1
0
mirror of https://github.com/VDR4Arch/vdr.git synced 2023-10-10 13:36:52 +02:00
vdr/device.c

1253 lines
34 KiB
C

/*
* device.c: The basic device interface
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: device.c 1.93 2005/02/19 12:20:39 kls Exp $
*/
#include "device.h"
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include "audio.h"
#include "channels.h"
#include "i18n.h"
#include "player.h"
#include "receiver.h"
#include "status.h"
#include "transfer.h"
// --- cPesAssembler ---------------------------------------------------------
class cPesAssembler {
private:
uchar *data;
uint32_t tag;
int length;
int size;
bool Realloc(int Size);
public:
cPesAssembler(void);
~cPesAssembler();
int ExpectedLength(void) { return PacketSize(data); }
static int PacketSize(const uchar *data);
int Length(void) { return length; }
const uchar *Data(void) { return data; }
void Reset(void);
void Put(uchar c);
void Put(const uchar *Data, int Length);
bool IsPes(void);
};
cPesAssembler::cPesAssembler(void)
{
data = NULL;
size = 0;
Reset();
}
cPesAssembler::~cPesAssembler()
{
free(data);
}
void cPesAssembler::Reset(void)
{
tag = 0xFFFFFFFF;
length = 0;
}
bool cPesAssembler::Realloc(int Size)
{
if (Size > size) {
size = max(Size, 2048);
data = (uchar *)realloc(data, size);
if (!data) {
esyslog("ERROR: can't allocate memory for PES assembler");
length = 0;
size = 0;
return false;
}
}
return true;
}
void cPesAssembler::Put(uchar c)
{
if (!length) {
tag = (tag << 8) | c;
if ((tag & 0xFFFFFF00) == 0x00000100) {
if (Realloc(4)) {
*(uint32_t *)data = htonl(tag);
length = 4;
}
}
}
else if (Realloc(length + 1))
data[length++] = c;
}
void cPesAssembler::Put(const uchar *Data, int Length)
{
while (!length && Length > 0) {
Put(*Data++);
Length--;
}
if (Length && Realloc(length + Length)) {
memcpy(data + length, Data, Length);
length += Length;
}
}
int cPesAssembler::PacketSize(const uchar *data)
{
// we need atleast 6 bytes of data here !!!
switch (data[3]) {
default:
case 0x00 ... 0xB8: // video stream start codes
case 0xB9: // Program end
case 0xBC: // Programm stream map
case 0xF0 ... 0xFF: // reserved
return 6;
case 0xBA: // Pack header
if ((data[4] & 0xC0) == 0x40) // MPEG2
return 14;
// to be absolutely correct we would have to add the stuffing bytes
// as well, but at this point we only may have 6 bytes of data avail-
// able. So it's up to the higher level to resync...
//return 14 + (data[13] & 0x07); // add stuffing bytes
else // MPEG1
return 12;
case 0xBB: // System header
case 0xBD: // Private stream1
case 0xBE: // Padding stream
case 0xBF: // Private stream2 (navigation data)
case 0xC0 ... 0xCF: // all the rest (the real packets)
case 0xD0 ... 0xDF:
case 0xE0 ... 0xEF:
return 6 + data[4] * 256 + data[5];
}
}
// --- cDevice ---------------------------------------------------------------
// The default priority for non-primary devices:
#define DEFAULTPRIORITY -1
#define TUNER_LOCK_TIMEOUT 5000 // ms
int cDevice::numDevices = 0;
int cDevice::useDevice = 0;
int cDevice::nextCardIndex = 0;
int cDevice::currentChannel = 1;
cDevice *cDevice::device[MAXDEVICES] = { NULL };
cDevice *cDevice::primaryDevice = NULL;
cDevice::cDevice(void)
{
cardIndex = nextCardIndex++;
SetDescription("receiver on device %d", CardIndex() + 1);
SetVideoFormat(Setup.VideoFormat);
active = false;
mute = false;
volume = Setup.CurrentVolume;
sectionHandler = NULL;
eitFilter = NULL;
patFilter = NULL;
sdtFilter = NULL;
nitFilter = NULL;
ciHandler = NULL;
player = NULL;
pesAssembler = new cPesAssembler;
ClrAvailableTracks();
currentAudioTrack = ttAudioFirst;
currentAudioTrackMissingCount = 0;
for (int i = 0; i < MAXRECEIVERS; i++)
receiver[i] = NULL;
if (numDevices < MAXDEVICES)
device[numDevices++] = this;
else
esyslog("ERROR: too many devices!");
}
cDevice::~cDevice()
{
Detach(player);
for (int i = 0; i < MAXRECEIVERS; i++)
Detach(receiver[i]);
delete ciHandler;
delete nitFilter;
delete sdtFilter;
delete patFilter;
delete eitFilter;
delete sectionHandler;
delete pesAssembler;
}
void cDevice::SetUseDevice(int n)
{
if (n < MAXDEVICES)
useDevice |= (1 << n);
}
int cDevice::NextCardIndex(int n)
{
if (n > 0) {
nextCardIndex += n;
if (nextCardIndex >= MAXDEVICES)
esyslog("ERROR: nextCardIndex too big (%d)", nextCardIndex);
}
else if (n < 0)
esyslog("ERROR: illegal value in IncCardIndex(%d)", n);
return nextCardIndex;
}
int cDevice::DeviceNumber(void) const
{
for (int i = 0; i < numDevices; i++) {
if (device[i] == this)
return i;
}
return -1;
}
void cDevice::MakePrimaryDevice(bool On)
{
}
bool cDevice::SetPrimaryDevice(int n)
{
n--;
if (0 <= n && n < numDevices && device[n]) {
isyslog("setting primary device to %d", n + 1);
if (primaryDevice)
primaryDevice->MakePrimaryDevice(false);
primaryDevice = device[n];
primaryDevice->MakePrimaryDevice(true);
return true;
}
esyslog("ERROR: invalid primary device number: %d", n + 1);
return false;
}
bool cDevice::HasDecoder(void) const
{
return false;
}
cSpuDecoder *cDevice::GetSpuDecoder(void)
{
return NULL;
}
cDevice *cDevice::ActualDevice(void)
{
cDevice *d = cTransferControl::ReceiverDevice();
if (!d)
d = PrimaryDevice();
return d;
}
cDevice *cDevice::GetDevice(int Index)
{
return (0 <= Index && Index < numDevices) ? device[Index] : NULL;
}
cDevice *cDevice::GetDevice(const cChannel *Channel, int Priority, bool *NeedsDetachReceivers)
{
cDevice *d = NULL;
int select = 7, pri;
for (int i = 0; i < numDevices; i++) {
bool ndr;
if (device[i]->ProvidesChannel(Channel, Priority, &ndr)) { // this device is basicly able to do the job
if (device[i]->Receiving() && !ndr)
pri = 0; // receiving and allows additional receivers
else if (d && !device[i]->Receiving() && device[i]->ProvidesCa(Channel) < d->ProvidesCa(Channel))
pri = 1; // free and fewer Ca's
else if (!device[i]->Receiving() && !device[i]->IsPrimaryDevice())
pri = 2; // free and not the primary device
else if (!device[i]->Receiving())
pri = 3; // free
else if (d && device[i]->Priority() < d->Priority())
pri = 4; // receiving but priority is lower
else if (d && device[i]->Priority() == d->Priority() && device[i]->ProvidesCa(Channel) < d->ProvidesCa(Channel))
pri = 5; // receiving with same priority but fewer Ca's
else
pri = 6; // all others
if (pri < select) {
select = pri;
d = device[i];
if (NeedsDetachReceivers)
*NeedsDetachReceivers = ndr;
}
}
}
/*XXX+ too complex with multiple recordings per device
if (!d && Ca > MAXDEVICES) {
// We didn't find one the easy way, so now we have to try harder:
int ShiftLevel = -1;
for (int i = 0; i < numDevices; i++) {
if (Provides[i]) { // this device is basicly able to do the job, but for some reason we didn't get it above
int sl = device[i]->CanShift(Ca, Priority); // asks this device to shift its job to another device
if (sl >= 0 && (ShiftLevel < 0 || sl < ShiftLevel)) {
d = device[i]; // found one that can be shifted with the fewest number of subsequent shifts
ShiftLevel = sl;
}
}
}
}
XXX*/
return d;
}
void cDevice::Shutdown(void)
{
primaryDevice = NULL;
for (int i = 0; i < numDevices; i++) {
delete device[i];
device[i] = NULL;
}
}
bool cDevice::GrabImage(const char *FileName, bool Jpeg, int Quality, int SizeX, int SizeY)
{
return false;
}
void cDevice::SetVideoFormat(bool VideoFormat16_9)
{
}
eVideoSystem cDevice::GetVideoSystem(void)
{
return vsPAL;
}
//#define PRINTPIDS(s) { char b[500]; char *q = b; q += sprintf(q, "%d %s ", CardIndex(), s); for (int i = 0; i < MAXPIDHANDLES; i++) q += sprintf(q, " %s%4d %d", i == ptOther ? "* " : "", pidHandles[i].pid, pidHandles[i].used); dsyslog(b); }
#define PRINTPIDS(s)
bool cDevice::HasPid(int Pid) const
{
for (int i = 0; i < MAXPIDHANDLES; i++) {
if (pidHandles[i].pid == Pid)
return true;
}
return false;
}
bool cDevice::AddPid(int Pid, ePidType PidType)
{
if (Pid || PidType == ptPcr) {
int n = -1;
int a = -1;
if (PidType != ptPcr) { // PPID always has to be explicit
for (int i = 0; i < MAXPIDHANDLES; i++) {
if (i != ptPcr) {
if (pidHandles[i].pid == Pid)
n = i;
else if (a < 0 && i >= ptOther && !pidHandles[i].used)
a = i;
}
}
}
if (n >= 0) {
// The Pid is already in use
if (++pidHandles[n].used == 2 && n <= ptTeletext) {
// It's a special PID that may have to be switched into "tap" mode
PRINTPIDS("A");
if (!SetPid(&pidHandles[n], n, true)) {
esyslog("ERROR: can't set PID %d on device %d", Pid, CardIndex() + 1);
DelPid(Pid, PidType);
return false;
}
}
PRINTPIDS("a");
return true;
}
else if (PidType < ptOther) {
// The Pid is not yet in use and it is a special one
n = PidType;
}
else if (a >= 0) {
// The Pid is not yet in use and we have a free slot
n = a;
}
else {
esyslog("ERROR: no free slot for PID %d on device %d", Pid, CardIndex() + 1);
return false;
}
if (n >= 0) {
pidHandles[n].pid = Pid;
pidHandles[n].used = 1;
PRINTPIDS("C");
if (!SetPid(&pidHandles[n], n, true)) {
esyslog("ERROR: can't set PID %d on device %d", Pid, CardIndex() + 1);
DelPid(Pid, PidType);
return false;
}
}
}
return true;
}
void cDevice::DelPid(int Pid, ePidType PidType)
{
if (Pid || PidType == ptPcr) {
int n = -1;
if (PidType == ptPcr)
n = PidType; // PPID always has to be explicit
else {
for (int i = 0; i < MAXPIDHANDLES; i++) {
if (pidHandles[i].pid == Pid) {
n = i;
break;
}
}
}
if (n >= 0 && pidHandles[n].used) {
PRINTPIDS("D");
if (--pidHandles[n].used < 2) {
SetPid(&pidHandles[n], n, false);
if (pidHandles[n].used == 0) {
pidHandles[n].handle = -1;
pidHandles[n].pid = 0;
}
}
PRINTPIDS("E");
}
}
}
bool cDevice::SetPid(cPidHandle *Handle, int Type, bool On)
{
return false;
}
void cDevice::StartSectionHandler(void)
{
if (!sectionHandler) {
sectionHandler = new cSectionHandler(this);
AttachFilter(eitFilter = new cEitFilter);
AttachFilter(patFilter = new cPatFilter);
AttachFilter(sdtFilter = new cSdtFilter(patFilter));
AttachFilter(nitFilter = new cNitFilter);
}
}
int cDevice::OpenFilter(u_short Pid, u_char Tid, u_char Mask)
{
return -1;
}
void cDevice::AttachFilter(cFilter *Filter)
{
if (sectionHandler)
sectionHandler->Attach(Filter);
}
void cDevice::Detach(cFilter *Filter)
{
if (sectionHandler)
sectionHandler->Detach(Filter);
}
bool cDevice::ProvidesSource(int Source) const
{
return false;
}
bool cDevice::ProvidesTransponder(const cChannel *Channel) const
{
return false;
}
bool cDevice::ProvidesChannel(const cChannel *Channel, int Priority, bool *NeedsDetachReceivers) const
{
return false;
}
bool cDevice::SwitchChannel(const cChannel *Channel, bool LiveView)
{
if (LiveView)
isyslog("switching to channel %d", Channel->Number());
for (int i = 3; i--;) {
switch (SetChannel(Channel, LiveView)) {
case scrOk: return true;
case scrNotAvailable: Skins.Message(mtInfo, tr("Channel not available!"));
return false;
case scrNoTransfer: Skins.Message(mtError, tr("Can't start Transfer Mode!"));
return false;
case scrFailed: break; // loop will retry
}
esyslog("retrying");
}
return false;
}
bool cDevice::SwitchChannel(int Direction)
{
bool result = false;
Direction = sgn(Direction);
if (Direction) {
int n = CurrentChannel() + Direction;
int first = n;
cChannel *channel;
while ((channel = Channels.GetByNumber(n, Direction)) != NULL) {
// try only channels which are currently available
if (PrimaryDevice()->ProvidesChannel(channel, Setup.PrimaryLimit) || PrimaryDevice()->CanReplay() && GetDevice(channel, 0))
break;
n = channel->Number() + Direction;
}
if (channel) {
int d = n - first;
if (abs(d) == 1)
dsyslog("skipped channel %d", first);
else if (d)
dsyslog("skipped channels %d..%d", first, n - sgn(d));
if (PrimaryDevice()->SwitchChannel(channel, true))
result = true;
}
else if (n != first)
Skins.Message(mtError, tr("Channel not available!"));
}
return result;
}
eSetChannelResult cDevice::SetChannel(const cChannel *Channel, bool LiveView)
{
if (LiveView)
StopReplay();
// If this card can't receive this channel, we must not actually switch
// the channel here, because that would irritate the driver when we
// start replaying in Transfer Mode immediately after switching the channel:
bool NeedsTransferMode = (LiveView && IsPrimaryDevice() && !ProvidesChannel(Channel, Setup.PrimaryLimit));
eSetChannelResult Result = scrOk;
// If this DVB card can't receive this channel, let's see if we can
// use the card that actually can receive it and transfer data from there:
if (NeedsTransferMode) {
cDevice *CaDevice = GetDevice(Channel, 0);
if (CaDevice && CanReplay()) {
cStatus::MsgChannelSwitch(this, 0); // only report status if we are actually going to switch the channel
if (CaDevice->SetChannel(Channel, false) == scrOk) // calling SetChannel() directly, not SwitchChannel()!
cControl::Launch(new cTransferControl(CaDevice, Channel->Vpid(), Channel->Apids(), Channel->Dpids(), Channel->Spids()));
else
Result = scrNoTransfer;
}
else
Result = scrNotAvailable;
}
else {
Channels.Lock(false);
cStatus::MsgChannelSwitch(this, 0); // only report status if we are actually going to switch the channel
// Stop section handling:
if (sectionHandler) {
sectionHandler->SetStatus(false);
sectionHandler->SetChannel(NULL);
}
if (SetChannelDevice(Channel, LiveView)) {
// Start section handling:
if (sectionHandler) {
sectionHandler->SetChannel(Channel);
sectionHandler->SetStatus(true);
}
}
else
Result = scrFailed;
Channels.Unlock();
if (Result == scrOk) {
if (LiveView && IsPrimaryDevice()) {
// Set the available audio tracks:
ClrAvailableTracks();
currentAudioTrack = ttAudioFirst;
for (int i = 0; i < MAXAPIDS; i++)
SetAvailableTrack(ttAudio, i, Channel->Apid(i), Channel->Alang(i));
if (Setup.UseDolbyDigital) {
for (int i = 0; i < MAXDPIDS; i++)
SetAvailableTrack(ttDolby, i, Channel->Dpid(i), Channel->Dlang(i));
}
EnsureAudioTrack(true);
}
}
}
if (Result == scrOk) {
if (LiveView && IsPrimaryDevice())
currentChannel = Channel->Number();
cStatus::MsgChannelSwitch(this, Channel->Number()); // only report status if channel switch successfull
}
return Result;
}
bool cDevice::SetChannelDevice(const cChannel *Channel, bool LiveView)
{
return false;
}
bool cDevice::HasLock(int TimeoutMs)
{
return true;
}
bool cDevice::HasProgramme(void)
{
return Replaying() || pidHandles[ptAudio].pid || pidHandles[ptVideo].pid;
}
int cDevice::GetAudioChannelDevice(void)
{
return 0;
}
void cDevice::SetAudioChannelDevice(int AudioChannel)
{
}
void cDevice::SetVolumeDevice(int Volume)
{
}
void cDevice::SetDigitalAudioDevice(bool On)
{
}
void cDevice::SetAudioTrackDevice(eTrackType Type)
{
}
bool cDevice::ToggleMute(void)
{
int OldVolume = volume;
mute = !mute;
//XXX why is it necessary to use different sequences???
if (mute) {
SetVolume(0, mute);
Audios.MuteAudio(mute); // Mute external audio after analog audio
}
else {
Audios.MuteAudio(mute); // Enable external audio before analog audio
SetVolume(0, mute);
}
volume = OldVolume;
return mute;
}
int cDevice::GetAudioChannel(void)
{
int c = GetAudioChannelDevice();
return (0 <= c && c <= 2) ? c : 0;
}
void cDevice::SetAudioChannel(int AudioChannel)
{
if (0 <= AudioChannel && AudioChannel <= 2)
SetAudioChannelDevice(AudioChannel);
}
void cDevice::SetVolume(int Volume, bool Absolute)
{
volume = min(max(Absolute ? Volume : volume + Volume, 0), MAXVOLUME);
SetVolumeDevice(volume);
cStatus::MsgSetVolume(volume, Absolute);
if (volume > 0) {
mute = false;
Audios.MuteAudio(mute);
}
}
void cDevice::ClrAvailableTracks(bool DescriptionsOnly)
{
if (DescriptionsOnly) {
for (int i = ttNone; i < ttMaxTrackTypes; i++)
*availableTracks[i].description = 0;
}
else {
memset(availableTracks, 0, sizeof(availableTracks));
pre_1_3_19_PrivateStream = false;
SetAudioChannel(0); // fall back to stereo
currentAudioTrackMissingCount = 0;
}
}
bool cDevice::SetAvailableTrack(eTrackType Type, int Index, uint16_t Id, const char *Language, const char *Description)
{
eTrackType t = eTrackType(Type + Index);
if (Type == ttAudio && IS_AUDIO_TRACK(t) ||
Type == ttDolby && IS_DOLBY_TRACK(t)) {
if (Language)
strn0cpy(availableTracks[t].language, Language, sizeof(availableTracks[t].language));
if (Description)
strn0cpy(availableTracks[t].description, Description, sizeof(availableTracks[t].description));
if (Id)
availableTracks[t].id = Id; // setting 'id' last to avoid the need for extensive locking
if (t == currentAudioTrack)
currentAudioTrackMissingCount = 0;
else if (!availableTracks[currentAudioTrack].id && currentAudioTrackMissingCount++ > NumAudioTracks() * 10)
EnsureAudioTrack();
return true;
}
else
esyslog("ERROR: SetAvailableTrack called with invalid Type/Index (%d/%d)", Type, Index);
return false;
}
const tTrackId *cDevice::GetTrack(eTrackType Type)
{
return (ttNone < Type && Type < ttMaxTrackTypes) ? &availableTracks[Type] : NULL;
}
int cDevice::NumAudioTracks(void) const
{
int n = 0;
for (int i = ttAudioFirst; i <= ttDolbyLast; i++) {
if (availableTracks[i].id)
n++;
}
return n;
}
bool cDevice::SetCurrentAudioTrack(eTrackType Type)
{
if (ttNone < Type && Type < ttDolbyLast) {
if (IS_DOLBY_TRACK(Type))
SetDigitalAudioDevice(true);
currentAudioTrack = Type;
if (player)
player->SetAudioTrack(currentAudioTrack, GetTrack(currentAudioTrack));
else
SetAudioTrackDevice(currentAudioTrack);
if (IS_AUDIO_TRACK(Type))
SetDigitalAudioDevice(false);
return true;
}
return false;
}
void cDevice::EnsureAudioTrack(bool Force)
{
if (Force || !availableTracks[currentAudioTrack].id) {
eTrackType PreferredTrack = ttAudioFirst;
int LanguagePreference = -1;
int StartCheck = Setup.CurrentDolby ? ttDolbyFirst : ttAudioFirst;
int EndCheck = ttDolbyLast;
for (int i = StartCheck; i <= EndCheck; i++) {
const tTrackId *TrackId = GetTrack(eTrackType(i));
if (TrackId && TrackId->id && I18nIsPreferredLanguage(Setup.AudioLanguages, I18nLanguageIndex(TrackId->language), LanguagePreference))
PreferredTrack = eTrackType(i);
if (Setup.CurrentDolby && i == ttDolbyLast) {
i = ttAudioFirst - 1;
EndCheck = ttAudioLast;
}
}
// Make sure we're set to an available audio track:
const tTrackId *Track = GetTrack(GetCurrentAudioTrack());
if (Force || !Track || !Track->id || PreferredTrack != GetCurrentAudioTrack()) {
if (!Force) // only log this for automatic changes
dsyslog("setting audio track to %d", PreferredTrack);
SetCurrentAudioTrack(PreferredTrack);
}
}
}
bool cDevice::CanReplay(void) const
{
return HasDecoder();
}
bool cDevice::SetPlayMode(ePlayMode PlayMode)
{
return false;
}
int64_t cDevice::GetSTC(void)
{
return -1;
}
void cDevice::TrickSpeed(int Speed)
{
}
void cDevice::Clear(void)
{
Audios.ClearAudio();
}
void cDevice::Play(void)
{
Audios.MuteAudio(mute);
}
void cDevice::Freeze(void)
{
Audios.MuteAudio(true);
}
void cDevice::Mute(void)
{
Audios.MuteAudio(true);
}
void cDevice::StillPicture(const uchar *Data, int Length)
{
}
bool cDevice::Replaying(void) const
{
return player != NULL;
}
bool cDevice::AttachPlayer(cPlayer *Player)
{
if (CanReplay()) {
if (player)
Detach(player);
ClrAvailableTracks();
pesAssembler->Reset();
player = Player;
SetPlayMode(player->playMode);
player->device = this;
player->Activate(true);
return true;
}
return false;
}
void cDevice::Detach(cPlayer *Player)
{
if (Player && player == Player) {
player->Activate(false);
player->device = NULL;
player = NULL;
SetPlayMode(pmNone);
Audios.ClearAudio();
}
}
void cDevice::StopReplay(void)
{
if (player) {
Detach(player);
if (IsPrimaryDevice())
cControl::Shutdown();
}
}
bool cDevice::Poll(cPoller &Poller, int TimeoutMs)
{
return false;
}
bool cDevice::Flush(int TimeoutMs)
{
return true;
}
int cDevice::PlayVideo(const uchar *Data, int Length)
{
return -1;
}
int cDevice::PlayAudio(const uchar *Data, int Length)
{
return -1;
}
int cDevice::PlayPesPacket(const uchar *Data, int Length, bool VideoOnly)
{
bool FirstLoop = true;
uchar c = Data[3];
const uchar *Start = Data;
const uchar *End = Start + Length;
while (Start < End) {
int d = End - Start;
int w = d;
switch (c) {
case 0xBE: // padding stream, needed for MPEG1
case 0xE0 ... 0xEF: // video
w = PlayVideo(Start, d);
break;
case 0xC0 ... 0xDF: // audio
SetAvailableTrack(ttAudio, c - 0xC0, c);
if (!VideoOnly && c == availableTracks[currentAudioTrack].id) {
w = PlayAudio(Start, d);
if (FirstLoop)
Audios.PlayAudio(Data, Length, c);
}
break;
case 0xBD: { // private stream 1
int PayloadOffset = Data[8] + 9;
uchar SubStreamId = Data[PayloadOffset];
uchar SubStreamType = SubStreamId & 0xF0;
uchar SubStreamIndex = SubStreamId & 0x1F;
// Compatibility mode for old VDR recordings, where 0xBD was only AC3:
pre_1_3_19_PrivateStreamDeteced:
if (pre_1_3_19_PrivateStream) {
SubStreamId = c;
SubStreamType = 0x80;
SubStreamIndex = 0;
}
switch (SubStreamType) {
case 0x20: // SPU
case 0x30: // SPU
break;
case 0x80: // AC3 & DTS
if (Setup.UseDolbyDigital) {
SetAvailableTrack(ttDolby, SubStreamIndex, SubStreamId);
if (!VideoOnly && SubStreamId == availableTracks[currentAudioTrack].id) {
w = PlayAudio(Start, d);
if (FirstLoop)
Audios.PlayAudio(Data, Length, SubStreamId);
}
}
break;
case 0xA0: // LPCM
SetAvailableTrack(ttAudio, SubStreamIndex, SubStreamId);
if (!VideoOnly && SubStreamId == availableTracks[currentAudioTrack].id) {
w = PlayAudio(Start, d);
if (FirstLoop)
Audios.PlayAudio(Data, Length, SubStreamId);
}
break;
default:
// Compatibility mode for old VDR recordings, where 0xBD was only AC3:
if (!pre_1_3_19_PrivateStream) {
dsyslog("switching to pre 1.3.19 Dolby Digital compatibility mode");
ClrAvailableTracks();
pre_1_3_19_PrivateStream = true;
goto pre_1_3_19_PrivateStreamDeteced;
}
}
}
break;
default:
;//esyslog("ERROR: unexpected packet id %02X", c);
}
if (w > 0)
Start += w;
else {
if (Start != Data)
esyslog("ERROR: incomplete PES packet write!");
return Start == Data ? w : Start - Data;
}
FirstLoop = false;
}
return Length;
}
int cDevice::PlayPes(const uchar *Data, int Length, bool VideoOnly)
{
if (!Data) {
pesAssembler->Reset();
return 0;
}
int Result = 0;
if (pesAssembler->Length()) {
// Make sure we have a complete PES header:
while (pesAssembler->Length() < 6 && Length > 0) {
pesAssembler->Put(*Data++);
Length--;
Result++;
}
if (pesAssembler->Length() < 6)
return Result; // Still no complete PES header - wait for more
int l = pesAssembler->ExpectedLength();
int Rest = min(l - pesAssembler->Length(), Length);
pesAssembler->Put(Data, Rest);
Data += Rest;
Length -= Rest;
Result += Rest;
if (pesAssembler->Length() < l)
return Result; // Still no complete PES packet - wait for more
// Now pesAssembler contains one complete PES packet.
int w = PlayPesPacket(pesAssembler->Data(), pesAssembler->Length(), VideoOnly);
if (w > 0)
pesAssembler->Reset();
return Result > 0 ? Result : w < 0 ? w : 0;
}
int i = 0;
while (i <= Length - 6) {
if (Data[i] == 0x00 && Data[i + 1] == 0x00 && Data[i + 2] == 0x01) {
int l = cPesAssembler::PacketSize(&Data[i]);
if (i + l > Length) {
// Store incomplete PES packet for later completion:
pesAssembler->Put(Data + i, Length - i);
return Length;
}
int w = PlayPesPacket(Data + i, l, VideoOnly);
if (w > 0)
i += l;
else
return i == 0 ? w : i;
}
else
i++;
}
if (i < Length)
pesAssembler->Put(Data + i, Length - i);
return Length;
}
int cDevice::Ca(void) const
{
int ca = 0;
for (int i = 0; i < MAXRECEIVERS; i++) {
if (receiver[i] && (ca = receiver[i]->ca) != 0)
break; // all receivers have the same ca
}
return ca;
}
int cDevice::Priority(void) const
{
int priority = IsPrimaryDevice() ? Setup.PrimaryLimit - 1 : DEFAULTPRIORITY;
for (int i = 0; i < MAXRECEIVERS; i++) {
if (receiver[i])
priority = max(receiver[i]->priority, priority);
}
return priority;
}
int cDevice::CanShift(int Ca, int Priority, int UsedCards) const
{
return -1;//XXX+ too complex with multiple recordings per device
/*XXX
// Test whether a receiver on this device can be shifted to another one
// in order to perform a new receiving with the given Ca and Priority on this device:
int ShiftLevel = -1; // default means this device can't be shifted
if (UsedCards & (1 << CardIndex()) != 0)
return ShiftLevel; // otherwise we would get into a loop
if (Receiving()) {
if (ProvidesCa(Ca) // this device provides the requested Ca
&& (Ca != this->Ca() // the requested Ca is different from the one currently used...
|| Priority > this->Priority())) { // ...or the request comes from a higher priority
cDevice *d = NULL;
int Provides[MAXDEVICES];
UsedCards |= (1 << CardIndex());
for (int i = 0; i < numDevices; i++) {
if ((Provides[i] = device[i]->ProvidesCa(this->Ca())) != 0) { // this device is basicly able to do the job
if (device[i] != this) { // it is not _this_ device
int sl = device[i]->CanShift(this->Ca(), Priority, UsedCards); // this is the original Priority!
if (sl >= 0 && (ShiftLevel < 0 || sl < ShiftLevel)) {
d = device[i];
ShiftLevel = sl;
}
}
}
}
if (ShiftLevel >= 0)
ShiftLevel++; // adds the device's own shift
}
}
else if (Priority > this->Priority())
ShiftLevel = 0; // no shifting necessary, this device can do the job
return ShiftLevel;
XXX*/
}
int cDevice::ProvidesCa(const cChannel *Channel) const
{
int Ca = Channel->Ca();
if (Ca == CardIndex() + 1)
return 1; // exactly _this_ card was requested
if (Ca && Ca <= MAXDEVICES)
return 0; // a specific card was requested, but not _this_ one
return !Ca; // by default every card can provide FTA
}
bool cDevice::Receiving(bool CheckAny) const
{
for (int i = 0; i < MAXRECEIVERS; i++) {
if (receiver[i] && (CheckAny || receiver[i]->priority >= 0)) // cReceiver with priority < 0 doesn't count
return true;
}
return false;
}
void cDevice::Action(void)
{
if (active && OpenDvr()) {
for (; active;) {
// Read data from the DVR device:
uchar *b = NULL;
if (GetTSPacket(b)) {
if (b) {
int Pid = (((uint16_t)b[1] & PID_MASK_HI) << 8) | b[2];
// Distribute the packet to all attached receivers:
Lock();
for (int i = 0; i < MAXRECEIVERS; i++) {
if (receiver[i] && receiver[i]->WantsPid(Pid))
receiver[i]->Receive(b, TS_SIZE);
}
Unlock();
}
}
else
break;
}
CloseDvr();
}
}
bool cDevice::OpenDvr(void)
{
return false;
}
void cDevice::CloseDvr(void)
{
}
bool cDevice::GetTSPacket(uchar *&Data)
{
return false;
}
bool cDevice::AttachReceiver(cReceiver *Receiver)
{
if (!Receiver)
return false;
if (Receiver->device == this)
return true;
if (!HasLock(TUNER_LOCK_TIMEOUT)) {
esyslog("ERROR: device %d has no lock, can't attach receiver!", CardIndex() + 1);
return false;
}
cMutexLock MutexLock(&mutexReceiver);
for (int i = 0; i < MAXRECEIVERS; i++) {
if (!receiver[i]) {
for (int n = 0; n < Receiver->numPids; n++) {
if (!AddPid(Receiver->pids[n])) {
for ( ; n-- > 0; )
DelPid(Receiver->pids[n]);
return false;
}
}
Receiver->Activate(true);
Lock();
Receiver->device = this;
receiver[i] = Receiver;
Unlock();
if (!active) {
active = true;
Start();
}
return true;
}
}
esyslog("ERROR: no free receiver slot!");
return false;
}
void cDevice::Detach(cReceiver *Receiver)
{
if (!Receiver || Receiver->device != this)
return;
bool receiversLeft = false;
cMutexLock MutexLock(&mutexReceiver);
for (int i = 0; i < MAXRECEIVERS; i++) {
if (receiver[i] == Receiver) {
Receiver->Activate(false);
Lock();
receiver[i] = NULL;
Receiver->device = NULL;
Unlock();
for (int n = 0; n < Receiver->numPids; n++)
DelPid(Receiver->pids[n]);
}
else if (receiver[i])
receiversLeft = true;
}
if (!receiversLeft) {
active = false;
Cancel(3);
}
}
// --- cTSBuffer -------------------------------------------------------------
cTSBuffer::cTSBuffer(int File, int Size, int CardIndex)
{
SetDescription("TS buffer on device %d", CardIndex);
f = File;
cardIndex = CardIndex;
delivered = false;
ringBuffer = new cRingBufferLinear(Size, TS_SIZE, true, "TS");
ringBuffer->SetTimeouts(100, 100);
active = true;
Start();
}
cTSBuffer::~cTSBuffer()
{
active = false;
Cancel(3);
delete ringBuffer;
}
void cTSBuffer::Action(void)
{
if (ringBuffer) {
bool firstRead = true;
cPoller Poller(f);
for (; active;) {
if (firstRead || Poller.Poll(100)) {
firstRead = false;
int r = ringBuffer->Read(f);
if (r < 0 && FATALERRNO) {
if (errno == EOVERFLOW)
esyslog("ERROR: driver buffer overflow on device %d", cardIndex);
else {
LOG_ERROR;
break;
}
}
}
}
}
}
uchar *cTSBuffer::Get(void)
{
int Count = 0;
if (delivered) {
ringBuffer->Del(TS_SIZE);
delivered = false;
}
uchar *p = ringBuffer->Get(Count);
if (p && Count >= TS_SIZE) {
if (*p != TS_SYNC_BYTE) {
for (int i = 1; i < Count; i++) {
if (p[i] == TS_SYNC_BYTE) {
Count = i;
break;
}
}
ringBuffer->Del(Count);
esyslog("ERROR: skipped %d bytes to sync on TS packet on device %d", Count, cardIndex);
return NULL;
}
delivered = true;
return p;
}
return NULL;
}