vdr/tools.c
Klaus Schmidinger d34026c18b Version 1.7.30
VDR developer version 1.7.30 is now available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-1.7.30.tar.bz2

A 'diff' against the previous version is available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-1.7.29-1.7.30.diff

MD5 checksums:

c6d75f2962bc3e22d9313c0ee4fa113a  vdr-1.7.30.tar.bz2
a63098efcc58bc697d6b890097d9c370  vdr-1.7.29-1.7.30.diff

WARNING:
========

This is a developer version. Even though I use it in my productive
environment. I strongly recommend that you only use it under controlled
conditions and for testing and debugging.

The default skin "LCARS" displays the signal strengths and qualities of
all devices in its main menu. For devices that have an stb0899 frontend chip
(like the TT-budget S2-3200) retrieving this information from the driver is
rather slow, which results in a sluggish response to user input in the main
menu. To speed this up you may want to apply the patches from

   ftp://ftp.tvdr.de/vdr/Developer/Driver-Patches

to the LinuxDVB driver source.

From the HISTORY file:
- Fixed sorting recordings in the top level video directory.
- Fixed handling control characters in SI data in case of UTF-8 encoded strings
   (thanks to Mehdi Karamnejad for reporting a problem with garbled UTF-8 EPG data
   and helping to debug it).
- Updated the Finnish OSD texts (thanks to Rolf Ahrenberg).
- When checking whether a video directory is empty, file names that start with a
   dot ('.') are now ignored and will be implicitly removed if the directory contains
   no other files. This fixes the leftover ".sort" files that were introduced in
   version 1.7.29.
- Added IsUpdate() to the EPG handler interface (thanks to Jörg Wendel).
- Fixed detecting transfer mode on full featured DVB cards (thanks to Stefan Huelswitt
   for reporting a problem with updating CA descriptors in such cases).
- Fixed a race condition when zapping in transfer mode (reported by Reinhard Nissl).
   This involves a slight change in the semantics of the cReceiver::Activate() function,
   which is now called with 'false' after the receiver has been detached from the
   device.
- The new function cDevice::ReadFilter() can be used by devices to implement their
   own way of retrieving section filter data (thanks to Deti Fliegl).
- The new function cDevice::HasInternalCam() can be implemented by devices that
   provide encrypted channels in an already decrypted form, without requiring explicit
   handling of a CAM (thanks to Tobias Grimm).
- VDR can now be built according to the FHS ("File system Hierarchy Standard") by
   activating the line
   #USEFHS = 1
   in a copy of the file Make.config.template (thanks to Dennis Bendlin, as well as
   Christopher Reimer and Udo Richter for contributing to the patch).
- By default (without FHS support) the config directory is now set to the value
   given in the -v option if only -v and no -c is given.
- Fixed a long delay at the end when replaying a recording that has stopped recording
   less than an hour ago (typically time shift mode or a freshly edited recording).
- Fixed getting the file size and number of frames of ongoing recordings (only the
   timestamp of the recording's directory was checked, while it should have been that
   of the index file).
- Fixed sluggish response when manipulating editing marks while a cutting thread
   is running (reported by Torsten Lang).
- The new setup options "OSD/Color key [0123]" can be used to adjust the sequence
   of the color buttons displayed in the menus to that of the color keys on your
   remote control (based on a patch from Oliver Schinagl).
   Authors of plugins that implement skins may want to adapt their SetButtons()
   function in order to make use of this new feature. See, for instance, the function
   cSkinClassicDisplayMenu::SetButtons() in skinclassic.c for details.
2012-09-11 23:49:53 +02:00

2080 lines
50 KiB
C

/*
* tools.c: Various tools
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: tools.c 2.25 2012/08/21 10:34:37 kls Exp $
*/
#include "tools.h"
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
extern "C" {
#ifdef boolean
#define HAVE_BOOLEAN
#endif
#include <jpeglib.h>
#undef boolean
}
#include <stdlib.h>
#include <sys/time.h>
#include <sys/vfs.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
#include "i18n.h"
#include "thread.h"
int SysLogLevel = 3;
#define MAXSYSLOGBUF 256
void syslog_with_tid(int priority, const char *format, ...)
{
va_list ap;
char fmt[MAXSYSLOGBUF];
snprintf(fmt, sizeof(fmt), "[%d] %s", cThread::ThreadId(), format);
va_start(ap, format);
vsyslog(priority, fmt, ap);
va_end(ap);
}
int BCD2INT(int x)
{
return ((1000000 * BCDCHARTOINT((x >> 24) & 0xFF)) +
(10000 * BCDCHARTOINT((x >> 16) & 0xFF)) +
(100 * BCDCHARTOINT((x >> 8) & 0xFF)) +
BCDCHARTOINT( x & 0xFF));
}
ssize_t safe_read(int filedes, void *buffer, size_t size)
{
for (;;) {
ssize_t p = read(filedes, buffer, size);
if (p < 0 && errno == EINTR) {
dsyslog("EINTR while reading from file handle %d - retrying", filedes);
continue;
}
return p;
}
}
ssize_t safe_write(int filedes, const void *buffer, size_t size)
{
ssize_t p = 0;
ssize_t written = size;
const unsigned char *ptr = (const unsigned char *)buffer;
while (size > 0) {
p = write(filedes, ptr, size);
if (p < 0) {
if (errno == EINTR) {
dsyslog("EINTR while writing to file handle %d - retrying", filedes);
continue;
}
break;
}
ptr += p;
size -= p;
}
return p < 0 ? p : written;
}
void writechar(int filedes, char c)
{
safe_write(filedes, &c, sizeof(c));
}
int WriteAllOrNothing(int fd, const uchar *Data, int Length, int TimeoutMs, int RetryMs)
{
int written = 0;
while (Length > 0) {
int w = write(fd, Data + written, Length);
if (w > 0) {
Length -= w;
written += w;
}
else if (written > 0 && !FATALERRNO) {
// we've started writing, so we must finish it!
cTimeMs t;
cPoller Poller(fd, true);
Poller.Poll(RetryMs);
if (TimeoutMs > 0 && (TimeoutMs -= t.Elapsed()) <= 0)
break;
}
else
// nothing written yet (or fatal error), so we can just return the error code:
return w;
}
return written;
}
char *strcpyrealloc(char *dest, const char *src)
{
if (src) {
int l = max(dest ? strlen(dest) : 0, strlen(src)) + 1; // don't let the block get smaller!
dest = (char *)realloc(dest, l);
if (dest)
strcpy(dest, src);
else
esyslog("ERROR: out of memory");
}
else {
free(dest);
dest = NULL;
}
return dest;
}
char *strn0cpy(char *dest, const char *src, size_t n)
{
char *s = dest;
for ( ; --n && (*dest = *src) != 0; dest++, src++) ;
*dest = 0;
return s;
}
char *strreplace(char *s, char c1, char c2)
{
if (s) {
char *p = s;
while (*p) {
if (*p == c1)
*p = c2;
p++;
}
}
return s;
}
char *strreplace(char *s, const char *s1, const char *s2)
{
char *p = strstr(s, s1);
if (p) {
int of = p - s;
int l = strlen(s);
int l1 = strlen(s1);
int l2 = strlen(s2);
if (l2 > l1) {
if (char *NewBuffer = (char *)realloc(s, l + l2 - l1 + 1))
s = NewBuffer;
else {
esyslog("ERROR: out of memory");
return s;
}
}
char *sof = s + of;
if (l2 != l1)
memmove(sof + l2, sof + l1, l - of - l1 + 1);
strncpy(sof, s2, l2);
}
return s;
}
char *stripspace(char *s)
{
if (s && *s) {
for (char *p = s + strlen(s) - 1; p >= s; p--) {
if (!isspace(*p))
break;
*p = 0;
}
}
return s;
}
char *compactspace(char *s)
{
if (s && *s) {
char *t = stripspace(skipspace(s));
char *p = t;
while (p && *p) {
char *q = skipspace(p);
if (q - p > 1)
memmove(p + 1, q, strlen(q) + 1);
p++;
}
if (t != s)
memmove(s, t, strlen(t) + 1);
}
return s;
}
cString strescape(const char *s, const char *chars)
{
char *buffer;
const char *p = s;
char *t = NULL;
while (*p) {
if (strchr(chars, *p)) {
if (!t) {
buffer = MALLOC(char, 2 * strlen(s) + 1);
t = buffer + (p - s);
s = strcpy(buffer, s);
}
*t++ = '\\';
}
if (t)
*t++ = *p;
p++;
}
if (t)
*t = 0;
return cString(s, t != NULL);
}
bool startswith(const char *s, const char *p)
{
while (*p) {
if (*p++ != *s++)
return false;
}
return true;
}
bool endswith(const char *s, const char *p)
{
const char *se = s + strlen(s) - 1;
const char *pe = p + strlen(p) - 1;
while (pe >= p) {
if (*pe-- != *se-- || (se < s && pe >= p))
return false;
}
return true;
}
bool isempty(const char *s)
{
return !(s && *skipspace(s));
}
int numdigits(int n)
{
int res = 1;
while (n >= 10) {
n /= 10;
res++;
}
return res;
}
bool isnumber(const char *s)
{
if (!s || !*s)
return false;
do {
if (!isdigit(*s))
return false;
} while (*++s);
return true;
}
int64_t StrToNum(const char *s)
{
char *t = NULL;
int64_t n = strtoll(s, &t, 10);
if (t) {
switch (*t) {
case 'T': n *= 1024;
case 'G': n *= 1024;
case 'M': n *= 1024;
case 'K': n *= 1024;
}
}
return n;
}
cString AddDirectory(const char *DirName, const char *FileName)
{
return cString::sprintf("%s/%s", DirName && *DirName ? DirName : ".", FileName);
}
cString itoa(int n)
{
char buf[16];
snprintf(buf, sizeof(buf), "%d", n);
return buf;
}
bool EntriesOnSameFileSystem(const char *File1, const char *File2)
{
struct stat st;
if (stat(File1, &st) == 0) {
dev_t dev1 = st.st_dev;
if (stat(File2, &st) == 0)
return st.st_dev == dev1;
else
LOG_ERROR_STR(File2);
}
else
LOG_ERROR_STR(File1);
return false;
}
int FreeDiskSpaceMB(const char *Directory, int *UsedMB)
{
if (UsedMB)
*UsedMB = 0;
int Free = 0;
struct statfs statFs;
if (statfs(Directory, &statFs) == 0) {
double blocksPerMeg = 1024.0 * 1024.0 / statFs.f_bsize;
if (UsedMB)
*UsedMB = int((statFs.f_blocks - statFs.f_bfree) / blocksPerMeg);
Free = int(statFs.f_bavail / blocksPerMeg);
}
else
LOG_ERROR_STR(Directory);
return Free;
}
bool DirectoryOk(const char *DirName, bool LogErrors)
{
struct stat ds;
if (stat(DirName, &ds) == 0) {
if (S_ISDIR(ds.st_mode)) {
if (access(DirName, R_OK | W_OK | X_OK) == 0)
return true;
else if (LogErrors)
esyslog("ERROR: can't access %s", DirName);
}
else if (LogErrors)
esyslog("ERROR: %s is not a directory", DirName);
}
else if (LogErrors)
LOG_ERROR_STR(DirName);
return false;
}
bool MakeDirs(const char *FileName, bool IsDirectory)
{
bool result = true;
char *s = strdup(FileName);
char *p = s;
if (*p == '/')
p++;
while ((p = strchr(p, '/')) != NULL || IsDirectory) {
if (p)
*p = 0;
struct stat fs;
if (stat(s, &fs) != 0 || !S_ISDIR(fs.st_mode)) {
dsyslog("creating directory %s", s);
if (mkdir(s, ACCESSPERMS) == -1) {
LOG_ERROR_STR(s);
result = false;
break;
}
}
if (p)
*p++ = '/';
else
break;
}
free(s);
return result;
}
bool RemoveFileOrDir(const char *FileName, bool FollowSymlinks)
{
struct stat st;
if (stat(FileName, &st) == 0) {
if (S_ISDIR(st.st_mode)) {
cReadDir d(FileName);
if (d.Ok()) {
struct dirent *e;
while ((e = d.Next()) != NULL) {
cString buffer = AddDirectory(FileName, e->d_name);
if (FollowSymlinks) {
struct stat st2;
if (lstat(buffer, &st2) == 0) {
if (S_ISLNK(st2.st_mode)) {
int size = st2.st_size + 1;
char *l = MALLOC(char, size);
int n = readlink(buffer, l, size - 1);
if (n < 0) {
if (errno != EINVAL)
LOG_ERROR_STR(*buffer);
}
else {
l[n] = 0;
dsyslog("removing %s", l);
if (remove(l) < 0)
LOG_ERROR_STR(l);
}
free(l);
}
}
else if (errno != ENOENT) {
LOG_ERROR_STR(FileName);
return false;
}
}
dsyslog("removing %s", *buffer);
if (remove(buffer) < 0)
LOG_ERROR_STR(*buffer);
}
}
else {
LOG_ERROR_STR(FileName);
return false;
}
}
dsyslog("removing %s", FileName);
if (remove(FileName) < 0) {
LOG_ERROR_STR(FileName);
return false;
}
}
else if (errno != ENOENT) {
LOG_ERROR_STR(FileName);
return false;
}
return true;
}
bool RemoveEmptyDirectories(const char *DirName, bool RemoveThis)
{
bool HasDotFiles = false;
cReadDir d(DirName);
if (d.Ok()) {
bool empty = true;
struct dirent *e;
while ((e = d.Next()) != NULL) {
if (strcmp(e->d_name, "lost+found")) {
cString buffer = AddDirectory(DirName, e->d_name);
struct stat st;
if (stat(buffer, &st) == 0) {
if (S_ISDIR(st.st_mode)) {
if (!RemoveEmptyDirectories(buffer, true))
empty = false;
}
else if (*e->d_name == '.') // "dot files" don't count
HasDotFiles = true;
else
empty = false;
}
else {
LOG_ERROR_STR(*buffer);
empty = false;
}
}
}
if (RemoveThis && empty) {
if (HasDotFiles) {
cReadDir d(DirName);
if (d.Ok()) {
struct dirent *e;
while ((e = d.Next()) != NULL) {
if (*e->d_name == '.') { // for safety - should always be true
cString buffer = AddDirectory(DirName, e->d_name);
dsyslog("removing %s", *buffer);
if (remove(buffer) < 0) {
LOG_ERROR_STR(*buffer);
return false;
}
}
}
}
}
dsyslog("removing %s", DirName);
if (remove(DirName) < 0) {
LOG_ERROR_STR(DirName);
return false;
}
}
return empty;
}
else
LOG_ERROR_STR(DirName);
return false;
}
int DirSizeMB(const char *DirName)
{
cReadDir d(DirName);
if (d.Ok()) {
int size = 0;
struct dirent *e;
while (size >= 0 && (e = d.Next()) != NULL) {
cString buffer = AddDirectory(DirName, e->d_name);
struct stat st;
if (stat(buffer, &st) == 0) {
if (S_ISDIR(st.st_mode)) {
int n = DirSizeMB(buffer);
if (n >= 0)
size += n;
else
size = -1;
}
else
size += st.st_size / MEGABYTE(1);
}
else {
LOG_ERROR_STR(*buffer);
size = -1;
}
}
return size;
}
else
LOG_ERROR_STR(DirName);
return -1;
}
char *ReadLink(const char *FileName)
{
if (!FileName)
return NULL;
char *TargetName = canonicalize_file_name(FileName);
if (!TargetName) {
if (errno == ENOENT) // file doesn't exist
TargetName = strdup(FileName);
else // some other error occurred
LOG_ERROR_STR(FileName);
}
return TargetName;
}
bool SpinUpDisk(const char *FileName)
{
for (int n = 0; n < 10; n++) {
cString buf;
if (DirectoryOk(FileName))
buf = cString::sprintf("%s/vdr-%06d", *FileName ? FileName : ".", n);
else
buf = cString::sprintf("%s.vdr-%06d", FileName, n);
if (access(buf, F_OK) != 0) { // the file does not exist
timeval tp1, tp2;
gettimeofday(&tp1, NULL);
int f = open(buf, O_WRONLY | O_CREAT, DEFFILEMODE);
// O_SYNC doesn't work on all file systems
if (f >= 0) {
if (fdatasync(f) < 0)
LOG_ERROR_STR(*buf);
close(f);
remove(buf);
gettimeofday(&tp2, NULL);
double seconds = (((long long)tp2.tv_sec * 1000000 + tp2.tv_usec) - ((long long)tp1.tv_sec * 1000000 + tp1.tv_usec)) / 1000000.0;
if (seconds > 0.5)
dsyslog("SpinUpDisk took %.2f seconds", seconds);
return true;
}
else
LOG_ERROR_STR(*buf);
}
}
esyslog("ERROR: SpinUpDisk failed");
return false;
}
void TouchFile(const char *FileName)
{
if (utime(FileName, NULL) == -1 && errno != ENOENT)
LOG_ERROR_STR(FileName);
}
time_t LastModifiedTime(const char *FileName)
{
struct stat fs;
if (stat(FileName, &fs) == 0)
return fs.st_mtime;
return 0;
}
off_t FileSize(const char *FileName)
{
struct stat fs;
if (stat(FileName, &fs) == 0)
return fs.st_size;
return -1;
}
// --- cTimeMs ---------------------------------------------------------------
cTimeMs::cTimeMs(int Ms)
{
if (Ms >= 0)
Set(Ms);
else
begin = 0;
}
uint64_t cTimeMs::Now(void)
{
#if _POSIX_TIMERS > 0 && defined(_POSIX_MONOTONIC_CLOCK)
#define MIN_RESOLUTION 5 // ms
static bool initialized = false;
static bool monotonic = false;
struct timespec tp;
if (!initialized) {
// check if monotonic timer is available and provides enough accurate resolution:
if (clock_getres(CLOCK_MONOTONIC, &tp) == 0) {
long Resolution = tp.tv_nsec;
// require a minimum resolution:
if (tp.tv_sec == 0 && tp.tv_nsec <= MIN_RESOLUTION * 1000000) {
if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) {
dsyslog("cTimeMs: using monotonic clock (resolution is %ld ns)", Resolution);
monotonic = true;
}
else
esyslog("cTimeMs: clock_gettime(CLOCK_MONOTONIC) failed");
}
else
dsyslog("cTimeMs: not using monotonic clock - resolution is too bad (%ld s %ld ns)", tp.tv_sec, tp.tv_nsec);
}
else
esyslog("cTimeMs: clock_getres(CLOCK_MONOTONIC) failed");
initialized = true;
}
if (monotonic) {
if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0)
return (uint64_t(tp.tv_sec)) * 1000 + tp.tv_nsec / 1000000;
esyslog("cTimeMs: clock_gettime(CLOCK_MONOTONIC) failed");
monotonic = false;
// fall back to gettimeofday()
}
#else
# warning Posix monotonic clock not available
#endif
struct timeval t;
if (gettimeofday(&t, NULL) == 0)
return (uint64_t(t.tv_sec)) * 1000 + t.tv_usec / 1000;
return 0;
}
void cTimeMs::Set(int Ms)
{
begin = Now() + Ms;
}
bool cTimeMs::TimedOut(void)
{
return Now() >= begin;
}
uint64_t cTimeMs::Elapsed(void)
{
return Now() - begin;
}
// --- UTF-8 support ---------------------------------------------------------
static uint SystemToUtf8[128] = { 0 };
int Utf8CharLen(const char *s)
{
if (cCharSetConv::SystemCharacterTable())
return 1;
#define MT(s, m, v) ((*(s) & (m)) == (v)) // Mask Test
if (MT(s, 0xE0, 0xC0) && MT(s + 1, 0xC0, 0x80))
return 2;
if (MT(s, 0xF0, 0xE0) && MT(s + 1, 0xC0, 0x80) && MT(s + 2, 0xC0, 0x80))
return 3;
if (MT(s, 0xF8, 0xF0) && MT(s + 1, 0xC0, 0x80) && MT(s + 2, 0xC0, 0x80) && MT(s + 3, 0xC0, 0x80))
return 4;
return 1;
}
uint Utf8CharGet(const char *s, int Length)
{
if (cCharSetConv::SystemCharacterTable())
return (uchar)*s < 128 ? *s : SystemToUtf8[(uchar)*s - 128];
if (!Length)
Length = Utf8CharLen(s);
switch (Length) {
case 2: return ((*s & 0x1F) << 6) | (*(s + 1) & 0x3F);
case 3: return ((*s & 0x0F) << 12) | ((*(s + 1) & 0x3F) << 6) | (*(s + 2) & 0x3F);
case 4: return ((*s & 0x07) << 18) | ((*(s + 1) & 0x3F) << 12) | ((*(s + 2) & 0x3F) << 6) | (*(s + 3) & 0x3F);
default: ;
}
return *s;
}
int Utf8CharSet(uint c, char *s)
{
if (c < 0x80 || cCharSetConv::SystemCharacterTable()) {
if (s)
*s = c;
return 1;
}
if (c < 0x800) {
if (s) {
*s++ = ((c >> 6) & 0x1F) | 0xC0;
*s = (c & 0x3F) | 0x80;
}
return 2;
}
if (c < 0x10000) {
if (s) {
*s++ = ((c >> 12) & 0x0F) | 0xE0;
*s++ = ((c >> 6) & 0x3F) | 0x80;
*s = (c & 0x3F) | 0x80;
}
return 3;
}
if (c < 0x110000) {
if (s) {
*s++ = ((c >> 18) & 0x07) | 0xF0;
*s++ = ((c >> 12) & 0x3F) | 0x80;
*s++ = ((c >> 6) & 0x3F) | 0x80;
*s = (c & 0x3F) | 0x80;
}
return 4;
}
return 0; // can't convert to UTF-8
}
int Utf8SymChars(const char *s, int Symbols)
{
if (cCharSetConv::SystemCharacterTable())
return Symbols;
int n = 0;
while (*s && Symbols--) {
int sl = Utf8CharLen(s);
s += sl;
n += sl;
}
return n;
}
int Utf8StrLen(const char *s)
{
if (cCharSetConv::SystemCharacterTable())
return strlen(s);
int n = 0;
while (*s) {
s += Utf8CharLen(s);
n++;
}
return n;
}
char *Utf8Strn0Cpy(char *Dest, const char *Src, int n)
{
if (cCharSetConv::SystemCharacterTable())
return strn0cpy(Dest, Src, n);
char *d = Dest;
while (*Src) {
int sl = Utf8CharLen(Src);
n -= sl;
if (n > 0) {
while (sl--)
*d++ = *Src++;
}
else
break;
}
*d = 0;
return Dest;
}
int Utf8ToArray(const char *s, uint *a, int Size)
{
int n = 0;
while (*s && --Size > 0) {
if (cCharSetConv::SystemCharacterTable())
*a++ = (uchar)(*s++);
else {
int sl = Utf8CharLen(s);
*a++ = Utf8CharGet(s, sl);
s += sl;
}
n++;
}
if (Size > 0)
*a = 0;
return n;
}
int Utf8FromArray(const uint *a, char *s, int Size, int Max)
{
int NumChars = 0;
int NumSyms = 0;
while (*a && NumChars < Size) {
if (Max >= 0 && NumSyms++ >= Max)
break;
if (cCharSetConv::SystemCharacterTable()) {
*s++ = *a++;
NumChars++;
}
else {
int sl = Utf8CharSet(*a);
if (NumChars + sl <= Size) {
Utf8CharSet(*a, s);
a++;
s += sl;
NumChars += sl;
}
else
break;
}
}
if (NumChars < Size)
*s = 0;
return NumChars;
}
// --- cCharSetConv ----------------------------------------------------------
char *cCharSetConv::systemCharacterTable = NULL;
cCharSetConv::cCharSetConv(const char *FromCode, const char *ToCode)
{
if (!FromCode)
FromCode = systemCharacterTable ? systemCharacterTable : "UTF-8";
if (!ToCode)
ToCode = "UTF-8";
cd = iconv_open(ToCode, FromCode);
result = NULL;
length = 0;
}
cCharSetConv::~cCharSetConv()
{
free(result);
iconv_close(cd);
}
void cCharSetConv::SetSystemCharacterTable(const char *CharacterTable)
{
free(systemCharacterTable);
systemCharacterTable = NULL;
if (!strcasestr(CharacterTable, "UTF-8")) {
// Set up a map for the character values 128...255:
char buf[129];
for (int i = 0; i < 128; i++)
buf[i] = i + 128;
buf[128] = 0;
cCharSetConv csc(CharacterTable);
const char *s = csc.Convert(buf);
int i = 0;
while (*s) {
int sl = Utf8CharLen(s);
SystemToUtf8[i] = Utf8CharGet(s, sl);
s += sl;
i++;
}
systemCharacterTable = strdup(CharacterTable);
}
}
const char *cCharSetConv::Convert(const char *From, char *To, size_t ToLength)
{
if (cd != (iconv_t)-1 && From && *From) {
char *FromPtr = (char *)From;
size_t FromLength = strlen(From);
char *ToPtr = To;
if (!ToPtr) {
int NewLength = max(length, FromLength * 2); // some reserve to avoid later reallocations
if (char *NewBuffer = (char *)realloc(result, NewLength)) {
length = NewLength;
result = NewBuffer;
}
else {
esyslog("ERROR: out of memory");
return From;
}
ToPtr = result;
ToLength = length;
}
else if (!ToLength)
return From; // can't convert into a zero sized buffer
ToLength--; // save space for terminating 0
char *Converted = ToPtr;
while (FromLength > 0) {
if (iconv(cd, &FromPtr, &FromLength, &ToPtr, &ToLength) == size_t(-1)) {
if (errno == E2BIG || errno == EILSEQ && ToLength < 1) {
if (To)
break; // caller provided a fixed size buffer, but it was too small
// The result buffer is too small, so increase it:
size_t d = ToPtr - result;
size_t r = length / 2;
int NewLength = length + r;
if (char *NewBuffer = (char *)realloc(result, NewLength)) {
length = NewLength;
Converted = result = NewBuffer;
}
else {
esyslog("ERROR: out of memory");
return From;
}
ToLength += r;
ToPtr = result + d;
}
if (errno == EILSEQ) {
// A character can't be converted, so mark it with '?' and proceed:
FromPtr++;
FromLength--;
*ToPtr++ = '?';
ToLength--;
}
else if (errno != E2BIG)
return From; // unknown error, return original string
}
}
*ToPtr = 0;
return Converted;
}
return From;
}
// --- cString ---------------------------------------------------------------
cString::cString(const char *S, bool TakePointer)
{
s = TakePointer ? (char *)S : S ? strdup(S) : NULL;
}
cString::cString(const cString &String)
{
s = String.s ? strdup(String.s) : NULL;
}
cString::~cString()
{
free(s);
}
cString &cString::operator=(const cString &String)
{
if (this == &String)
return *this;
free(s);
s = String.s ? strdup(String.s) : NULL;
return *this;
}
cString &cString::operator=(const char *String)
{
if (s == String)
return *this;
free(s);
s = String ? strdup(String) : NULL;
return *this;
}
cString &cString::Truncate(int Index)
{
int l = strlen(s);
if (Index < 0)
Index = l + Index;
if (Index >= 0 && Index < l)
s[Index] = 0;
return *this;
}
cString cString::sprintf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
char *buffer;
if (!fmt || vasprintf(&buffer, fmt, ap) < 0) {
esyslog("error in vasprintf('%s', ...)", fmt);
buffer = strdup("???");
}
va_end(ap);
return cString(buffer, true);
}
cString cString::vsprintf(const char *fmt, va_list &ap)
{
char *buffer;
if (!fmt || vasprintf(&buffer, fmt, ap) < 0) {
esyslog("error in vasprintf('%s', ...)", fmt);
buffer = strdup("???");
}
return cString(buffer, true);
}
cString WeekDayName(int WeekDay)
{
char buffer[16];
WeekDay = WeekDay == 0 ? 6 : WeekDay - 1; // we start with Monday==0!
if (0 <= WeekDay && WeekDay <= 6) {
// TRANSLATORS: abbreviated weekdays, beginning with monday (must all be 3 letters!)
const char *day = tr("MonTueWedThuFriSatSun");
day += Utf8SymChars(day, WeekDay * 3);
strn0cpy(buffer, day, min(Utf8SymChars(day, 3) + 1, int(sizeof(buffer))));
return buffer;
}
else
return "???";
}
cString WeekDayName(time_t t)
{
struct tm tm_r;
return WeekDayName(localtime_r(&t, &tm_r)->tm_wday);
}
cString WeekDayNameFull(int WeekDay)
{
WeekDay = WeekDay == 0 ? 6 : WeekDay - 1; // we start with Monday==0!
switch (WeekDay) {
case 0: return tr("Monday");
case 1: return tr("Tuesday");
case 2: return tr("Wednesday");
case 3: return tr("Thursday");
case 4: return tr("Friday");
case 5: return tr("Saturday");
case 6: return tr("Sunday");
default: return "???";
}
}
cString WeekDayNameFull(time_t t)
{
struct tm tm_r;
return WeekDayNameFull(localtime_r(&t, &tm_r)->tm_wday);
}
cString DayDateTime(time_t t)
{
char buffer[32];
if (t == 0)
time(&t);
struct tm tm_r;
tm *tm = localtime_r(&t, &tm_r);
snprintf(buffer, sizeof(buffer), "%s %02d.%02d. %02d:%02d", *WeekDayName(tm->tm_wday), tm->tm_mday, tm->tm_mon + 1, tm->tm_hour, tm->tm_min);
return buffer;
}
cString TimeToString(time_t t)
{
char buffer[32];
if (ctime_r(&t, buffer)) {
buffer[strlen(buffer) - 1] = 0; // strip trailing newline
return buffer;
}
return "???";
}
cString DateString(time_t t)
{
char buf[32];
struct tm tm_r;
tm *tm = localtime_r(&t, &tm_r);
char *p = stpcpy(buf, WeekDayName(tm->tm_wday));
*p++ = ' ';
strftime(p, sizeof(buf) - (p - buf), "%d.%m.%Y", tm);
return buf;
}
cString ShortDateString(time_t t)
{
char buf[32];
struct tm tm_r;
tm *tm = localtime_r(&t, &tm_r);
strftime(buf, sizeof(buf), "%d.%m.%y", tm);
return buf;
}
cString TimeString(time_t t)
{
char buf[25];
struct tm tm_r;
strftime(buf, sizeof(buf), "%R", localtime_r(&t, &tm_r));
return buf;
}
// --- RgbToJpeg -------------------------------------------------------------
#define JPEGCOMPRESSMEM 500000
struct tJpegCompressData {
int size;
uchar *mem;
};
static void JpegCompressInitDestination(j_compress_ptr cinfo)
{
tJpegCompressData *jcd = (tJpegCompressData *)cinfo->client_data;
if (jcd) {
cinfo->dest->free_in_buffer = jcd->size = JPEGCOMPRESSMEM;
cinfo->dest->next_output_byte = jcd->mem = MALLOC(uchar, jcd->size);
}
}
static boolean JpegCompressEmptyOutputBuffer(j_compress_ptr cinfo)
{
tJpegCompressData *jcd = (tJpegCompressData *)cinfo->client_data;
if (jcd) {
int Used = jcd->size;
int NewSize = jcd->size + JPEGCOMPRESSMEM;
if (uchar *NewBuffer = (uchar *)realloc(jcd->mem, NewSize)) {
jcd->size = NewSize;
jcd->mem = NewBuffer;
}
else {
esyslog("ERROR: out of memory");
return false;
}
if (jcd->mem) {
cinfo->dest->next_output_byte = jcd->mem + Used;
cinfo->dest->free_in_buffer = jcd->size - Used;
return true;
}
}
return false;
}
static void JpegCompressTermDestination(j_compress_ptr cinfo)
{
tJpegCompressData *jcd = (tJpegCompressData *)cinfo->client_data;
if (jcd) {
int Used = cinfo->dest->next_output_byte - jcd->mem;
if (Used < jcd->size) {
if (uchar *NewBuffer = (uchar *)realloc(jcd->mem, Used)) {
jcd->size = Used;
jcd->mem = NewBuffer;
}
else
esyslog("ERROR: out of memory");
}
}
}
uchar *RgbToJpeg(uchar *Mem, int Width, int Height, int &Size, int Quality)
{
if (Quality < 0)
Quality = 0;
else if (Quality > 100)
Quality = 100;
jpeg_destination_mgr jdm;
jdm.init_destination = JpegCompressInitDestination;
jdm.empty_output_buffer = JpegCompressEmptyOutputBuffer;
jdm.term_destination = JpegCompressTermDestination;
struct jpeg_compress_struct cinfo;
struct jpeg_error_mgr jerr;
cinfo.err = jpeg_std_error(&jerr);
jpeg_create_compress(&cinfo);
cinfo.dest = &jdm;
tJpegCompressData jcd;
cinfo.client_data = &jcd;
cinfo.image_width = Width;
cinfo.image_height = Height;
cinfo.input_components = 3;
cinfo.in_color_space = JCS_RGB;
jpeg_set_defaults(&cinfo);
jpeg_set_quality(&cinfo, Quality, true);
jpeg_start_compress(&cinfo, true);
int rs = Width * 3;
JSAMPROW rp[Height];
for (int k = 0; k < Height; k++)
rp[k] = &Mem[rs * k];
jpeg_write_scanlines(&cinfo, rp, Height);
jpeg_finish_compress(&cinfo);
jpeg_destroy_compress(&cinfo);
Size = jcd.size;
return jcd.mem;
}
// --- cBase64Encoder --------------------------------------------------------
const char *cBase64Encoder::b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
cBase64Encoder::cBase64Encoder(const uchar *Data, int Length, int MaxResult)
{
data = Data;
length = Length;
maxResult = MaxResult;
i = 0;
result = MALLOC(char, maxResult + 1);
}
cBase64Encoder::~cBase64Encoder()
{
free(result);
}
const char *cBase64Encoder::NextLine(void)
{
int r = 0;
while (i < length && r < maxResult - 3) {
result[r++] = b64[(data[i] >> 2) & 0x3F];
uchar c = (data[i] << 4) & 0x3F;
if (++i < length)
c |= (data[i] >> 4) & 0x0F;
result[r++] = b64[c];
if (i < length) {
c = (data[i] << 2) & 0x3F;
if (++i < length)
c |= (data[i] >> 6) & 0x03;
result[r++] = b64[c];
}
else {
i++;
result[r++] = '=';
}
if (i < length) {
c = data[i] & 0x3F;
result[r++] = b64[c];
}
else
result[r++] = '=';
i++;
}
if (r > 0) {
result[r] = 0;
return result;
}
return NULL;
}
// --- cBitStream ------------------------------------------------------------
int cBitStream::GetBit(void)
{
if (index >= length)
return 1;
int r = (data[index >> 3] >> (7 - (index & 7))) & 1;
++index;
return r;
}
uint32_t cBitStream::GetBits(int n)
{
uint32_t r = 0;
while (n--)
r |= GetBit() << n;
return r;
}
void cBitStream::ByteAlign(void)
{
int n = index % 8;
if (n > 0)
SkipBits(8 - n);
}
void cBitStream::WordAlign(void)
{
int n = index % 16;
if (n > 0)
SkipBits(16 - n);
}
bool cBitStream::SetLength(int Length)
{
if (Length > length)
return false;
length = Length;
return true;
}
// --- cReadLine -------------------------------------------------------------
cReadLine::cReadLine(void)
{
size = 0;
buffer = NULL;
}
cReadLine::~cReadLine()
{
free(buffer);
}
char *cReadLine::Read(FILE *f)
{
int n = getline(&buffer, &size, f);
if (n > 0) {
n--;
if (buffer[n] == '\n') {
buffer[n] = 0;
if (n > 0) {
n--;
if (buffer[n] == '\r')
buffer[n] = 0;
}
}
return buffer;
}
return NULL;
}
// --- cPoller ---------------------------------------------------------------
cPoller::cPoller(int FileHandle, bool Out)
{
numFileHandles = 0;
Add(FileHandle, Out);
}
bool cPoller::Add(int FileHandle, bool Out)
{
if (FileHandle >= 0) {
for (int i = 0; i < numFileHandles; i++) {
if (pfd[i].fd == FileHandle && pfd[i].events == (Out ? POLLOUT : POLLIN))
return true;
}
if (numFileHandles < MaxPollFiles) {
pfd[numFileHandles].fd = FileHandle;
pfd[numFileHandles].events = Out ? POLLOUT : POLLIN;
pfd[numFileHandles].revents = 0;
numFileHandles++;
return true;
}
esyslog("ERROR: too many file handles in cPoller");
}
return false;
}
bool cPoller::Poll(int TimeoutMs)
{
if (numFileHandles) {
if (poll(pfd, numFileHandles, TimeoutMs) != 0)
return true; // returns true even in case of an error, to let the caller
// access the file and thus see the error code
}
return false;
}
// --- cReadDir --------------------------------------------------------------
cReadDir::cReadDir(const char *Directory)
{
directory = opendir(Directory);
}
cReadDir::~cReadDir()
{
if (directory)
closedir(directory);
}
struct dirent *cReadDir::Next(void)
{
if (directory) {
while (readdir_r(directory, &u.d, &result) == 0 && result) {
if (strcmp(result->d_name, ".") && strcmp(result->d_name, ".."))
return result;
}
}
return NULL;
}
// --- cStringList -----------------------------------------------------------
cStringList::~cStringList()
{
Clear();
}
int cStringList::Find(const char *s) const
{
for (int i = 0; i < Size(); i++) {
if (!strcmp(s, At(i)))
return i;
}
return -1;
}
void cStringList::Clear(void)
{
for (int i = 0; i < Size(); i++)
free(At(i));
cVector<char *>::Clear();
}
// --- cFileNameList ---------------------------------------------------------
// TODO better GetFileNames(const char *Directory, cStringList *List)?
cFileNameList::cFileNameList(const char *Directory, bool DirsOnly)
{
Load(Directory, DirsOnly);
}
bool cFileNameList::Load(const char *Directory, bool DirsOnly)
{
Clear();
if (Directory) {
cReadDir d(Directory);
struct dirent *e;
if (d.Ok()) {
while ((e = d.Next()) != NULL) {
if (DirsOnly) {
struct stat ds;
if (stat(AddDirectory(Directory, e->d_name), &ds) == 0) {
if (!S_ISDIR(ds.st_mode))
continue;
}
}
Append(strdup(e->d_name));
}
Sort();
return true;
}
else
LOG_ERROR_STR(Directory);
}
return false;
}
// --- cFile -----------------------------------------------------------------
bool cFile::files[FD_SETSIZE] = { false };
int cFile::maxFiles = 0;
cFile::cFile(void)
{
f = -1;
}
cFile::~cFile()
{
Close();
}
bool cFile::Open(const char *FileName, int Flags, mode_t Mode)
{
if (!IsOpen())
return Open(open(FileName, Flags, Mode));
esyslog("ERROR: attempt to re-open %s", FileName);
return false;
}
bool cFile::Open(int FileDes)
{
if (FileDes >= 0) {
if (!IsOpen()) {
f = FileDes;
if (f >= 0) {
if (f < FD_SETSIZE) {
if (f >= maxFiles)
maxFiles = f + 1;
if (!files[f])
files[f] = true;
else
esyslog("ERROR: file descriptor %d already in files[]", f);
return true;
}
else
esyslog("ERROR: file descriptor %d is larger than FD_SETSIZE (%d)", f, FD_SETSIZE);
}
}
else
esyslog("ERROR: attempt to re-open file descriptor %d", FileDes);
}
return false;
}
void cFile::Close(void)
{
if (f >= 0) {
close(f);
files[f] = false;
f = -1;
}
}
bool cFile::Ready(bool Wait)
{
return f >= 0 && AnyFileReady(f, Wait ? 1000 : 0);
}
bool cFile::AnyFileReady(int FileDes, int TimeoutMs)
{
fd_set set;
FD_ZERO(&set);
for (int i = 0; i < maxFiles; i++) {
if (files[i])
FD_SET(i, &set);
}
if (0 <= FileDes && FileDes < FD_SETSIZE && !files[FileDes])
FD_SET(FileDes, &set); // in case we come in with an arbitrary descriptor
if (TimeoutMs == 0)
TimeoutMs = 10; // load gets too heavy with 0
struct timeval timeout;
timeout.tv_sec = TimeoutMs / 1000;
timeout.tv_usec = (TimeoutMs % 1000) * 1000;
return select(FD_SETSIZE, &set, NULL, NULL, &timeout) > 0 && (FileDes < 0 || FD_ISSET(FileDes, &set));
}
bool cFile::FileReady(int FileDes, int TimeoutMs)
{
fd_set set;
struct timeval timeout;
FD_ZERO(&set);
FD_SET(FileDes, &set);
if (TimeoutMs >= 0) {
if (TimeoutMs < 100)
TimeoutMs = 100;
timeout.tv_sec = TimeoutMs / 1000;
timeout.tv_usec = (TimeoutMs % 1000) * 1000;
}
return select(FD_SETSIZE, &set, NULL, NULL, (TimeoutMs >= 0) ? &timeout : NULL) > 0 && FD_ISSET(FileDes, &set);
}
bool cFile::FileReadyForWriting(int FileDes, int TimeoutMs)
{
fd_set set;
struct timeval timeout;
FD_ZERO(&set);
FD_SET(FileDes, &set);
if (TimeoutMs < 100)
TimeoutMs = 100;
timeout.tv_sec = 0;
timeout.tv_usec = TimeoutMs * 1000;
return select(FD_SETSIZE, NULL, &set, NULL, &timeout) > 0 && FD_ISSET(FileDes, &set);
}
// --- cSafeFile -------------------------------------------------------------
cSafeFile::cSafeFile(const char *FileName)
{
f = NULL;
fileName = ReadLink(FileName);
tempName = fileName ? MALLOC(char, strlen(fileName) + 5) : NULL;
if (tempName)
strcat(strcpy(tempName, fileName), ".$$$");
}
cSafeFile::~cSafeFile()
{
if (f)
fclose(f);
unlink(tempName);
free(fileName);
free(tempName);
}
bool cSafeFile::Open(void)
{
if (!f && fileName && tempName) {
f = fopen(tempName, "w");
if (!f)
LOG_ERROR_STR(tempName);
}
return f != NULL;
}
bool cSafeFile::Close(void)
{
bool result = true;
if (f) {
if (ferror(f) != 0) {
LOG_ERROR_STR(tempName);
result = false;
}
fflush(f);
fsync(fileno(f));
if (fclose(f) < 0) {
LOG_ERROR_STR(tempName);
result = false;
}
f = NULL;
if (result && rename(tempName, fileName) < 0) {
LOG_ERROR_STR(fileName);
result = false;
}
}
else
result = false;
return result;
}
// --- cUnbufferedFile -------------------------------------------------------
#define USE_FADVISE
#define WRITE_BUFFER KILOBYTE(800)
cUnbufferedFile::cUnbufferedFile(void)
{
fd = -1;
}
cUnbufferedFile::~cUnbufferedFile()
{
Close();
}
int cUnbufferedFile::Open(const char *FileName, int Flags, mode_t Mode)
{
Close();
fd = open(FileName, Flags, Mode);
curpos = 0;
#ifdef USE_FADVISE
begin = lastpos = ahead = 0;
cachedstart = 0;
cachedend = 0;
readahead = KILOBYTE(128);
written = 0;
totwritten = 0;
if (fd >= 0)
posix_fadvise(fd, 0, 0, POSIX_FADV_RANDOM); // we could use POSIX_FADV_SEQUENTIAL, but we do our own readahead, disabling the kernel one.
#endif
return fd;
}
int cUnbufferedFile::Close(void)
{
if (fd >= 0) {
#ifdef USE_FADVISE
if (totwritten) // if we wrote anything make sure the data has hit the disk before
fdatasync(fd); // calling fadvise, as this is our last chance to un-cache it.
posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED);
#endif
int OldFd = fd;
fd = -1;
return close(OldFd);
}
errno = EBADF;
return -1;
}
// When replaying and going e.g. FF->PLAY the position jumps back 2..8M
// hence we do not want to drop recently accessed data at once.
// We try to handle the common cases such as PLAY->FF->PLAY, small
// jumps, moving editing marks etc.
#define FADVGRAN KILOBYTE(4) // AKA fadvise-chunk-size; PAGE_SIZE or getpagesize(2) would also work.
#define READCHUNK MEGABYTE(8)
void cUnbufferedFile::SetReadAhead(size_t ra)
{
readahead = ra;
}
int cUnbufferedFile::FadviseDrop(off_t Offset, off_t Len)
{
// rounding up the window to make sure that not PAGE_SIZE-aligned data gets freed.
return posix_fadvise(fd, Offset - (FADVGRAN - 1), Len + (FADVGRAN - 1) * 2, POSIX_FADV_DONTNEED);
}
off_t cUnbufferedFile::Seek(off_t Offset, int Whence)
{
if (Whence == SEEK_SET && Offset == curpos)
return curpos;
curpos = lseek(fd, Offset, Whence);
return curpos;
}
ssize_t cUnbufferedFile::Read(void *Data, size_t Size)
{
if (fd >= 0) {
#ifdef USE_FADVISE
off_t jumped = curpos-lastpos; // nonzero means we're not at the last offset
if ((cachedstart < cachedend) && (curpos < cachedstart || curpos > cachedend)) {
// current position is outside the cached window -- invalidate it.
FadviseDrop(cachedstart, cachedend-cachedstart);
cachedstart = curpos;
cachedend = curpos;
}
cachedstart = min(cachedstart, curpos);
#endif
ssize_t bytesRead = safe_read(fd, Data, Size);
if (bytesRead > 0) {
curpos += bytesRead;
#ifdef USE_FADVISE
cachedend = max(cachedend, curpos);
// Read ahead:
// no jump? (allow small forward jump still inside readahead window).
if (jumped >= 0 && jumped <= (off_t)readahead) {
// Trigger the readahead IO, but only if we've used at least
// 1/2 of the previously requested area. This avoids calling
// fadvise() after every read() call.
if (ahead - curpos < (off_t)(readahead / 2)) {
posix_fadvise(fd, curpos, readahead, POSIX_FADV_WILLNEED);
ahead = curpos + readahead;
cachedend = max(cachedend, ahead);
}
if (readahead < Size * 32) { // automagically tune readahead size.
readahead = Size * 32;
}
}
else
ahead = curpos; // jumped -> we really don't want any readahead, otherwise e.g. fast-rewind gets in trouble.
#endif
}
#ifdef USE_FADVISE
if (cachedstart < cachedend) {
if (curpos - cachedstart > READCHUNK * 2) {
// current position has moved forward enough, shrink tail window.
FadviseDrop(cachedstart, curpos - READCHUNK - cachedstart);
cachedstart = curpos - READCHUNK;
}
else if (cachedend > ahead && cachedend - curpos > READCHUNK * 2) {
// current position has moved back enough, shrink head window.
FadviseDrop(curpos + READCHUNK, cachedend - (curpos + READCHUNK));
cachedend = curpos + READCHUNK;
}
}
lastpos = curpos;
#endif
return bytesRead;
}
return -1;
}
ssize_t cUnbufferedFile::Write(const void *Data, size_t Size)
{
if (fd >=0) {
ssize_t bytesWritten = safe_write(fd, Data, Size);
#ifdef USE_FADVISE
if (bytesWritten > 0) {
begin = min(begin, curpos);
curpos += bytesWritten;
written += bytesWritten;
lastpos = max(lastpos, curpos);
if (written > WRITE_BUFFER) {
if (lastpos > begin) {
// Now do three things:
// 1) Start writeback of begin..lastpos range
// 2) Drop the already written range (by the previous fadvise call)
// 3) Handle nonpagealigned data.
// This is why we double the WRITE_BUFFER; the first time around the
// last (partial) page might be skipped, writeback will start only after
// second call; the third call will still include this page and finally
// drop it from cache.
off_t headdrop = min(begin, off_t(WRITE_BUFFER * 2));
posix_fadvise(fd, begin - headdrop, lastpos - begin + headdrop, POSIX_FADV_DONTNEED);
}
begin = lastpos = curpos;
totwritten += written;
written = 0;
// The above fadvise() works when writing slowly (recording), but could
// leave cached data around when writing at a high rate, e.g. when cutting,
// because by the time we try to flush the cached pages (above) the data
// can still be dirty - we are faster than the disk I/O.
// So we do another round of flushing, just like above, but at larger
// intervals -- this should catch any pages that couldn't be released
// earlier.
if (totwritten > MEGABYTE(32)) {
// It seems in some setups, fadvise() does not trigger any I/O and
// a fdatasync() call would be required do all the work (reiserfs with some
// kind of write gathering enabled), but the syncs cause (io) load..
// Uncomment the next line if you think you need them.
//fdatasync(fd);
off_t headdrop = min(off_t(curpos - totwritten), off_t(totwritten * 2));
posix_fadvise(fd, curpos - totwritten - headdrop, totwritten + headdrop, POSIX_FADV_DONTNEED);
totwritten = 0;
}
}
}
#endif
return bytesWritten;
}
return -1;
}
cUnbufferedFile *cUnbufferedFile::Create(const char *FileName, int Flags, mode_t Mode)
{
cUnbufferedFile *File = new cUnbufferedFile;
if (File->Open(FileName, Flags, Mode) < 0) {
delete File;
File = NULL;
}
return File;
}
// --- cLockFile -------------------------------------------------------------
#define LOCKFILENAME ".lock-vdr"
#define LOCKFILESTALETIME 600 // seconds before considering a lock file "stale"
cLockFile::cLockFile(const char *Directory)
{
fileName = NULL;
f = -1;
if (DirectoryOk(Directory))
fileName = strdup(AddDirectory(Directory, LOCKFILENAME));
}
cLockFile::~cLockFile()
{
Unlock();
free(fileName);
}
bool cLockFile::Lock(int WaitSeconds)
{
if (f < 0 && fileName) {
time_t Timeout = time(NULL) + WaitSeconds;
do {
f = open(fileName, O_WRONLY | O_CREAT | O_EXCL, DEFFILEMODE);
if (f < 0) {
if (errno == EEXIST) {
struct stat fs;
if (stat(fileName, &fs) == 0) {
if (abs(time(NULL) - fs.st_mtime) > LOCKFILESTALETIME) {
esyslog("ERROR: removing stale lock file '%s'", fileName);
if (remove(fileName) < 0) {
LOG_ERROR_STR(fileName);
break;
}
continue;
}
}
else if (errno != ENOENT) {
LOG_ERROR_STR(fileName);
break;
}
}
else {
LOG_ERROR_STR(fileName);
break;
}
if (WaitSeconds)
cCondWait::SleepMs(1000);
}
} while (f < 0 && time(NULL) < Timeout);
}
return f >= 0;
}
void cLockFile::Unlock(void)
{
if (f >= 0) {
close(f);
remove(fileName);
f = -1;
}
}
// --- cListObject -----------------------------------------------------------
cListObject::cListObject(void)
{
prev = next = NULL;
}
cListObject::~cListObject()
{
}
void cListObject::Append(cListObject *Object)
{
next = Object;
Object->prev = this;
}
void cListObject::Insert(cListObject *Object)
{
prev = Object;
Object->next = this;
}
void cListObject::Unlink(void)
{
if (next)
next->prev = prev;
if (prev)
prev->next = next;
next = prev = NULL;
}
int cListObject::Index(void) const
{
cListObject *p = prev;
int i = 0;
while (p) {
i++;
p = p->prev;
}
return i;
}
// --- cListBase -------------------------------------------------------------
cListBase::cListBase(void)
{
objects = lastObject = NULL;
count = 0;
}
cListBase::~cListBase()
{
Clear();
}
void cListBase::Add(cListObject *Object, cListObject *After)
{
if (After && After != lastObject) {
After->Next()->Insert(Object);
After->Append(Object);
}
else {
if (lastObject)
lastObject->Append(Object);
else
objects = Object;
lastObject = Object;
}
count++;
}
void cListBase::Ins(cListObject *Object, cListObject *Before)
{
if (Before && Before != objects) {
Before->Prev()->Append(Object);
Before->Insert(Object);
}
else {
if (objects)
objects->Insert(Object);
else
lastObject = Object;
objects = Object;
}
count++;
}
void cListBase::Del(cListObject *Object, bool DeleteObject)
{
if (Object == objects)
objects = Object->Next();
if (Object == lastObject)
lastObject = Object->Prev();
Object->Unlink();
if (DeleteObject)
delete Object;
count--;
}
void cListBase::Move(int From, int To)
{
Move(Get(From), Get(To));
}
void cListBase::Move(cListObject *From, cListObject *To)
{
if (From && To && From != To) {
if (From->Index() < To->Index())
To = To->Next();
if (From == objects)
objects = From->Next();
if (From == lastObject)
lastObject = From->Prev();
From->Unlink();
if (To) {
if (To->Prev())
To->Prev()->Append(From);
From->Append(To);
}
else {
lastObject->Append(From);
lastObject = From;
}
if (!From->Prev())
objects = From;
}
}
void cListBase::Clear(void)
{
while (objects) {
cListObject *object = objects->Next();
delete objects;
objects = object;
}
objects = lastObject = NULL;
count = 0;
}
cListObject *cListBase::Get(int Index) const
{
if (Index < 0)
return NULL;
cListObject *object = objects;
while (object && Index-- > 0)
object = object->Next();
return object;
}
static int CompareListObjects(const void *a, const void *b)
{
const cListObject *la = *(const cListObject **)a;
const cListObject *lb = *(const cListObject **)b;
return la->Compare(*lb);
}
void cListBase::Sort(void)
{
int n = Count();
cListObject *a[n];
cListObject *object = objects;
int i = 0;
while (object && i < n) {
a[i++] = object;
object = object->Next();
}
qsort(a, n, sizeof(cListObject *), CompareListObjects);
objects = lastObject = NULL;
for (i = 0; i < n; i++) {
a[i]->Unlink();
count--;
Add(a[i]);
}
}
// --- cHashBase -------------------------------------------------------------
cHashBase::cHashBase(int Size)
{
size = Size;
hashTable = (cList<cHashObject>**)calloc(size, sizeof(cList<cHashObject>*));
}
cHashBase::~cHashBase(void)
{
Clear();
free(hashTable);
}
void cHashBase::Add(cListObject *Object, unsigned int Id)
{
unsigned int hash = hashfn(Id);
if (!hashTable[hash])
hashTable[hash] = new cList<cHashObject>;
hashTable[hash]->Add(new cHashObject(Object, Id));
}
void cHashBase::Del(cListObject *Object, unsigned int Id)
{
cList<cHashObject> *list = hashTable[hashfn(Id)];
if (list) {
for (cHashObject *hob = list->First(); hob; hob = list->Next(hob)) {
if (hob->object == Object) {
list->Del(hob);
break;
}
}
}
}
void cHashBase::Clear(void)
{
for (int i = 0; i < size; i++) {
delete hashTable[i];
hashTable[i] = NULL;
}
}
cListObject *cHashBase::Get(unsigned int Id) const
{
cList<cHashObject> *list = hashTable[hashfn(Id)];
if (list) {
for (cHashObject *hob = list->First(); hob; hob = list->Next(hob)) {
if (hob->id == Id)
return hob->object;
}
}
return NULL;
}
cList<cHashObject> *cHashBase::GetList(unsigned int Id) const
{
return hashTable[hashfn(Id)];
}