;
p[ 9] = b >> 1;
p[10] = (b << 7) | (p[10] & 0x7E) | ((e >> 8) & 0x01);
p[11] = e;
}
}
}
int64_t TsGetPts(const uchar *p, int l)
{
// Find the first packet with a PTS and use it:
while (l > 0) {
const uchar *d = p;
if (TsPayloadStart(d) && TsGetPayload(&d) && PesHasPts(d))
return PesGetPts(d);
p += TS_SIZE;
l -= TS_SIZE;
}
return -1;
}
int64_t TsGetDts(const uchar *p, int l)
{
// Find the first packet with a DTS and use it:
while (l > 0) {
const uchar *d = p;
if (TsPayloadStart(d) && TsGetPayload(&d) && PesHasDts(d))
return PesGetDts(d);
p += TS_SIZE;
l -= TS_SIZE;
}
return -1;
}
void TsSetPts(uchar *p, int l, int64_t Pts)
{
// Find the first packet with a PTS and use it:
while (l > 0) {
const uchar *d = p;
if (TsPayloadStart(d) && TsGetPayload(&d) && PesHasPts(d)) {
PesSetPts(const_cast<uchar *>(d), Pts);
return;
}
p += TS_SIZE;
l -= TS_SIZE;
}
}
void TsSetDts(uchar *p, int l, int64_t Dts)
{
// Find the first packet with a DTS and use it:
while (l > 0) {
const uchar *d = p;
if (TsPayloadStart(d) && TsGetPayload(&d) && PesHasDts(d)) {
PesSetDts(const_cast<uchar *>(d), Dts);
return;
}
p += TS_SIZE;
l -= TS_SIZE;
}
}
// --- Some PES handling tools -----------------------------------------------
void PesSetPts(uchar *p, int64_t Pts)
{
p[ 9] = ((Pts >> 29) & 0x0E) | (p[9] & 0xF1);
p[10] = Pts >> 22;
p[11] = ((Pts >> 14) & 0xFE) | 0x01;
p[12] = Pts >> 7;
p[13] = ((Pts << 1) & 0xFE) | 0x01;
}
void PesSetDts(uchar *p, int64_t Dts)
{
p[14] = ((Dts >> 29) & 0x0E) | (p[14] & 0xF1);
p[15] = Dts >> 22;
p[16] = ((Dts >> 14) & 0xFE) | 0x01;
p[17] = Dts >> 7;
p[18] = ((Dts << 1) & 0xFE) | 0x01;
}
int64_t PtsDiff(int64_t Pts1, int64_t Pts2)
{
int64_t d = Pts2 - Pts1;
if (d > MAX33BIT / 2)
return d - (MAX33BIT + 1);
if (d < -MAX33BIT / 2)
return d + (MAX33BIT + 1);
return d;
}
// --- cTsPayload ------------------------------------------------------------
cTsPayload::cTsPayload(void)
{
data = NULL;
length = 0;
pid = -1;
Reset();
}
cTsPayload::cTsPayload(uchar *Data, int Length, int Pid)
{
Setup(Data, Length, Pid);
}
uchar cTsPayload::SetEof(void)
{
length = index; // triggers EOF
return 0x00;
}
void cTsPayload::Reset(void)
{
index = 0;
numPacketsPid = 0;
numPacketsOther = 0;
}
void cTsPayload::Setup(uchar *Data, int Length, int Pid)
{
data = Data;
length = Length;
pid = Pid >= 0 ? Pid : TsPid(Data);
Reset();
}
uchar cTsPayload::GetByte(void)
{
if (!Eof()) {
if (index % TS_SIZE == 0) { // encountered the next TS header
for (;; index += TS_SIZE) {
if (data[index] == TS_SYNC_BYTE && index + TS_SIZE <= length) { // to make sure we are at a TS header start and drop incomplete TS packets at the end
uchar *p = data + index;
if (TsPid(p) == pid) { // only handle TS packets for the initial PID
if (++numPacketsPid > MAX_TS_PACKETS_FOR_VIDEO_FRAME_DETECTION)
return SetEof();
if (TsHasPayload(p)) {
if (index > 0 && TsPayloadStart(p)) // checking index to not skip the very first TS packet
return SetEof();
index += TsPayloadOffset(p);
break;
}
}
else if (TsPid(p) == PATPID)
return SetEof(); // caller must see PAT packets in case of index regeneration
else
numPacketsOther++;
}
else
return SetEof();
}
}
return data[index++];
}
return 0x00;
}
bool cTsPayload::SkipBytes(int Bytes)
{
while (Bytes-- > 0)
GetByte();
return !Eof();
}
bool cTsPayload::SkipPesHeader(void)
{
return SkipBytes(PesPayloadOffset(data + TsPayloadOffset(data)));
}
int cTsPayload::GetLastIndex(void)
{
return index - 1;
}
void cTsPayload::SetByte(uchar Byte, int Index)
{
if (Index >= 0 && Index < length)
data[Index] = Byte;
}
bool cTsPayload::Find(uint32_t Code)
{
int OldIndex = index;
int OldNumPacketsPid = numPacketsPid;
int OldNumPacketsOther = numPacketsOther;
uint32_t Scanner = EMPTY_SCANNER;
while (!Eof()) {
Scanner = (Scanner << 8) | GetByte();
if (Scanner == Code)
return true;
}
index = OldIndex;
numPacketsPid = OldNumPacketsPid;
numPacketsOther = OldNumPacketsOther;
return false;
}
void cTsPayload::Statistics(void) const
{
if (numPacketsPid + numPacketsOther > WRN_TS_PACKETS_FOR_FRAME_DETECTOR)
dsyslog("WARNING: required (%d+%d) TS packets to determine frame type", numPacketsOther, numPacketsPid);
if (numPacketsPid > WRN_TS_PACKETS_FOR_VIDEO_FRAME_DETECTION)
dsyslog("WARNING: required %d video TS packets to determine frame type", numPacketsPid);
}
// --- cPatPmtGenerator ------------------------------------------------------
cPatPmtGenerator::cPatPmtGenerator(const cChannel *Channel)
{
numPmtPackets = 0;
patCounter = pmtCounter = 0;
patVersion = pmtVersion = 0;
pmtPid = 0;
esInfoLength = NULL;
SetChannel(Channel);
}
void cPatPmtGenerator::IncCounter(int &Counter, uchar *TsPacket)
{
TsPacket[3] = (TsPacket[3] & 0xF0) | Counter;
if (++Counter > 0x0F)
Counter = 0x00;
}
void cPatPmtGenerator::IncVersion(int &Version)
{
if (++Version > 0x1F)
Version = 0x00;
}
void cPatPmtGenerator::IncEsInfoLength(int Length)
{
if (esInfoLength) {
Length += ((*esInfoLength & 0x0F) << 8) | *(esInfoLength + 1);
*esInfoLength = 0xF0 | (Length >> 8);
*(esInfoLength + 1) = Length;
}
}
int cPatPmtGenerator::MakeStream(uchar *Target, uchar Type, int Pid)
{
int i = 0;
Target[i++] = Type; // stream type
Target[i++] = 0xE0 | (Pid >> 8); // dummy (3), pid hi (5)
Target[i++] = Pid; // pid lo
esInfoLength = &Target[i];
Target[i++] = 0xF0; // dummy (4), ES info length hi
Target[i++] = 0x00; // ES info length lo
return i;
}
int cPatPmtGenerator::MakeAC3Descriptor(uchar *Target, uchar Type)
{
int i = 0;
Target[i++] = Type;
Target[i++] = 0x01; // length
Target[i++] = 0x00;
IncEsInfoLength(i);
return i;
}
int cPatPmtGenerator::MakeSubtitlingDescriptor(uchar *Target, const char *Language, uchar SubtitlingType, uint16_t CompositionPageId, uint16_t AncillaryPageId)
{
int i = 0;
Target[i++] = SI::SubtitlingDescriptorTag;
Target[i++] = 0x08; // length
Target[i++] = *Language++;
Target[i++] = *Language++;
Target[i++] = *Language++;
Target[i++] = SubtitlingType;
Target[i++] = CompositionPageId >> 8;
Target[i++] = CompositionPageId & 0xFF;
Target[i++] = AncillaryPageId >> 8;
Target[i++] = AncillaryPageId & 0xFF;
IncEsInfoLength(i);
return i;
}
int cPatPmtGenerator::MakeLanguageDescriptor(uchar *Target, const char *Language)
{
int i = 0;
Target[i++] = SI::ISO639LanguageDescriptorTag;
int Length = i++;
Target[Length] = 0x00; // length
for (const char *End = Language + strlen(Language); Language < End; ) {
Target[i++] = *Language++;
Target[i++] = *Language++;
Target[i++] = *Language++;
Target[i++] = 0x00; // audio type
Target[Length] += 0x04; // length
if (*Language == '+')
Language++;
}
IncEsInfoLength(i);
return i;
}
int cPatPmtGenerator::MakeCRC(uchar *Target, const uchar *Data, int Length)
{
int crc = SI::CRC32::crc32((const char *)Data, Length, 0xFFFFFFFF);
int i = 0;
Target[i++] = crc >> 24;
Target[i++] = crc >> 16;
Target[i++] = crc >> 8;
Target[i++] = crc;
return i;
}
#define P_TSID 0x8008 // pseudo TS ID
#define P_PMT_PID 0x0084 // pseudo PMT pid
#define MAXPID 0x2000 // the maximum possible number of pids
void cPatPmtGenerator::GeneratePmtPid(const cChannel *Channel)
{
bool Used[MAXPID] = { false };
#define SETPID(p) { if ((p) >= 0 && (p) < MAXPID) Used[p] = true; }
#define SETPIDS(l) { const int *p = l; while (*p) { SETPID(*p); p++; } }
SETPID(Channel->Vpid());
SETPID(Channel->Ppid());
SETPID(Channel->Tpid());
SETPIDS(Channel->Apids());
SETPIDS(Channel->Dpids());
SETPIDS(Channel->Spids());
for (pmtPid = P_PMT_PID; Used[pmtPid]; pmtPid++)
;
}
void cPatPmtGenerator::GeneratePat(void)
{
memset(pat, 0xFF, sizeof(pat));
uchar *p = pat;
int i = 0;
p[i++] = TS_SYNC_BYTE; // TS indicator
p[i++] = TS_PAYLOAD_START | (PATPID >> 8); // flags (3), pid hi (5)
p[i++] = PATPID & 0xFF; // pid lo
p[i++] = 0x10; // flags (4), continuity counter (4)
p[i++] = 0x00; // pointer field (payload unit start indicator is set)
int PayloadStart = i;
p[i++] = 0x00; // table id
p[i++] = 0xB0; // section syntax indicator (1), dummy (3), section length hi (4)
int SectionLength = i;
p[i++] = 0x00; // section length lo (filled in later)
p[i++] = P_TSID >> 8; // TS id hi
p[i++] = P_TSID & 0xFF; // TS id lo
p[i++] = 0xC1 | (patVersion << 1); // dummy (2), version number (5), current/next indicator (1)
p[i++] = 0x00; // section number
p[i++] = 0x00; // last section number
p[i++] = pmtPid >> 8; // program number hi
p[i++] = pmtPid & 0xFF; // program number lo
p[i++] = 0xE0 | (pmtPid >> 8); // dummy (3), PMT pid hi (5)
p[i++] = pmtPid & 0xFF; // PMT pid lo
pat[SectionLength] = i - SectionLength - 1 + 4; // -2 = SectionLength storage, +4 = length of CRC
MakeCRC(pat + i, pat + PayloadStart, i - PayloadStart);
IncVersion(patVersion);
}
void cPatPmtGenerator::GeneratePmt(const cChannel *Channel)
{
// generate the complete PMT section:
uchar buf[MAX_SECTION_SIZE];
memset(buf, 0xFF, sizeof(buf));
numPmtPackets = 0;
if (Channel) {
int Vpid = Channel->Vpid();
int Ppid = Channel->Ppid();
uchar *p = buf;
int i = 0;
p[i++] = 0x02; // table id
int SectionLength = i;
p[i++] = 0xB0; // section syntax indicator (1), dummy (3), section length hi (4)
p[i++] = 0x00; // section length lo (filled in later)
p[i++] = pmtPid >> 8; // program number hi
p[i++] = pmtPid & 0xFF; // program number lo
p[i++] = 0xC1 | (pmtVersion << 1); // dummy (2), version number (5), current/next indicator (1)
p[i++] = 0x00; // section number
p[i++] = 0x00; // last section number
p[i++] = 0xE0 | (Ppid >> 8); // dummy (3), PCR pid hi (5)
p[i++] = Ppid; // PCR pid lo
p[i++] = 0xF0; // dummy (4), program info length hi (4)
p[i++] = 0x00; // program info length lo
if (Vpid)
i += MakeStream(buf + i, Channel->Vtype(), Vpid);
for (int n = 0; Channel->Apid(n); n++) {
i += MakeStream(buf + i, Channel->Atype(n), Channel->Apid(n));
const char *Alang = Channel->Alang(n);
i += MakeLanguageDescriptor(buf + i, Alang);
}
for (int n = 0; Channel->Dpid(n); n++) {
i += MakeStream(buf + i, 0x06, Channel->Dpid(n));
i += MakeAC3Descriptor(buf + i, Channel->Dtype(n));
i += MakeLanguageDescriptor(buf + i, Channel->Dlang(n));
}
for (int n = 0; Channel->Spid(n); n++) {
i += MakeStream(buf + i, 0x06, Channel->Spid(n));
i += MakeSubtitlingDescriptor(buf + i, Channel->Slang(n), Channel->SubtitlingType(n), Channel->CompositionPageId(n), Channel->AncillaryPageId(n));
}
int sl = i - SectionLength - 2 + 4; // -2 = SectionLength storage, +4 = length of CRC
buf[SectionLength] |= (sl >> 8) & 0x0F;
buf[SectionLength + 1] = sl;
MakeCRC(buf + i, buf, i);
// split the PMT section into several TS packets:
uchar *q = buf;
bool pusi = true;
while (i > 0) {
uchar *p = pmt[numPmtPackets++];
int j = 0;
p[j++] = TS_SYNC_BYTE; // TS indicator
p[j++] = (pusi ? TS_PAYLOAD_START : 0x00) | (pmtPid >> 8); // flags (3), pid hi (5)
p[j++] = pmtPid & 0xFF; // pid lo
p[j++] = 0x10; // flags (4), continuity counter (4)
if (pusi) {
p[j++] = 0x00; // pointer field (payload unit start indicator is set)
pusi = false;
}
int l = TS_SIZE - j;
memcpy(p + j, q, l);
q += l;
i -= l;
}
IncVersion(pmtVersion);
}
}
void cPatPmtGenerator::SetVersions(int PatVersion, int PmtVersion)
{
patVersion = PatVersion & 0x1F;
pmtVersion = PmtVersion & 0x1F;
}
void cPatPmtGenerator::SetChannel(const cChannel *Channel)
{
if (Channel) {
GeneratePmtPid(Channel);
GeneratePat();
GeneratePmt(Channel);
}
}
uchar *cPatPmtGenerator::GetPat(void)
{
IncCounter(patCounter, pat);
return pat;
}
uchar *cPatPmtGenerator::GetPmt(int &Index)
{
if (Index < numPmtPackets) {
IncCounter(pmtCounter, pmt[Index]);
return pmt[Index++];
}
return NULL;
}
// --- cPatPmtParser ---------------------------------------------------------
cPatPmtParser::cPatPmtParser(bool UpdatePrimaryDevice)
{
updatePrimaryDevice = UpdatePrimaryDevice;
Reset();
}
void cPatPmtParser::Reset(void)
{
pmtSize = 0;
patVersion = pmtVersion = -1;
pmtPids[0] = 0;
vpid = vtype = 0;
ppid = 0;
}
void cPatPmtParser::ParsePat(const uchar *Data, int Length)
{
// Unpack the TS packet:
int PayloadOffset = TsPayloadOffset(Data);
Data += PayloadOffset;
Length -= PayloadOffset;
// The PAT is always assumed to fit into a single TS packet
if ((Length -= Data[0] + 1) <= 0)
return;
Data += Data[0] + 1; // process pointer_field
SI::PAT Pat(Data, false);
if (Pat.CheckCRCAndParse()) {
dbgpatpmt("PAT: TSid = %d, c/n = %d, v = %d, s = %d, ls = %d\n", Pat.getTransportStreamId(), Pat.getCurrentNextIndicator(), Pat.getVersionNumber(), Pat.getSectionNumber(), Pat.getLastSectionNumber());
if (patVersion == Pat.getVersionNumber())
return;
int NumPmtPids = 0;
SI::PAT::Association assoc;
for (SI::Loop::Iterator it; Pat.associationLoop.getNext(assoc, it); ) {
dbgpatpmt(" isNITPid = %d\n", assoc.isNITPid());
if (!assoc.isNITPid()) {
if (NumPmtPids <= MAX_PMT_PIDS)
pmtPids[NumPmtPids++] = assoc.getPid();
dbgpatpmt(" service id = %d, pid = %d\n", assoc.getServiceId(), assoc.getPid());
}
}
pmtPids[NumPmtPids] = 0;
patVersion = Pat.getVersionNumber();
}
else
esyslog("ERROR: can't parse PAT");
}
void cPatPmtParser::ParsePmt(const uchar *Data, int Length)
{
// Unpack the TS packet:
bool PayloadStart = TsPayloadStart(Data);
int PayloadOffset = TsPayloadOffset(Data);
Data += PayloadOffset;
Length -= PayloadOffset;
// The PMT may extend over several TS packets, so we need to assemble them
if (PayloadStart) {
pmtSize = 0;
if ((Length -= Data[0] + 1) <= 0)
return;
Data += Data[0] + 1; // this is the first packet
if (SectionLength(Data, Length) > Length) {
if (Length <= int(sizeof(pmt))) {
memcpy(pmt, Data, Length);
pmtSize = Length;
}
else
esyslog("ERROR: PMT packet length too big (%d byte)!", Length);
return;
}
// the packet contains the entire PMT section, so we run into the actual parsing
}
else if (pmtSize > 0) {
// this is a following packet, so we add it to the pmt storage
if (Length <= int(sizeof(pmt)) - pmtSize) {
memcpy(pmt + pmtSize, Data, Length);
pmtSize += Length;
}
else {
esyslog("ERROR: PMT section length too big (%d byte)!", pmtSize + Length);
pmtSize = 0;
}
if (SectionLength(pmt, pmtSize) > pmtSize)
return; // more packets to come
// the PMT section is now complete, so we run into the actual parsing
Data = pmt;
}
else
return; // fragment of broken packet - ignore
SI::PMT Pmt(Data, false);
if (Pmt.CheckCRCAndParse()) {
dbgpatpmt("PMT: sid = %d, c/n = %d, v = %d, s = %d, ls = %d\n", Pmt.getServiceId(), Pmt.getCurrentNextIndicator(), Pmt.getVersionNumber(), Pmt.getSectionNumber(), Pmt.getLastSectionNumber());
dbgpatpmt(" pcr = %d\n", Pmt.getPCRPid());
if (pmtVersion == Pmt.getVersionNumber())
return;
if (updatePrimaryDevice)
cDevice::PrimaryDevice()->ClrAvailableTracks(false, true);
int NumApids = 0;
int NumDpids = 0;
int NumSpids = 0;
vpid = vtype = 0;
ppid = 0;
apids[0] = 0;
dpids[0] = 0;
spids[0] = 0;
atypes[0] = 0;
dtypes[0] = 0;
SI::PMT::Stream stream;
for (SI::Loop::Iterator it; Pmt.streamLoop.getNext(stream, it); ) {
dbgpatpmt(" stream type = %02X, pid = %d", stream.getStreamType(), stream.getPid());
switch (stream.getStreamType()) {
case 0x01: // STREAMTYPE_11172_VIDEO
case 0x02: // STREAMTYPE_13818_VIDEO
case 0x1B: // H.264
vpid = stream.getPid();
vtype = stream.getStreamType();
ppid = Pmt.getPCRPid();
break;
case 0x03: // STREAMTYPE_11172_AUDIO
case 0x04: // STREAMTYPE_13818_AUDIO
case 0x0F: // ISO/IEC 13818-7 Audio with ADTS transport syntax
case 0x11: // ISO/IEC 14496-3 Audio with LATM transport syntax
{
if (NumApids < MAXAPIDS) {
apids[NumApids] = stream.getPid();
atypes[NumApids] = stream.getStreamType();
*alangs[NumApids] = 0;
SI::Descriptor *d;
for (SI::Loop::Iterator it; (d = stream.streamDescriptors.getNext(it)); ) {
switch (d->getDescriptorTag()) {
case SI::ISO639LanguageDescriptorTag: {
SI::ISO639LanguageDescriptor *ld = (SI::ISO639LanguageDescriptor *)d;
SI::ISO639LanguageDescriptor::Language l;
char *s = alangs[NumApids];
int n = 0;
for (SI::Loop::Iterator it; ld->languageLoop.getNext(l, it); ) {
if (*ld->languageCode != '-') { // some use "---" to indicate "none"
dbgpatpmt(" '%s'", l.languageCode);
if (n > 0)
*s++ = '+';
strn0cpy(s, I18nNormalizeLanguageCode(l.languageCode), MAXLANGCODE1);
s += strlen(s);
if (n++ > 1)
break;
}
}
}
break;
default: ;
}
delete d;
}
if (updatePrimaryDevice)
cDevice::PrimaryDevice()->SetAvailableTrack(ttAudio, NumApids, apids[NumApids], alangs[NumApids]);
NumApids++;
apids[NumApids] = 0;
}
}
break;
case 0x06: // STREAMTYPE_13818_PES_PRIVATE
{
int dpid = 0;
int dtype = 0;
char lang[MAXLANGCODE1] = "";
SI::Descriptor *d;
for (SI::Loop::Iterator it; (d = stream.streamDescriptors.getNext(it)); ) {
switch (d->getDescriptorTag()) {
case SI::AC3DescriptorTag:
case SI::EnhancedAC3DescriptorTag:
dbgpatpmt(" AC3");
dpid = stream.getPid();
dtype = d->getDescriptorTag();
break;
case SI::SubtitlingDescriptorTag:
dbgpatpmt(" subtitling");
if (NumSpids < MAXSPIDS) {
spids[NumSpids] = stream.getPid();
*slangs[NumSpids] = 0;
subtitlingTypes[NumSpids] = 0;
compositionPageIds[NumSpids] = 0;
ancillaryPageIds[NumSpids] = 0;
SI::SubtitlingDescriptor *sd = (SI::SubtitlingDescriptor *)d;
SI::SubtitlingDescriptor::Subtitling sub;
char *s = slangs[NumSpids];
int n = 0;
for (SI::Loop::Iterator it; sd->subtitlingLoop.getNext(sub, it); ) {
if (sub.languageCode[0]) {
dbgpatpmt(" '%s'", sub.languageCode);
subtitlingTypes[NumSpids] = sub.getSubtitlingType();
compositionPageIds[NumSpids] = sub.getCompositionPageId();
ancillaryPageIds[NumSpids] = sub.getAncillaryPageId();
if (n > 0)
*s++ = '+';
strn0cpy(s, I18nNormalizeLanguageCode(sub.languageCode), MAXLANGCODE1);
s += strlen(s);
if (n++ > 1)
break;
}
}
if (updatePrimaryDevice)
cDevice::PrimaryDevice()->SetAvailableTrack(ttSubtitle, NumSpids, spids[NumSpids], slangs[NumSpids]);
NumSpids++;
spids[NumSpids] = 0;
}
break;
case SI::ISO639LanguageDescriptorTag: {
SI::ISO639LanguageDescriptor *ld = (SI::ISO639LanguageDescriptor *)d;
dbgpatpmt(" '%s'", ld->languageCode);
strn0cpy(lang, I18nNormalizeLanguageCode(ld->languageCode), MAXLANGCODE1);
}
break;
default: ;
}
delete d;
}
if (dpid) {
if (NumDpids < MAXDPIDS) {
dpids[NumDpids] = dpid;
dtypes[NumDpids] = dtype;
strn0cpy(dlangs[NumDpids], lang, sizeof(dlangs[NumDpids]));
if (updatePrimaryDevice && Setup.UseDolbyDigital)
cDevice::PrimaryDevice()->SetAvailableTrack(ttDolby, NumDpids, dpid, lang);
NumDpids++;
dpids[NumDpids] = 0;
}
}
}
break;
case 0x81: // STREAMTYPE_USER_PRIVATE - AC3 audio for ATSC and BD
case 0x82: // STREAMTYPE_USER_PRIVATE - DTS audio for BD
{
dbgpatpmt(" %s",
stream.getStreamType() == 0x81 ? "AC3" :
stream.getStreamType() == 0x82 ? "DTS" : "");
char lang[MAXLANGCODE1] = { 0 };
SI::Descriptor *d;
for (SI::Loop::Iterator it; (d = stream.streamDescriptors.getNext(it)); ) {
switch (d->getDescriptorTag()) {
case SI::ISO639LanguageDescriptorTag: {
SI::ISO639LanguageDescriptor *ld = (SI::ISO639LanguageDescriptor *)d;
dbgpatpmt(" '%s'", ld->languageCode);
strn0cpy(lang, I18nNormalizeLanguageCode(ld->languageCode), MAXLANGCODE1);
}
break;
default: ;
}
delete d;
}
if (NumDpids < MAXDPIDS) {
dpids[NumDpids] = stream.getPid();
dtypes[NumDpids] = SI::AC3DescriptorTag;
strn0cpy(dlangs[NumDpids], lang, sizeof(dlangs[NumDpids]));
if (updatePrimaryDevice && Setup.UseDolbyDigital)
cDevice::PrimaryDevice()->SetAvailableTrack(ttDolby, NumDpids, stream.getPid(), lang);
NumDpids++;
dpids[NumDpids] = 0;
}
}
break;
case 0x90: // PGS subtitles for BD
{
dbgpatpmt(" subtitling");
char lang[MAXLANGCODE1] = { 0 };
SI::Descriptor *d;
for (SI::Loop::Iterator it; (d = stream.streamDescriptors.getNext(it)); ) {
switch (d->getDescriptorTag()) {
case SI::ISO639LanguageDescriptorTag: {
SI::ISO639LanguageDescriptor *ld = (SI::ISO639LanguageDescriptor *)d;
dbgpatpmt(" '%s'", ld->languageCode);
strn0cpy(lang, I18nNormalizeLanguageCode(ld->languageCode), MAXLANGCODE1);
if (NumSpids < MAXSPIDS) {
spids[NumSpids] = stream.getPid();
*slangs[NumSpids] = 0;
subtitlingTypes[NumSpids] = 0;
compositionPageIds[NumSpids] = 0;
ancillaryPageIds[NumSpids] = 0;
if (updatePrimaryDevice)
cDevice::PrimaryDevice()->SetAvailableTrack(ttSubtitle, NumSpids, stream.getPid(), lang);
NumSpids++;
spids[NumSpids] = 0;
}
}
break;
default: ;
}
delete d;
}
}
break;
default: ;
}
dbgpatpmt("\n");
if (updatePrimaryDevice) {
cDevice::PrimaryDevice()->EnsureAudioTrack(true);
cDevice::PrimaryDevice()->EnsureSubtitleTrack();
}
}
pmtVersion = Pmt.getVersionNumber();
}
else
esyslog("ERROR: can't parse PMT");
pmtSize = 0;
}
bool cPatPmtParser::ParsePatPmt(const uchar *Data, int Length)
{
while (Length >= TS_SIZE) {
if (*Data != TS_SYNC_BYTE)
break; // just for safety
int Pid = TsPid(Data);
if (Pid == PATPID)
ParsePat(Data, TS_SIZE);
else if (IsPmtPid(Pid)) {
ParsePmt(Data, TS_SIZE);
if (patVersion >= 0 && pmtVersion >= 0)
return true;
}
Data += TS_SIZE;
Length -= TS_SIZE;
}
return false;
}
bool cPatPmtParser::GetVersions(int &PatVersion, int &PmtVersion) const
{
PatVersion = patVersion;
PmtVersion = pmtVersion;
return patVersion >= 0 && pmtVersion >= 0;
}
// --- cTsToPes --------------------------------------------------------------
cTsToPes::cTsToPes(void)
{
data = NULL;
size = 0;
Reset();
}
cTsToPes::~cTsToPes()
{
free(data);
}
void cTsToPes::PutTs(const uchar *Data, int Length)
{
if (TsError(Data)) {
Reset();
return; // ignore packets with TEI set, and drop any PES data collected so far
}
if (TsPayloadStart(Data))
Reset();
else if (!size)
return; // skip everything before the first payload start
Length = TsGetPayload(&Data);
if (length + Length > size) {
int NewSize = max(KILOBYTE(2), length + Length);
if (uchar *NewData = (uchar *)realloc(data, NewSize)) {
data = NewData;
size = NewSize;
}
else {
esyslog("ERROR: out of memory");
Reset();
return;
}
}
memcpy(data + length, Data, Length);
length += Length;
}
#define MAXPESLENGTH 0xFFF0
const uchar *cTsToPes::GetPes(int &Length)
{
if (repeatLast) {
repeatLast = false;
Length = lastLength;
return lastData;
}
if (offset < length && PesLongEnough(length)) {
if (!PesHasLength(data)) // this is a video PES packet with undefined length
offset = 6; // trigger setting PES length for initial slice
if (offset) {
uchar *p = data + offset - 6;
if (p != data) {
p -= 3;
if (p < data) {
Reset();
return NULL;
}
memmove(p, data, 4);
}
int l = min(length - offset, MAXPESLENGTH);
offset += l;
if (p != data) {
l += 3;
p[6] = 0x80;
p[7] = 0x00;
p[8] = 0x00;
}
p[4] = l / 256;
p[5] = l & 0xFF;
Length = l + 6;
lastLength = Length;
lastData = p;
return p;
}
else {
Length = PesLength(data);
if (Length <= length) {
offset = Length; // to make sure we break out in case of garbage data
lastLength = Length;
lastData = data;
return data;
}
}
}
return NULL;
}
void cTsToPes::SetRepeatLast(void)
{
repeatLast = true;
}
void cTsToPes::Reset(void)
{
length = offset = 0;
lastData = NULL;
lastLength = 0;
repeatLast = false;
}
// --- Some helper functions for debugging -----------------------------------
void BlockDump(const char *Name, const u_char *Data, int Length)
{
printf("--- %s\n", Name);
for (int i = 0; i < Length; i++) {
if (i && (i % 16) == 0)
printf("\n");
printf(" %02X", Data[i]);
}
printf("\n");
}
void TsDump(const char *Name, const u_char *Data, int Length)
{
printf("%s: %04X", Name, Length);
int n = min(Length, 20);
for (int i = 0; i < n; i++)
printf(" %02X", Data[i]);
if (n < Length) {
printf(" ...");
n = max(n, Length - 10);
for (n = max(n, Length - 10); n < Length; n++)
printf(" %02X", Data[n]);
}
printf("\n");
}
void PesDump(const char *Name, const u_char *Data, int Length)
{
TsDump(Name, Data, Length);
}
// --- cFrameParser ----------------------------------------------------------
class cFrameParser {
protected:
bool debug;
bool newFrame;
bool independentFrame;
int iFrameTemporalReferenceOffset;
public:
cFrameParser(void);
virtual ~cFrameParser() {};
virtual int Parse(const uchar *Data, int Length, int Pid) = 0;
///< Parses the given Data, which is a sequence of Length bytes of TS packets.
///< The payload in the TS packets with the given Pid is searched for just
///< enough information to determine the beginning and type of the next video
///< frame.
///< Returns the number of bytes parsed. Upon return, the functions NewFrame()
///< and IndependentFrame() can be called to retrieve the required information.
void SetDebug(bool Debug) { debug = Debug; }
bool NewFrame(void) { return newFrame; }
bool IndependentFrame(void) { return independentFrame; }
int IFrameTemporalReferenceOffset(void) { return iFrameTemporalReferenceOffset; }
};
cFrameParser::cFrameParser(void)
{
debug = true;
newFrame = false;
independentFrame = false;
iFrameTemporalReferenceOffset = 0;
}
// --- cAudioParser ----------------------------------------------------------
class cAudioParser : public cFrameParser {
public:
cAudioParser(void);
virtual int Parse(const uchar *Data, int Length, int Pid);
};
cAudioParser::cAudioParser(void)
{
}
int cAudioParser::Parse(const uchar *Data, int Length, int Pid)
{
if (TsPayloadStart(Data)) {
newFrame = independentFrame = true;
if (debug)
dbgframes("/");
}
else
newFrame = independentFrame = false;
return TS_SIZE;
}
// --- cMpeg2Parser ----------------------------------------------------------
class cMpeg2Parser : public cFrameParser {
private:
uint32_t scanner;
bool seenIndependentFrame;
int lastIFrameTemporalReference;
public:
cMpeg2Parser(void);
virtual int Parse(const uchar *Data, int Length, int Pid);
};
cMpeg2Parser::cMpeg2Parser(void)
{
scanner = EMPTY_SCANNER;
seenIndependentFrame = false;
lastIFrameTemporalReference = -1; // invalid
}
int cMpeg2Parser::Parse(const uchar *Data, int Length, int Pid)
{
newFrame = independentFrame = false;
bool SeenPayloadStart = false;
cTsPayload tsPayload(const_cast<uchar *>(Data), Length, Pid);
if (TsPayloadStart(Data)) {
SeenPayloadStart = true;
tsPayload.SkipPesHeader();
scanner = EMPTY_SCANNER;
if (debug && seenIndependentFrame)
dbgframes("/");
}
uint32_t OldScanner = scanner; // need to remember it in case of multiple frames per payload
for (;;) {
if (!SeenPayloadStart && tsPayload.AtTsStart())
OldScanner = scanner;
scanner = (scanner << 8) | tsPayload.GetByte();
if (scanner == 0x00000100) { // Picture Start Code
if (!SeenPayloadStart && tsPayload.GetLastIndex() > TS_SIZE) {
scanner = OldScanner;
return tsPayload.Used() - TS_SIZE;
}
uchar b1 = tsPayload.GetByte();
uchar b2 = tsPayload.GetByte();
int TemporalReference = (b1 << 2 ) + ((b2 & 0xC0) >> 6);
uchar FrameType = (b2 >> 3) & 0x07;
if (tsPayload.Find(0x000001B5)) { // Extension start code
if (((tsPayload.GetByte() & 0xF0) >> 4) == 0x08) { // Picture coding extension
tsPayload.GetByte();
uchar PictureStructure = tsPayload.GetByte() & 0x03;
if (PictureStructure == 0x02) // bottom field
break;
}
}
newFrame = true;
independentFrame = FrameType == 1; // I-Frame
if (independentFrame) {
if (lastIFrameTemporalReference >= 0)
iFrameTemporalReferenceOffset = TemporalReference - lastIFrameTemporalReference;
lastIFrameTemporalReference = TemporalReference;
}
if (debug) {
seenIndependentFrame |= independentFrame;
if (seenIndependentFrame) {
static const char FrameTypes[] = "?IPBD???";
dbgframes("%c", FrameTypes[FrameType]);
}
}
tsPayload.Statistics();
break;
}
if (tsPayload.AtPayloadStart() // stop at any new payload start to have the buffer refilled if necessary
|| tsPayload.Eof()) // or if we're out of data
break;
}
return tsPayload.Used();
}
// --- cH264Parser -----------------------------------------------------------
class cH264Parser : public cFrameParser {
private:
enum eNalUnitType {
nutCodedSliceNonIdr = 1,
nutCodedSliceIdr = 5,
nutSequenceParameterSet = 7,
nutAccessUnitDelimiter = 9,
};
cTsPayload tsPayload;
uchar byte; // holds the current byte value in case of bitwise access
int bit; // the bit index into the current byte (-1 if we're not in bit reading mode)
int zeroBytes; // the number of consecutive zero bytes (to detect 0x000003)
uint32_t scanner;
// Identifiers written in '_' notation as in "ITU-T H.264":
bool separate_colour_plane_flag;
int log2_max_frame_num;
bool frame_mbs_only_flag;
//
bool gotAccessUnitDelimiter;
bool gotSequenceParameterSet;
uchar GetByte(bool Raw = false);
///< Gets the next data byte. If Raw is true, no filtering will be done.
///< With Raw set to false, if the byte sequence 0x000003 is encountered,
///< the byte with 0x03 will be skipped.
uchar GetBit(void);
uint32_t GetBits(int Bits);
uint32_t GetGolombUe(void);
int32_t GetGolombSe(void);
void ParseAccessUnitDelimiter(void);
void ParseSequenceParameterSet(void);
void ParseSliceHeader(void);
public:
cH264Parser(void);
///< Sets up a new H.264 parser.
///< This class parses only the data absolutely necessary to determine the
///< frame borders and field count of the given H264 material.
virtual int Parse(const uchar *Data, int Length, int Pid);
};
cH264Parser::cH264Parser(void)
{
byte = 0;
bit = -1;
zeroBytes = 0;
scanner = EMPTY_SCANNER;
separate_colour_plane_flag = false;
log2_max_frame_num = 0;
frame_mbs_only_flag = false;
gotAccessUnitDelimiter = false;
gotSequenceParameterSet = false;
}
uchar cH264Parser::GetByte(bool Raw)
{
uchar b = tsPayload.GetByte();
if (!Raw) {
// If we encounter the byte sequence 0x000003, we need to skip the 0x03:
if (b == 0x00)
zeroBytes++;
else {
if (b == 0x03 && zeroBytes >= 2)
b = tsPayload.GetByte();
zeroBytes = 0;
}
}
else
zeroBytes = 0;
bit = -1;
return b;
}
uchar cH264Parser::GetBit(void)
{
if (bit < 0) {
byte = GetByte();
bit = 7;
}
return (byte & (1 << bit--)) ? 1 : 0;
}
uint32_t cH264Parser::GetBits(int Bits)
{
uint32_t b = 0;
while (Bits--)
b |= GetBit() << Bits;
return b;
}
uint32_t cH264Parser::GetGolombUe(void)
{
int z = -1;
for (int b = 0; !b && z < 32; z++) // limiting z to no get stuck if GetBit() always returns 0
b = GetBit();
return (1 << z) - 1 + GetBits(z);
}
int32_t cH264Parser::GetGolombSe(void)
{
uint32_t v = GetGolombUe();
if (v) {
if ((v & 0x01) != 0)
return (v + 1) / 2; // fails for v == 0xFFFFFFFF, but that will probably never happen
else
return -int32_t(v / 2);
}
return v;
}
int cH264Parser::Parse(const uchar *Data, int Length, int Pid)
{
newFrame = independentFrame = false;
tsPayload.Setup(const_cast<uchar *>(Data), Length, Pid);
if (TsPayloadStart(Data)) {
tsPayload.SkipPesHeader();
scanner = EMPTY_SCANNER;
if (debug && gotSequenceParameterSet) {
dbgframes("/");
}
}
for (;;) {
scanner = (scanner << 8) | GetByte(true);
if ((scanner & 0xFFFFFF00) == 0x00000100) { // NAL unit start
uchar NalUnitType = scanner & 0x1F;
switch (NalUnitType) {
case nutAccessUnitDelimiter: ParseAccessUnitDelimiter();
gotAccessUnitDelimiter = true;
break;
case nutSequenceParameterSet: if (gotAccessUnitDelimiter) {
ParseSequenceParameterSet();
gotSequenceParameterSet = true;
}
break;
case nutCodedSliceNonIdr:
case nutCodedSliceIdr: if (gotAccessUnitDelimiter && gotSequenceParameterSet) {
ParseSliceHeader();
gotAccessUnitDelimiter = false;
if (newFrame)
tsPayload.Statistics();
return tsPayload.Used();
}
break;
default: ;
}
}
if (tsPayload.AtPayloadStart() // stop at any new payload start to have the buffer refilled if necessary
|| tsPayload.Eof()) // or if we're out of data
break;
}
return tsPayload.Used();
}
void cH264Parser::ParseAccessUnitDelimiter(void)
{
if (debug && gotSequenceParameterSet)
dbgframes("A");
GetByte(); // primary_pic_type
}
void cH264Parser::ParseSequenceParameterSet(void)
{
uchar profile_idc = GetByte(); // profile_idc
GetByte(); // constraint_set[0-5]_flags, reserved_zero_2bits
GetByte(); // level_idc
GetGolombUe(); // seq_parameter_set_id
if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 || profile_idc == 244 || profile_idc == 44 || profile_idc == 83 || profile_idc == 86 || profile_idc ==118 || profile_idc == 128) {
int chroma_format_idc = GetGolombUe(); // chroma_format_idc
if (chroma_format_idc == 3)
separate_colour_plane_flag = GetBit();
GetGolombUe(); // bit_depth_luma_minus8
GetGolombUe(); // bit_depth_chroma_minus8
GetBit(); // qpprime_y_zero_transform_bypass_flag
if (GetBit()) { // seq_scaling_matrix_present_flag
for (int i = 0; i < ((chroma_format_idc != 3) ? 8 : 12); i++) {
if (GetBit()) { // seq_scaling_list_present_flag
int SizeOfScalingList = (i < 6) ? 16 : 64;
int LastScale = 8;
int NextScale = 8;
for (int j = 0; j < SizeOfScalingList; j++) {
if (NextScale)
NextScale = (LastScale + GetGolombSe() + 256) % 256; // delta_scale
if (NextScale)
LastScale = NextScale;
}
}
}
}
}
log2_max_frame_num = GetGolombUe() + 4; // log2_max_frame_num_minus4
int pic_order_cnt_type = GetGolombUe(); // pic_order_cnt_type
if (pic_order_cnt_type == 0)
GetGolombUe(); // log2_max_pic_order_cnt_lsb_minus4
else if (pic_order_cnt_type == 1) {
GetBit(); // delta_pic_order_always_zero_flag
GetGolombSe(); // offset_for_non_ref_pic
GetGolombSe(); // offset_for_top_to_bottom_field
for (int i = GetGolombUe(); i--; ) // num_ref_frames_in_pic_order_cnt_cycle
GetGolombSe(); // offset_for_ref_frame
}
GetGolombUe(); // max_num_ref_frames
GetBit(); // gaps_in_frame_num_value_allowed_flag
GetGolombUe(); // pic_width_in_mbs_minus1
GetGolombUe(); // pic_height_in_map_units_minus1
frame_mbs_only_flag = GetBit(); // frame_mbs_only_flag
if (debug) {
if (gotAccessUnitDelimiter && !gotSequenceParameterSet)
dbgframes("A"); // just for completeness
dbgframes(frame_mbs_only_flag ? "S" : "s");
}
}
void cH264Parser::ParseSliceHeader(void)
{
newFrame = true;
GetGolombUe(); // first_mb_in_slice
int slice_type = GetGolombUe(); // slice_type, 0 = P, 1 = B, 2 = I, 3 = SP, 4 = SI
independentFrame = (slice_type % 5) == 2;
if (debug) {
static const char SliceTypes[] = "PBIpi";
dbgframes("%c", SliceTypes[slice_type % 5]);
}
if (frame_mbs_only_flag)
return; // don't need the rest - a frame is complete
GetGolombUe(); // pic_parameter_set_id
if (separate_colour_plane_flag)
GetBits(2); // colour_plane_id
GetBits(log2_max_frame_num); // frame_num
if (!frame_mbs_only_flag) {
if (GetBit()) // field_pic_flag
newFrame = !GetBit(); // bottom_field_flag
if (debug)
dbgframes(newFrame ? "t" : "b");
}
}
// --- cFrameDetector --------------------------------------------------------
cFrameDetector::cFrameDetector(int Pid, int Type)
{
parser = NULL;
SetPid(Pid, Type);
synced = false;
newFrame = independentFrame = false;
numPtsValues = 0;
numIFrames = 0;
framesPerSecond = 0;
framesInPayloadUnit = framesPerPayloadUnit = 0;
scanning = false;
}
static int CmpUint32(const void *p1, const void *p2)
{
if (*(uint32_t *)p1 < *(uint32_t *)p2) return -1;
if (*(uint32_t *)p1 > *(uint32_t *)p2) return 1;
return 0;
}
void cFrameDetector::SetPid(int Pid, int Type)
{
pid = Pid;
type = Type;
isVideo = type == 0x01 || type == 0x02 || type == 0x1B; // MPEG 1, 2 or H.264
delete parser;
parser = NULL;
if (type == 0x01 || type == 0x02)
parser = new cMpeg2Parser;
else if (type == 0x1B)
parser = new cH264Parser;
else if (type == 0x04 || type == 0x06) // MPEG audio or AC3 audio
parser = new cAudioParser;
else if (type != 0)
esyslog("ERROR: unknown stream type %d (PID %d) in frame detector", type, pid);
}
int cFrameDetector::Analyze(const uchar *Data, int Length)
{
if (!parser)
return 0;
int Processed = 0;
newFrame = independentFrame = false;
while (Length >= MIN_TS_PACKETS_FOR_FRAME_DETECTOR * TS_SIZE) { // makes sure we are looking at enough data, in case the frame type is not stored in the first TS packet
// Sync on TS packet borders:
if (Data[0] != TS_SYNC_BYTE) {
int Skipped = 1;
while (Skipped < Length && (Data[Skipped] != TS_SYNC_BYTE || Length - Skipped > TS_SIZE && Data[Skipped + TS_SIZE] != TS_SYNC_BYTE))
Skipped++;
esyslog("ERROR: skipped %d bytes to sync on start of TS packet", Skipped);
return Processed + Skipped;
}
// Handle one TS packet:
int Handled = TS_SIZE;
if (TsHasPayload(Data) && !TsIsScrambled(Data)) {
int Pid = TsPid(Data);
if (Pid == pid) {
if (Processed)
return Processed;
if (TsPayloadStart(Data))
scanning = true;
if (scanning) {
// Detect the beginning of a new frame:
if (TsPayloadStart(Data)) {
if (!framesPerPayloadUnit)
framesPerPayloadUnit = framesInPayloadUnit;
}
int n = parser->Parse(Data, Length, pid);
if (n > 0) {
if (parser->NewFrame()) {
newFrame = true;
independentFrame = parser->IndependentFrame();
if (synced) {
if (framesPerPayloadUnit <= 1)
scanning = false;
}
else {
framesInPayloadUnit++;
if (independentFrame)
numIFrames++;
}
}
Handled = n;
}
}
if (TsPayloadStart(Data)) {
// Determine the frame rate from the PTS values in the PES headers:
if (framesPerSecond <= 0.0) {
// frame rate unknown, so collect a sequence of PTS values:
if (numPtsValues < 2 || numPtsValues < MaxPtsValues && numIFrames < 2) { // collect a sequence containing at least two I-frames
if (newFrame) { // only take PTS values at the beginning of a frame (in case if fields!)
const uchar *Pes = Data + TsPayloadOffset(Data);
if (numIFrames && PesHasPts(Pes)) {
ptsValues[numPtsValues] = PesGetPts(Pes);
// check for rollover:
if (numPtsValues && ptsValues[numPtsValues - 1] > 0xF0000000 && ptsValues[numPtsValues] < 0x10000000) {
dbgframes("#");
numPtsValues = 0;
numIFrames = 0;
}
else
numPtsValues++;
}
}
}
if (numPtsValues >= 2 && numIFrames >= 2) {
// find the smallest PTS delta:
qsort(ptsValues, numPtsValues, sizeof(uint32_t), CmpUint32);
numPtsValues--;
for (int i = 0; i < numPtsValues; i++)
ptsValues[i] = ptsValues[i + 1] - ptsValues[i];
qsort(ptsValues, numPtsValues, sizeof(uint32_t), CmpUint32);
int Div = framesPerPayloadUnit;
if (framesPerPayloadUnit > 1)
Div += parser->IFrameTemporalReferenceOffset();
if (Div <= 0)
Div = 1;
uint32_t Delta = ptsValues[0] / Div;
// determine frame info:
if (isVideo) {
if (Delta == 3753)
framesPerSecond = 24.0 / 1.001;
else if (abs(Delta - 3600) <= 1)
framesPerSecond = 25.0;
else if (Delta % 3003 == 0)
framesPerSecond = 30.0 / 1.001;
else if (abs(Delta - 1800) <= 1)
framesPerSecond = 50.0;
else if (Delta == 1501)
framesPerSecond = 60.0 / 1.001;
else {
framesPerSecond = DEFAULTFRAMESPERSECOND;
dsyslog("unknown frame delta (%d), assuming %5.2f fps", Delta, DEFAULTFRAMESPERSECOND);
}
}
else // audio
framesPerSecond = double(PTSTICKS) / Delta; // PTS of audio frames is always increasing
dbgframes("\nDelta = %d FPS = %5.2f FPPU = %d NF = %d TRO = %d\n", Delta, framesPerSecond, framesPerPayloadUnit, numPtsValues + 1, parser->IFrameTemporalReferenceOffset());
synced = true;
parser->SetDebug(false);
}
}
}
}
else if (Pid == PATPID && synced && Processed)
return Processed; // allow the caller to see any PAT packets
}
Data += Handled;
Length -= Handled;
Processed += Handled;
if (newFrame)
break;
}
return Processed;
}