mirror of
https://github.com/vdr-projects/vdr.git
synced 2025-03-01 10:50:46 +00:00
VDR developer version 2.3.1 is now available at ftp://ftp.tvdr.de/vdr/Developer/vdr-2.3.1.tar.bz2 A 'diff' against the previous version is available at ftp://ftp.tvdr.de/vdr/Developer/vdr-2.2.0-2.3.1.diff MD5 checksums: 391c2ed60e2f7d24563fe3ed5854bc4f vdr-2.3.1.tar.bz2 983fd4bad7d19cd98301d54173107129 vdr-2.2.0-2.3.1.diff WARNING: ======== This is a *developer* version. Even though *I* use it in my productive environment, I strongly recommend that you only use it under controlled conditions and for testing and debugging. *** PLEASE BE VERY CAREFUL WHEN USING THIS DEVELOPER VERSION, ESPECIALLY *** IF YOU ENABLE THE NEW SVDRP PEERING! KEEP BACKUPS OF ALL YOUR TIMERS *** AND OBSERVE VERY CLOSELY WHETHER EVERYTHING WORKS AS EXPECTED. THIS *** VERSION INTRODUCES SOME MAJOR CHANGES IN HANDLING GLOBAL LISTS AND *** LOCKING, SO ANYTHING CAN HAPPEN! YOU HAVE BEEN WARNED! The main focus of this developer version is on the new locking mechanism for global lists, and the ability to handle remote timers. Any plugins that access the global lists of timers, channels, schedules or recordings, will need to be adjusted (see below for details). Please do initial tests with plain vanilla VDR and just the output plugin you need. Known bugs/problems: - After deleting the last recording in a sub folder, the cursor may not be positioned correctly. - Instant recordings and pausing live video don't (yet) use the default SVDRP host for recording. From the HISTORY file: - The new function cOsd::MaxPixmapSize() can be called to determine the maximum size a cPixmap may have on the current OSD. The 'osddemo' example has been modified accordingly. Plugin authors may want to use this function in case they use pixmaps that are larger than the full OSD size. The default implementation sets this limit to 2048x2048 pixel. - The Setup/CAM menu now displays which device an individual CAM is currently assigned to (suggested by Frank Neumann). - Added detection of 24fps (thanks to Thomas Reufer). - Added a note about the VDR User Counter and VDR's facebook page to the README file. - The dvbhddevice plugin is no longer part of the VDR source archive. You can get the latest version of this plugin from the author's repository at https://bitbucket.org/powARman/dvbhddevice. - The dvbsddevice and rcu plugins are no longer part of the VDR source archive. You can get the latest versions of these plugins from ftp://ftp.tvdr.de/vdr/Plugins. - Added a section about Output Devices to the INSTALL file. - Fixed setting the source value of newly created channels, in case the NIT is received from a different, but very close satellite position (reported by Daniel Ribeiro). The code for handling different NITs has been removed from nit.c, because according to the DVB standard table id 0x40 carries only the NIT of the actual network. - Added some comment to cPixmap about the relation between OSD, ViewPort and DrawPort (suggested by Thomas Reufer). - Improved syncing on sections when parsing the NIT and SDT. - Fixed scaling subtitles (their areas could sometimes extend outside the actual OSD). - Reduced the priority of the "video directory scanner" thread (suggested by Thomas Reufer) and checking cIoThrottle::Engaged() when it is running. - The script that gets called for recordings is now also called right before a recording is edited, with the first parameter being "editing" (suggested by Dieter Ferdinand). - The new setup option "OSD/Default sort mode for recordings" can be used to define how recordings shall be sorted by default (either by time or by name, with "by time" being the default). If a particular sort mode has been selected for a folder by pressing '0', the default no longer applies to that folder. Repeating timers no longer write a ".sort" file into a recordings folder to have the recordings sorted by time. - The command line option -D now accepts the value '-' (as in -D-), which prevents VDR from using any DVB devices (suggested by Dietmar Spingler). - The -V and -h options now list the plugins in alphabetical order (suggested by Dietmar Spingler). - Fixed a compiler warning in font.c. - Commented out the line #define DEPRECATED_VIDEOSYSTEM in device.h. If a plugin doesn't compile with this version of VDR, you can uncomment this line as a quick workaround. In the long run the plugin will need to be adapted. - The function cOsd::GetBitmap() is now 'protected'. If a plugin doesn't compile with this version of VDR, you can uncomment the line //#define DEPRECATED_GETBITMAP in osd.h as a quick workaround. In the long run the plugin will need to be adapted. - The -u option now also accepts a numerical user id (suggested by Derek Kelly). - The SVDRP port now accepts multiple concurrent connections. You can now keep an SVDRP connection open as long as you wish, without preventing others from connecting. Note, though, that SVDRP connections still get closed automatically if there has been no activity for 300 seconds (configurable via "Setup/Miscellaneous/SVDRP timeout (s)"). - The SVDRP log messages have been unified and now always contain the IP and port number of the remote host. - SVDRP connections are now handled in a separate "SVDRP server handler" thread, which makes them more responsive. Note that there is only one thread that handles all concurrent SVDRP connections. That way each SVDRP command is guaranteed to be processed separately, without interfering with any other SVDRP commands that might be issued at the same time. Plugins that implement SVDRP commands may need to take care of proper locking if the commands access global data. - VDR now sends out a broadcast to port 6419/udp, which was assigned to 'svdrp-disc' by the IANA. VDRs listening on that port will automatically initiate an SVDRP connection to the broadcasting VDR, and in turn send out a broadcast to make other VDRs connect to them. That way all VDRs within the local network will have permanent "peer-to-peer" SVDRP connections between each other. The configuration in the svdrphosts.conf file is taken into account when considering whether or not to respond to an SVDRP discover broadcast. - The new SVDRP command PING is used by automatically established peer-to-peer connections to keep them alive. - The new function GetSVDRPServerNames() can be used to get a list of all VDRs this VDR is connected to via SVDRP. - The new function ExecSVDRPCommand() can be used to execute an SVDRP command on one of the servers this VDR is connected to, and retrieve the result. The helper functions SVDRPCode() and SVDRPValue() can be used to easily access the codes and values returned by ExecSVDRPCommand(). - The cTimer class now has a new member named 'remote', which holds the name of the remote server this timer will record on. If this is NULL, it is a local timer. - Timers from other VDRs that are connected to this VDR via SVDRP are now automatically fetched and stored in the global Timers list. In order for this to work, all of the channels used by timers on the remote VDR must also be defined on the local VDR (however, not necessarily in the same sequence). Automatic channel syncing will be implemented later. - The main menu of the LCARS skin now displays a small rectangle on the left side of a timer if this is a remote timer. The color of that rectangle changes if the timer is currently recording on the remote VDR. - Accessing the global Timers list now has to be protected by proper locking, because SVDRP commands are now executed in a separate thread. The introduction of this locking mechanism required the following changes: + The new classes cStateLock and cStateKey are used to implement locking with quick detection of state changes. + cConfig::cConfig() now has a parameter that indicates whether this list requires locking. + The global lists of Timers, Channels, Schedules and Recordings are no longer static variables. They are now pointers that need to be retrieved through a call to cTimers::GetTimersRead/Write(), cChannels::GetChannelsRead/Write(), cSchedules::GetSchedulesRead/Write() and cRecordings::GetRecordingsRead/Write(), respectively. + References from/to link channels are now removed in cChannels::Del() rather than cChannel::~cChannel(), to make sure the caller holds a proper lock. + cChannel::HasTimer() has been removed. This information is now retrieved via cSchedule::HasTimer(). + Several member functions of cChannel, cTimer, cMarks and cRecording have been made 'const', and some of them are now available as both 'const' and 'non-const' versions. + The cChannel::Set...() functions are now 'bool' and return true if they have actually changed any of the channels's members. + cChannels::SetModified() has been renamed to cChannels::SetModifiedByUser(). + cChannels::Modified() has been renamed to cChannels::ModifiedByUser(), and now has a 'State' parameter that allows the caller to see whether a channel has been modified since the last call to this function with the same State variable. + The macros CHANNELSMOD_NONE/_AUTO/_USER have been removed. + cMarks now requires locking via cStateKey. + cSortedTimers now requires a pointer to the list of timers. + cEvent::HasTimer() no longer scans the list of timers to check whether an event is referenced by a timer, but rather keeps score of how many timers reference it. This was necessary in order to avoid having to lock the list of timers from within a cEvent. + The new class cListGarbageCollector is used to temporary store any objects deleted from cLists that require locking. This allows pointers to such objects to be dereferenced even if the objects are no longer part of the list. + cListBase::Contains() can be used to check whether a particular object is still contained in that list. + Outdated events are no longer "phased out", but rather deleted right away and thus taken care of by the new "garbage collector" of the list. + Deleted cRecording objects are no longer kept in a list of "vanished" recordings, but are rather taken care of by the new "garbage collector" of the list. + cSchedules::ClearAll() has been removed. The functionality is now implemented directly in cSVDRPServer::CmdCLRE(). + tEventID has been changed to u_int16_t in order to make room for the new member numTimers in cEvent. + cSchedule now has a member Modified(), which can be used with a State variable to quickly determine whether this schedule has been modified since the last call to this function with the same State variable. + cSchedulesLock has been removed. Locking the list of schedules is now done via the cList's new locking mechanism. + The 'OnlyRunningStatus' parameters in cEpgHandler::BeginSegmentTransfer() and cEpgHandler::EndSegmentTransfer() are now obsolete. They are still present in the interface for backward compatibility, but may be removed in a future version. Their value is always 'false'. + The constant tcMod is no longer used in cStatus::TimerChange(). The definition is still there for backward compatibility. Plugins that access the global lists of Timers, Channels, Recordings or Schedules will need to be adapted as follows: + Instead of directly accessing the global variables Timers, Channels or Recordings, they need to set up a cStateKey variable and call the proper getter function, as in cStateKey StateKey; if (const cTimers *Timers = cTimers::GetTimersRead(StateKey)) { // access the timers StateKey.Remove(); } and cStateKey StateKey; if (cTimers *Timers = cTimers::GetTimersWrite(StateKey)) { // access the timers StateKey.Remove(); } See timers.h, thread.h and tools.h for details on this new locking mechanism. + There are convenience macros for easily accessing these lists without having to explicitly set up a cStateKey and calling its Remove() function. These macros have the form LOCK_*_READ/WRITE (with '*' being TIMERS, CHANNELS, SCHEDULES or RECORDINGS). Simply put such a macro before the point where you need to access the respective list, and there will be a pointer named Timers, Channels, Schedules or Recordings, respectively, which is valid until the end of the current block. + If a plugin needs to access several of the global lists in parallel, locking must always be done in the sequence Timers, Channels, Recordings, Schedules. This is necessary to make sure that different threads that need to lock several lists at the same time don't end up in a deadlock. + Some pointer variables may need to be made 'const'. The compiler will tell you about these. - cSectionSyncer has been improved to better handle missed sections. - Added a missing initialization of 'seen' in cChannel's copy constructor. - Background modifications of channels, timers and events are now displayed immediately in the corresponding menus. - cEIT now checks the version of the tables before doing any processing, which saves a lot of locking and processing. - If a timer is newly created with the Red button in the Schedule menu, and the timer is presented to the user in the "Edit timer" menu because it will start immediately, it now *must* be confirmed with "Ok" to set the timer. Otherwise the timer will not be created. - Recordings and deleted recordings are now scanned in a single thread. - The new SVDRP command POLL is used by automatically established peer-to-peer connections to trigger fetching remote timers. - You can now set DumpSVDRPDataTransfer in svdrp.c to true to have all SVDRP communication printed to the console for debugging. - Added a missing 'const' to cReceiver::Receive(), to protect the given Data from being modified. - The SVDRP commands that deal with timers (DELT, LSTT, MODT, NEWT, NEXT and UPDT) as well as any log messages that refer to timers, now use a unique id for each timer, which remains valid as long as this instance of VDR is running. This means that timers are no longer continuously numbered from 1 to N in LSTT. There may be gaps in the sequence, in case timers have been deleted. - The Timers menu now displays the name of the remote VDR in front of the timer's file name, if this is a remote timer. - The new options "Setup/Miscellaneous/SVDRP peering", ".../SVDRP host name" and ".../SVDRP default host" can be used to configure automatic peering between VDRs in the same network. Peering is disabled by default and can be enabled by setting "SVDRP peering" to "yes". - The function cTimer::ToText() no longer returns a newline character at the end of the string. The newline is now added by the caller as necessary. This was changed because cTimer::ToText() is now also needed in a context where the terminating newline can't be used. Consequently, cChannel::ToText() and cMark::ToText() have been modified accordingly. - All timer related response strings from SVDRP commands now use the channel ID instead of channel numbers. - The "Edit timer" menu now has a new parameter "Record on", which can be used to select the VDR on which this timer shall record. Timers can be freely moved between connected VDRs by simply selecting the desired machine in this field. - The SVDRP command DELT no longer checks whether the timer that shall be deleted is currently recording. - The character 0x0D is now stripped from EPG texts (reported by Janne Pänkälä). - The EPG scanner no longer moves the dish if there is a positioner. - The 'newplugin' script now creates the 'po' subdirectory for translations (thanks to Thomas Reufer). - Skins can now implement cSkinDisplayMenu::MenuOrientation() to display horizontal menus (thanks to Stefan Braun). - Fixed a possible stack overflow in cListBase::Sort() (thanks to Oliver Endriss). - Changed the description of the --chartab option in the INSTALL file to refer to "DVB SI table strings" instead of "EPG data". - The width and height of the OSD are now limited to the actual maximum dimensions of the output device, taking into account the top and left offset. - The new setup option "Recording/Record key handling" can be used to define what happens if the Record key on the remote control is pressed during live tv (suggested by Dietmar Spingler). - Empty adaptation field TS packets are now skipped when recording (thanks to Christopher Reimer, based on the "AFFcleaner" by Stefan Pöschel).
523 lines
20 KiB
C++
523 lines
20 KiB
C++
/*
|
|
* remux.h: Tools for detecting frames and handling PAT/PMT
|
|
*
|
|
* See the main source file 'vdr.c' for copyright information and
|
|
* how to reach the author.
|
|
*
|
|
* $Id: remux.h 4.0 2014/03/22 14:58:24 kls Exp $
|
|
*/
|
|
|
|
#ifndef __REMUX_H
|
|
#define __REMUX_H
|
|
|
|
#include "channels.h"
|
|
#include "tools.h"
|
|
|
|
enum ePesHeader {
|
|
phNeedMoreData = -1,
|
|
phInvalid = 0,
|
|
phMPEG1 = 1,
|
|
phMPEG2 = 2
|
|
};
|
|
|
|
ePesHeader AnalyzePesHeader(const uchar *Data, int Count, int &PesPayloadOffset, bool *ContinuationHeader = NULL);
|
|
|
|
class cRemux {
|
|
public:
|
|
static void SetBrokenLink(uchar *Data, int Length);
|
|
};
|
|
|
|
// Some TS handling tools.
|
|
// The following functions all take a pointer to one complete TS packet.
|
|
|
|
#define TS_SYNC_BYTE 0x47
|
|
#define TS_SIZE 188
|
|
#define TS_ERROR 0x80
|
|
#define TS_PAYLOAD_START 0x40
|
|
#define TS_TRANSPORT_PRIORITY 0x20
|
|
#define TS_PID_MASK_HI 0x1F
|
|
#define TS_SCRAMBLING_CONTROL 0xC0
|
|
#define TS_ADAPT_FIELD_EXISTS 0x20
|
|
#define TS_PAYLOAD_EXISTS 0x10
|
|
#define TS_CONT_CNT_MASK 0x0F
|
|
#define TS_ADAPT_DISCONT 0x80
|
|
#define TS_ADAPT_RANDOM_ACC 0x40 // would be perfect for detecting independent frames, but unfortunately not used by all broadcasters
|
|
#define TS_ADAPT_ELEM_PRIO 0x20
|
|
#define TS_ADAPT_PCR 0x10
|
|
#define TS_ADAPT_OPCR 0x08
|
|
#define TS_ADAPT_SPLICING 0x04
|
|
#define TS_ADAPT_TP_PRIVATE 0x02
|
|
#define TS_ADAPT_EXTENSION 0x01
|
|
|
|
#define PATPID 0x0000 // PAT PID (constant 0)
|
|
#define CATPID 0x0001 // CAT PID (constant 1)
|
|
#define MAXPID 0x2000 // for arrays that use a PID as the index
|
|
|
|
#define PTSTICKS 90000 // number of PTS ticks per second
|
|
#define PCRFACTOR 300 // conversion from 27MHz PCR extension to 90kHz PCR base
|
|
#define MAX33BIT 0x00000001FFFFFFFFLL // max. possible value with 33 bit
|
|
#define MAX27MHZ ((MAX33BIT + 1) * PCRFACTOR - 1) // max. possible PCR value
|
|
|
|
inline bool TsHasPayload(const uchar *p)
|
|
{
|
|
return p[3] & TS_PAYLOAD_EXISTS;
|
|
}
|
|
|
|
inline bool TsHasAdaptationField(const uchar *p)
|
|
{
|
|
return p[3] & TS_ADAPT_FIELD_EXISTS;
|
|
}
|
|
|
|
inline bool TsPayloadStart(const uchar *p)
|
|
{
|
|
return p[1] & TS_PAYLOAD_START;
|
|
}
|
|
|
|
inline bool TsError(const uchar *p)
|
|
{
|
|
return p[1] & TS_ERROR;
|
|
}
|
|
|
|
inline int TsPid(const uchar *p)
|
|
{
|
|
return (p[1] & TS_PID_MASK_HI) * 256 + p[2];
|
|
}
|
|
|
|
inline bool TsIsScrambled(const uchar *p)
|
|
{
|
|
return p[3] & TS_SCRAMBLING_CONTROL;
|
|
}
|
|
|
|
inline uchar TsGetContinuityCounter(const uchar *p)
|
|
{
|
|
return p[3] & TS_CONT_CNT_MASK;
|
|
}
|
|
|
|
inline void TsSetContinuityCounter(uchar *p, uchar Counter)
|
|
{
|
|
p[3] = (p[3] & ~TS_CONT_CNT_MASK) | (Counter & TS_CONT_CNT_MASK);
|
|
}
|
|
|
|
inline int TsPayloadOffset(const uchar *p)
|
|
{
|
|
int o = TsHasAdaptationField(p) ? p[4] + 5 : 4;
|
|
return o <= TS_SIZE ? o : TS_SIZE;
|
|
}
|
|
|
|
inline int TsGetPayload(const uchar **p)
|
|
{
|
|
if (TsHasPayload(*p)) {
|
|
int o = TsPayloadOffset(*p);
|
|
*p += o;
|
|
return TS_SIZE - o;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
inline int TsContinuityCounter(const uchar *p)
|
|
{
|
|
return p[3] & TS_CONT_CNT_MASK;
|
|
}
|
|
|
|
inline int64_t TsGetPcr(const uchar *p)
|
|
{
|
|
if (TsHasAdaptationField(p)) {
|
|
if (p[4] >= 7 && (p[5] & TS_ADAPT_PCR)) {
|
|
return ((((int64_t)p[ 6]) << 25) |
|
|
(((int64_t)p[ 7]) << 17) |
|
|
(((int64_t)p[ 8]) << 9) |
|
|
(((int64_t)p[ 9]) << 1) |
|
|
(((int64_t)p[10]) >> 7)) * PCRFACTOR +
|
|
(((((int)p[10]) & 0x01) << 8) |
|
|
( ((int)p[11])));
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void TsHidePayload(uchar *p);
|
|
void TsSetPcr(uchar *p, int64_t Pcr);
|
|
|
|
// The following functions all take a pointer to a sequence of complete TS packets.
|
|
|
|
int64_t TsGetPts(const uchar *p, int l);
|
|
int64_t TsGetDts(const uchar *p, int l);
|
|
void TsSetPts(uchar *p, int l, int64_t Pts);
|
|
void TsSetDts(uchar *p, int l, int64_t Dts);
|
|
|
|
// Some PES handling tools:
|
|
// The following functions that take a pointer to PES data all assume that
|
|
// there is enough data so that PesLongEnough() returns true.
|
|
|
|
inline bool PesLongEnough(int Length)
|
|
{
|
|
return Length >= 6;
|
|
}
|
|
|
|
inline bool PesHasLength(const uchar *p)
|
|
{
|
|
return p[4] | p[5];
|
|
}
|
|
|
|
inline int PesLength(const uchar *p)
|
|
{
|
|
return 6 + p[4] * 256 + p[5];
|
|
}
|
|
|
|
inline int PesPayloadOffset(const uchar *p)
|
|
{
|
|
return 9 + p[8];
|
|
}
|
|
|
|
inline bool PesHasPts(const uchar *p)
|
|
{
|
|
return (p[7] & 0x80) && p[8] >= 5;
|
|
}
|
|
|
|
inline bool PesHasDts(const uchar *p)
|
|
{
|
|
return (p[7] & 0x40) && p[8] >= 10;
|
|
}
|
|
|
|
inline int64_t PesGetPts(const uchar *p)
|
|
{
|
|
return ((((int64_t)p[ 9]) & 0x0E) << 29) |
|
|
(( (int64_t)p[10]) << 22) |
|
|
((((int64_t)p[11]) & 0xFE) << 14) |
|
|
(( (int64_t)p[12]) << 7) |
|
|
((((int64_t)p[13]) & 0xFE) >> 1);
|
|
}
|
|
|
|
inline int64_t PesGetDts(const uchar *p)
|
|
{
|
|
return ((((int64_t)p[14]) & 0x0E) << 29) |
|
|
(( (int64_t)p[15]) << 22) |
|
|
((((int64_t)p[16]) & 0xFE) << 14) |
|
|
(( (int64_t)p[17]) << 7) |
|
|
((((int64_t)p[18]) & 0xFE) >> 1);
|
|
}
|
|
|
|
void PesSetPts(uchar *p, int64_t Pts);
|
|
void PesSetDts(uchar *p, int64_t Dts);
|
|
|
|
// PTS handling:
|
|
|
|
inline int64_t PtsAdd(int64_t Pts1, int64_t Pts2) { return (Pts1 + Pts2) & MAX33BIT; }
|
|
///< Adds the given PTS values, taking into account the 33bit wrap around.
|
|
int64_t PtsDiff(int64_t Pts1, int64_t Pts2);
|
|
///< Returns the difference between two PTS values. The result of Pts2 - Pts1
|
|
///< is the actual number of 90kHz time ticks that pass from Pts1 to Pts2,
|
|
///< properly taking into account the 33bit wrap around. If Pts2 is "before"
|
|
///< Pts1, the result is negative.
|
|
|
|
// A transprent TS payload handler:
|
|
|
|
class cTsPayload {
|
|
private:
|
|
uchar *data;
|
|
int length;
|
|
int pid;
|
|
int index; // points to the next byte to process
|
|
int numPacketsPid; // the number of TS packets with the given PID (for statistical purposes)
|
|
int numPacketsOther; // the number of TS packets with other PIDs (for statistical purposes)
|
|
uchar SetEof(void);
|
|
protected:
|
|
void Reset(void);
|
|
public:
|
|
cTsPayload(void);
|
|
cTsPayload(uchar *Data, int Length, int Pid = -1);
|
|
///< Creates a new TS payload handler and calls Setup() with the given Data.
|
|
void Setup(uchar *Data, int Length, int Pid = -1);
|
|
///< Sets up this TS payload handler with the given Data, which points to a
|
|
///< sequence of Length bytes of complete TS packets. Any incomplete TS
|
|
///< packet at the end will be ignored.
|
|
///< If Pid is given, only TS packets with data for that PID will be processed.
|
|
///< Otherwise the PID of the first TS packet defines which payload will be
|
|
///< delivered.
|
|
///< Any intermediate TS packets with different PIDs will be skipped.
|
|
bool AtTsStart(void) { return index < length && (index % TS_SIZE) == 0; }
|
|
///< Returns true if this payload handler is currently pointing to first byte
|
|
///< of a TS packet.
|
|
bool AtPayloadStart(void) { return AtTsStart() && TsPayloadStart(data + index); }
|
|
///< Returns true if this payload handler is currently pointing to the first byte
|
|
///< of a TS packet that starts a new payload.
|
|
int Available(void) { return length - index; }
|
|
///< Returns the number of raw bytes (including any TS headers) still available
|
|
///< in the TS payload handler.
|
|
int Used(void) { return (index + TS_SIZE - 1) / TS_SIZE * TS_SIZE; }
|
|
///< Returns the number of raw bytes that have already been used (e.g. by calling
|
|
///< GetByte()). Any TS packet of which at least a single byte has been delivered
|
|
///< is counted with its full size.
|
|
bool Eof(void) const { return index >= length; }
|
|
///< Returns true if all available bytes of the TS payload have been processed.
|
|
void Statistics(void) const;
|
|
///< May be called after a new frame has been detected, and will log a warning
|
|
///< if the number of TS packets required to determine the frame type exceeded
|
|
///< some safety limits.
|
|
uchar GetByte(void);
|
|
///< Gets the next byte of the TS payload, skipping any intermediate TS header data.
|
|
bool SkipBytes(int Bytes);
|
|
///< Skips the given number of bytes in the payload and returns true if there
|
|
///< is still data left to read.
|
|
bool SkipPesHeader(void);
|
|
///< Skips all bytes belonging to the PES header of the payload.
|
|
int GetLastIndex(void);
|
|
///< Returns the index into the TS data of the payload byte that has most recently
|
|
///< been read. If no byte has been read yet, -1 will be returned.
|
|
void SetByte(uchar Byte, int Index);
|
|
///< Sets the TS data byte at the given Index to the value Byte.
|
|
///< Index should be one that has been retrieved by a previous call to GetIndex(),
|
|
///< otherwise the behaviour is undefined. The current read index will not be
|
|
///< altered by a call to this function.
|
|
bool Find(uint32_t Code);
|
|
///< Searches for the four byte sequence given in Code and returns true if it
|
|
///< was found within the payload data. The next call to GetByte() will return the
|
|
///< value immediately following the Code. If the code was not found, the read
|
|
///< index will remain the same as before this call, so that several calls to
|
|
///< Find() can be performed starting at the same index..
|
|
///< The special code 0xFFFFFFFF can not be searched, because this value is used
|
|
///< to initialize the scanner.
|
|
};
|
|
|
|
// PAT/PMT Generator:
|
|
|
|
#define MAX_SECTION_SIZE 4096 // maximum size of an SI section
|
|
#define MAX_PMT_TS (MAX_SECTION_SIZE / TS_SIZE + 1)
|
|
|
|
class cPatPmtGenerator {
|
|
private:
|
|
uchar pat[TS_SIZE]; // the PAT always fits into a single TS packet
|
|
uchar pmt[MAX_PMT_TS][TS_SIZE]; // the PMT may well extend over several TS packets
|
|
int numPmtPackets;
|
|
int patCounter;
|
|
int pmtCounter;
|
|
int patVersion;
|
|
int pmtVersion;
|
|
int pmtPid;
|
|
uchar *esInfoLength;
|
|
void IncCounter(int &Counter, uchar *TsPacket);
|
|
void IncVersion(int &Version);
|
|
void IncEsInfoLength(int Length);
|
|
protected:
|
|
int MakeStream(uchar *Target, uchar Type, int Pid);
|
|
int MakeAC3Descriptor(uchar *Target, uchar Type);
|
|
int MakeSubtitlingDescriptor(uchar *Target, const char *Language, uchar SubtitlingType, uint16_t CompositionPageId, uint16_t AncillaryPageId);
|
|
int MakeLanguageDescriptor(uchar *Target, const char *Language);
|
|
int MakeCRC(uchar *Target, const uchar *Data, int Length);
|
|
void GeneratePmtPid(const cChannel *Channel);
|
|
///< Generates a PMT pid that doesn't collide with any of the actual
|
|
///< pids of the Channel.
|
|
void GeneratePat(void);
|
|
///< Generates a PAT section for later use with GetPat().
|
|
void GeneratePmt(const cChannel *Channel);
|
|
///< Generates a PMT section for the given Channel, for later use
|
|
///< with GetPmt().
|
|
public:
|
|
cPatPmtGenerator(const cChannel *Channel = NULL);
|
|
void SetVersions(int PatVersion, int PmtVersion);
|
|
///< Sets the version numbers for the generated PAT and PMT, in case
|
|
///< this generator is used to, e.g., continue a previously interrupted
|
|
///< recording (in which case the numbers given should be derived from
|
|
///< the PAT/PMT versions last used in the existing recording, incremented
|
|
///< by 1. If the given numbers exceed the allowed range of 0..31, the
|
|
///< higher bits will automatically be cleared.
|
|
///< SetVersions() needs to be called before SetChannel() in order to
|
|
///< have an effect from the very start.
|
|
void SetChannel(const cChannel *Channel);
|
|
///< Sets the Channel for which the PAT/PMT shall be generated.
|
|
uchar *GetPat(void);
|
|
///< Returns a pointer to the PAT section, which consists of exactly
|
|
///< one TS packet.
|
|
uchar *GetPmt(int &Index);
|
|
///< Returns a pointer to the Index'th TS packet of the PMT section.
|
|
///< Index must be initialized to 0 and will be incremented by each
|
|
///< call to GetPmt(). Returns NULL is all packets of the PMT section
|
|
///< have been fetched..
|
|
};
|
|
|
|
// PAT/PMT Parser:
|
|
|
|
#define MAX_PMT_PIDS 32
|
|
|
|
class cPatPmtParser {
|
|
private:
|
|
uchar pmt[MAX_SECTION_SIZE];
|
|
int pmtSize;
|
|
int patVersion;
|
|
int pmtVersion;
|
|
int pmtPids[MAX_PMT_PIDS + 1]; // list is zero-terminated
|
|
int vpid;
|
|
int ppid;
|
|
int vtype;
|
|
int apids[MAXAPIDS + 1]; // list is zero-terminated
|
|
int atypes[MAXAPIDS + 1]; // list is zero-terminated
|
|
char alangs[MAXAPIDS][MAXLANGCODE2];
|
|
int dpids[MAXDPIDS + 1]; // list is zero-terminated
|
|
int dtypes[MAXDPIDS + 1]; // list is zero-terminated
|
|
char dlangs[MAXDPIDS][MAXLANGCODE2];
|
|
int spids[MAXSPIDS + 1]; // list is zero-terminated
|
|
char slangs[MAXSPIDS][MAXLANGCODE2];
|
|
uchar subtitlingTypes[MAXSPIDS];
|
|
uint16_t compositionPageIds[MAXSPIDS];
|
|
uint16_t ancillaryPageIds[MAXSPIDS];
|
|
bool updatePrimaryDevice;
|
|
protected:
|
|
int SectionLength(const uchar *Data, int Length) { return (Length >= 3) ? ((int(Data[1]) & 0x0F) << 8)| Data[2] : 0; }
|
|
public:
|
|
cPatPmtParser(bool UpdatePrimaryDevice = false);
|
|
void Reset(void);
|
|
///< Resets the parser. This function must be called whenever a new
|
|
///< stream is parsed.
|
|
void ParsePat(const uchar *Data, int Length);
|
|
///< Parses the PAT data from the single TS packet in Data.
|
|
///< Length is always TS_SIZE.
|
|
void ParsePmt(const uchar *Data, int Length);
|
|
///< Parses the PMT data from the single TS packet in Data.
|
|
///< Length is always TS_SIZE.
|
|
///< The PMT may consist of several TS packets, which
|
|
///< are delivered to the parser through several subsequent calls to
|
|
///< ParsePmt(). The whole PMT data will be processed once the last packet
|
|
///< has been received.
|
|
bool ParsePatPmt(const uchar *Data, int Length);
|
|
///< Parses the given Data (which may consist of several TS packets, typically
|
|
///< an entire frame) and extracts the PAT and PMT.
|
|
///< Returns true if a valid PAT/PMT has been detected.
|
|
bool GetVersions(int &PatVersion, int &PmtVersion) const;
|
|
///< Returns true if a valid PAT/PMT has been parsed and stores
|
|
///< the current version numbers in the given variables.
|
|
bool IsPmtPid(int Pid) const { for (int i = 0; pmtPids[i]; i++) if (pmtPids[i] == Pid) return true; return false; }
|
|
///< Returns true if Pid the one of the PMT pids as defined by the current PAT.
|
|
///< If no PAT has been received yet, false will be returned.
|
|
int Vpid(void) const { return vpid; }
|
|
///< Returns the video pid as defined by the current PMT, or 0 if no video
|
|
///< pid has been detected, yet.
|
|
int Ppid(void) const { return ppid; }
|
|
///< Returns the PCR pid as defined by the current PMT, or 0 if no PCR
|
|
///< pid has been detected, yet.
|
|
int Vtype(void) const { return vtype; }
|
|
///< Returns the video stream type as defined by the current PMT, or 0 if no video
|
|
///< stream type has been detected, yet.
|
|
const int *Apids(void) const { return apids; }
|
|
const int *Dpids(void) const { return dpids; }
|
|
const int *Spids(void) const { return spids; }
|
|
int Apid(int i) const { return (0 <= i && i < MAXAPIDS) ? apids[i] : 0; }
|
|
int Dpid(int i) const { return (0 <= i && i < MAXDPIDS) ? dpids[i] : 0; }
|
|
int Spid(int i) const { return (0 <= i && i < MAXSPIDS) ? spids[i] : 0; }
|
|
int Atype(int i) const { return (0 <= i && i < MAXAPIDS) ? atypes[i] : 0; }
|
|
int Dtype(int i) const { return (0 <= i && i < MAXDPIDS) ? dtypes[i] : 0; }
|
|
const char *Alang(int i) const { return (0 <= i && i < MAXAPIDS) ? alangs[i] : ""; }
|
|
const char *Dlang(int i) const { return (0 <= i && i < MAXDPIDS) ? dlangs[i] : ""; }
|
|
const char *Slang(int i) const { return (0 <= i && i < MAXSPIDS) ? slangs[i] : ""; }
|
|
uchar SubtitlingType(int i) const { return (0 <= i && i < MAXSPIDS) ? subtitlingTypes[i] : uchar(0); }
|
|
uint16_t CompositionPageId(int i) const { return (0 <= i && i < MAXSPIDS) ? compositionPageIds[i] : uint16_t(0); }
|
|
uint16_t AncillaryPageId(int i) const { return (0 <= i && i < MAXSPIDS) ? ancillaryPageIds[i] : uint16_t(0); }
|
|
};
|
|
|
|
// TS to PES converter:
|
|
// Puts together the payload of several TS packets that form one PES
|
|
// packet.
|
|
|
|
class cTsToPes {
|
|
private:
|
|
uchar *data;
|
|
int size;
|
|
int length;
|
|
int offset;
|
|
uchar *lastData;
|
|
int lastLength;
|
|
bool repeatLast;
|
|
public:
|
|
cTsToPes(void);
|
|
~cTsToPes();
|
|
void PutTs(const uchar *Data, int Length);
|
|
///< Puts the payload data of the single TS packet at Data into the converter.
|
|
///< Length is always TS_SIZE.
|
|
///< If the given TS packet starts a new PES payload packet, the converter
|
|
///< will be automatically reset. Any packets before the first one that starts
|
|
///< a new PES payload packet will be ignored.
|
|
///< Once a TS packet has been put into a cTsToPes converter, all subsequent
|
|
///< packets until the next call to Reset() must belong to the same PID as
|
|
///< the first packet. There is no check whether this actually is the case, so
|
|
///< the caller is responsible for making sure this condition is met.
|
|
const uchar *GetPes(int &Length);
|
|
///< Gets a pointer to the complete PES packet, or NULL if the packet
|
|
///< is not complete yet. If the packet is complete, Length will contain
|
|
///< the total packet length. The returned pointer is only valid until
|
|
///< the next call to PutTs() or Reset(), or until this object is destroyed.
|
|
///< Once GetPes() has returned a non-NULL value, it must be called
|
|
///< repeatedly, and the data processed, until it returns NULL. This
|
|
///< is because video packets may be larger than the data a single
|
|
///< PES packet with an actual length field can hold, and are therefore
|
|
///< split into several PES packets with smaller sizes.
|
|
///< Note that for video data GetPes() may only be called if the next
|
|
///< TS packet that will be given to PutTs() has the "payload start" flag
|
|
///< set, because this is the only way to determine the end of a video PES
|
|
///< packet.
|
|
void SetRepeatLast(void);
|
|
///< Makes the next call to GetPes() return exactly the same data as the
|
|
///< last one (provided there was no call to Reset() in the meantime).
|
|
void Reset(void);
|
|
///< Resets the converter. This needs to be called after a PES packet has
|
|
///< been fetched by a call to GetPes(), and before the next call to
|
|
///< PutTs().
|
|
};
|
|
|
|
// Some helper functions for debugging:
|
|
|
|
void BlockDump(const char *Name, const u_char *Data, int Length);
|
|
void TsDump(const char *Name, const u_char *Data, int Length);
|
|
void PesDump(const char *Name, const u_char *Data, int Length);
|
|
|
|
// Frame detector:
|
|
|
|
#define MIN_TS_PACKETS_FOR_FRAME_DETECTOR 100
|
|
|
|
class cFrameParser;
|
|
|
|
class cFrameDetector {
|
|
private:
|
|
enum { MaxPtsValues = 150 };
|
|
int pid;
|
|
int type;
|
|
bool synced;
|
|
bool newFrame;
|
|
bool independentFrame;
|
|
uint32_t ptsValues[MaxPtsValues]; // 32 bit is enough - we only need the delta
|
|
int numPtsValues;
|
|
int numIFrames;
|
|
bool isVideo;
|
|
double framesPerSecond;
|
|
int framesInPayloadUnit;
|
|
int framesPerPayloadUnit; // Some broadcasters send one frame per payload unit (== 1),
|
|
// while others put an entire GOP into one payload unit (> 1).
|
|
bool scanning;
|
|
cFrameParser *parser;
|
|
public:
|
|
cFrameDetector(int Pid = 0, int Type = 0);
|
|
///< Sets up a frame detector for the given Pid and stream Type.
|
|
///< If no Pid and Type is given, they need to be set by a separate
|
|
///< call to SetPid().
|
|
void SetPid(int Pid, int Type);
|
|
///< Sets the Pid and stream Type to detect frames for.
|
|
int Analyze(const uchar *Data, int Length);
|
|
///< Analyzes the TS packets pointed to by Data. Length is the number of
|
|
///< bytes Data points to, and must be a multiple of TS_SIZE.
|
|
///< Returns the number of bytes that have been analyzed.
|
|
///< If the return value is 0, the data was not sufficient for analyzing and
|
|
///< Analyze() needs to be called again with more actual data.
|
|
bool Synced(void) { return synced; }
|
|
///< Returns true if the frame detector has synced on the data stream.
|
|
bool NewFrame(void) { return newFrame; }
|
|
///< Returns true if the data given to the last call to Analyze() started a
|
|
///< new frame.
|
|
bool IndependentFrame(void) { return independentFrame; }
|
|
///< Returns true if a new frame was detected and this is an independent frame
|
|
///< (i.e. one that can be displayed by itself, without using data from any
|
|
///< other frames).
|
|
double FramesPerSecond(void) { return framesPerSecond; }
|
|
///< Returns the number of frames per second, or 0 if this information is not
|
|
///< available.
|
|
};
|
|
|
|
#endif // __REMUX_H
|