mirror of
https://github.com/vdr-projects/vdr.git
synced 2025-03-01 10:50:46 +00:00
VDR developer version 2.3.1 is now available at ftp://ftp.tvdr.de/vdr/Developer/vdr-2.3.1.tar.bz2 A 'diff' against the previous version is available at ftp://ftp.tvdr.de/vdr/Developer/vdr-2.2.0-2.3.1.diff MD5 checksums: 391c2ed60e2f7d24563fe3ed5854bc4f vdr-2.3.1.tar.bz2 983fd4bad7d19cd98301d54173107129 vdr-2.2.0-2.3.1.diff WARNING: ======== This is a *developer* version. Even though *I* use it in my productive environment, I strongly recommend that you only use it under controlled conditions and for testing and debugging. *** PLEASE BE VERY CAREFUL WHEN USING THIS DEVELOPER VERSION, ESPECIALLY *** IF YOU ENABLE THE NEW SVDRP PEERING! KEEP BACKUPS OF ALL YOUR TIMERS *** AND OBSERVE VERY CLOSELY WHETHER EVERYTHING WORKS AS EXPECTED. THIS *** VERSION INTRODUCES SOME MAJOR CHANGES IN HANDLING GLOBAL LISTS AND *** LOCKING, SO ANYTHING CAN HAPPEN! YOU HAVE BEEN WARNED! The main focus of this developer version is on the new locking mechanism for global lists, and the ability to handle remote timers. Any plugins that access the global lists of timers, channels, schedules or recordings, will need to be adjusted (see below for details). Please do initial tests with plain vanilla VDR and just the output plugin you need. Known bugs/problems: - After deleting the last recording in a sub folder, the cursor may not be positioned correctly. - Instant recordings and pausing live video don't (yet) use the default SVDRP host for recording. From the HISTORY file: - The new function cOsd::MaxPixmapSize() can be called to determine the maximum size a cPixmap may have on the current OSD. The 'osddemo' example has been modified accordingly. Plugin authors may want to use this function in case they use pixmaps that are larger than the full OSD size. The default implementation sets this limit to 2048x2048 pixel. - The Setup/CAM menu now displays which device an individual CAM is currently assigned to (suggested by Frank Neumann). - Added detection of 24fps (thanks to Thomas Reufer). - Added a note about the VDR User Counter and VDR's facebook page to the README file. - The dvbhddevice plugin is no longer part of the VDR source archive. You can get the latest version of this plugin from the author's repository at https://bitbucket.org/powARman/dvbhddevice. - The dvbsddevice and rcu plugins are no longer part of the VDR source archive. You can get the latest versions of these plugins from ftp://ftp.tvdr.de/vdr/Plugins. - Added a section about Output Devices to the INSTALL file. - Fixed setting the source value of newly created channels, in case the NIT is received from a different, but very close satellite position (reported by Daniel Ribeiro). The code for handling different NITs has been removed from nit.c, because according to the DVB standard table id 0x40 carries only the NIT of the actual network. - Added some comment to cPixmap about the relation between OSD, ViewPort and DrawPort (suggested by Thomas Reufer). - Improved syncing on sections when parsing the NIT and SDT. - Fixed scaling subtitles (their areas could sometimes extend outside the actual OSD). - Reduced the priority of the "video directory scanner" thread (suggested by Thomas Reufer) and checking cIoThrottle::Engaged() when it is running. - The script that gets called for recordings is now also called right before a recording is edited, with the first parameter being "editing" (suggested by Dieter Ferdinand). - The new setup option "OSD/Default sort mode for recordings" can be used to define how recordings shall be sorted by default (either by time or by name, with "by time" being the default). If a particular sort mode has been selected for a folder by pressing '0', the default no longer applies to that folder. Repeating timers no longer write a ".sort" file into a recordings folder to have the recordings sorted by time. - The command line option -D now accepts the value '-' (as in -D-), which prevents VDR from using any DVB devices (suggested by Dietmar Spingler). - The -V and -h options now list the plugins in alphabetical order (suggested by Dietmar Spingler). - Fixed a compiler warning in font.c. - Commented out the line #define DEPRECATED_VIDEOSYSTEM in device.h. If a plugin doesn't compile with this version of VDR, you can uncomment this line as a quick workaround. In the long run the plugin will need to be adapted. - The function cOsd::GetBitmap() is now 'protected'. If a plugin doesn't compile with this version of VDR, you can uncomment the line //#define DEPRECATED_GETBITMAP in osd.h as a quick workaround. In the long run the plugin will need to be adapted. - The -u option now also accepts a numerical user id (suggested by Derek Kelly). - The SVDRP port now accepts multiple concurrent connections. You can now keep an SVDRP connection open as long as you wish, without preventing others from connecting. Note, though, that SVDRP connections still get closed automatically if there has been no activity for 300 seconds (configurable via "Setup/Miscellaneous/SVDRP timeout (s)"). - The SVDRP log messages have been unified and now always contain the IP and port number of the remote host. - SVDRP connections are now handled in a separate "SVDRP server handler" thread, which makes them more responsive. Note that there is only one thread that handles all concurrent SVDRP connections. That way each SVDRP command is guaranteed to be processed separately, without interfering with any other SVDRP commands that might be issued at the same time. Plugins that implement SVDRP commands may need to take care of proper locking if the commands access global data. - VDR now sends out a broadcast to port 6419/udp, which was assigned to 'svdrp-disc' by the IANA. VDRs listening on that port will automatically initiate an SVDRP connection to the broadcasting VDR, and in turn send out a broadcast to make other VDRs connect to them. That way all VDRs within the local network will have permanent "peer-to-peer" SVDRP connections between each other. The configuration in the svdrphosts.conf file is taken into account when considering whether or not to respond to an SVDRP discover broadcast. - The new SVDRP command PING is used by automatically established peer-to-peer connections to keep them alive. - The new function GetSVDRPServerNames() can be used to get a list of all VDRs this VDR is connected to via SVDRP. - The new function ExecSVDRPCommand() can be used to execute an SVDRP command on one of the servers this VDR is connected to, and retrieve the result. The helper functions SVDRPCode() and SVDRPValue() can be used to easily access the codes and values returned by ExecSVDRPCommand(). - The cTimer class now has a new member named 'remote', which holds the name of the remote server this timer will record on. If this is NULL, it is a local timer. - Timers from other VDRs that are connected to this VDR via SVDRP are now automatically fetched and stored in the global Timers list. In order for this to work, all of the channels used by timers on the remote VDR must also be defined on the local VDR (however, not necessarily in the same sequence). Automatic channel syncing will be implemented later. - The main menu of the LCARS skin now displays a small rectangle on the left side of a timer if this is a remote timer. The color of that rectangle changes if the timer is currently recording on the remote VDR. - Accessing the global Timers list now has to be protected by proper locking, because SVDRP commands are now executed in a separate thread. The introduction of this locking mechanism required the following changes: + The new classes cStateLock and cStateKey are used to implement locking with quick detection of state changes. + cConfig::cConfig() now has a parameter that indicates whether this list requires locking. + The global lists of Timers, Channels, Schedules and Recordings are no longer static variables. They are now pointers that need to be retrieved through a call to cTimers::GetTimersRead/Write(), cChannels::GetChannelsRead/Write(), cSchedules::GetSchedulesRead/Write() and cRecordings::GetRecordingsRead/Write(), respectively. + References from/to link channels are now removed in cChannels::Del() rather than cChannel::~cChannel(), to make sure the caller holds a proper lock. + cChannel::HasTimer() has been removed. This information is now retrieved via cSchedule::HasTimer(). + Several member functions of cChannel, cTimer, cMarks and cRecording have been made 'const', and some of them are now available as both 'const' and 'non-const' versions. + The cChannel::Set...() functions are now 'bool' and return true if they have actually changed any of the channels's members. + cChannels::SetModified() has been renamed to cChannels::SetModifiedByUser(). + cChannels::Modified() has been renamed to cChannels::ModifiedByUser(), and now has a 'State' parameter that allows the caller to see whether a channel has been modified since the last call to this function with the same State variable. + The macros CHANNELSMOD_NONE/_AUTO/_USER have been removed. + cMarks now requires locking via cStateKey. + cSortedTimers now requires a pointer to the list of timers. + cEvent::HasTimer() no longer scans the list of timers to check whether an event is referenced by a timer, but rather keeps score of how many timers reference it. This was necessary in order to avoid having to lock the list of timers from within a cEvent. + The new class cListGarbageCollector is used to temporary store any objects deleted from cLists that require locking. This allows pointers to such objects to be dereferenced even if the objects are no longer part of the list. + cListBase::Contains() can be used to check whether a particular object is still contained in that list. + Outdated events are no longer "phased out", but rather deleted right away and thus taken care of by the new "garbage collector" of the list. + Deleted cRecording objects are no longer kept in a list of "vanished" recordings, but are rather taken care of by the new "garbage collector" of the list. + cSchedules::ClearAll() has been removed. The functionality is now implemented directly in cSVDRPServer::CmdCLRE(). + tEventID has been changed to u_int16_t in order to make room for the new member numTimers in cEvent. + cSchedule now has a member Modified(), which can be used with a State variable to quickly determine whether this schedule has been modified since the last call to this function with the same State variable. + cSchedulesLock has been removed. Locking the list of schedules is now done via the cList's new locking mechanism. + The 'OnlyRunningStatus' parameters in cEpgHandler::BeginSegmentTransfer() and cEpgHandler::EndSegmentTransfer() are now obsolete. They are still present in the interface for backward compatibility, but may be removed in a future version. Their value is always 'false'. + The constant tcMod is no longer used in cStatus::TimerChange(). The definition is still there for backward compatibility. Plugins that access the global lists of Timers, Channels, Recordings or Schedules will need to be adapted as follows: + Instead of directly accessing the global variables Timers, Channels or Recordings, they need to set up a cStateKey variable and call the proper getter function, as in cStateKey StateKey; if (const cTimers *Timers = cTimers::GetTimersRead(StateKey)) { // access the timers StateKey.Remove(); } and cStateKey StateKey; if (cTimers *Timers = cTimers::GetTimersWrite(StateKey)) { // access the timers StateKey.Remove(); } See timers.h, thread.h and tools.h for details on this new locking mechanism. + There are convenience macros for easily accessing these lists without having to explicitly set up a cStateKey and calling its Remove() function. These macros have the form LOCK_*_READ/WRITE (with '*' being TIMERS, CHANNELS, SCHEDULES or RECORDINGS). Simply put such a macro before the point where you need to access the respective list, and there will be a pointer named Timers, Channels, Schedules or Recordings, respectively, which is valid until the end of the current block. + If a plugin needs to access several of the global lists in parallel, locking must always be done in the sequence Timers, Channels, Recordings, Schedules. This is necessary to make sure that different threads that need to lock several lists at the same time don't end up in a deadlock. + Some pointer variables may need to be made 'const'. The compiler will tell you about these. - cSectionSyncer has been improved to better handle missed sections. - Added a missing initialization of 'seen' in cChannel's copy constructor. - Background modifications of channels, timers and events are now displayed immediately in the corresponding menus. - cEIT now checks the version of the tables before doing any processing, which saves a lot of locking and processing. - If a timer is newly created with the Red button in the Schedule menu, and the timer is presented to the user in the "Edit timer" menu because it will start immediately, it now *must* be confirmed with "Ok" to set the timer. Otherwise the timer will not be created. - Recordings and deleted recordings are now scanned in a single thread. - The new SVDRP command POLL is used by automatically established peer-to-peer connections to trigger fetching remote timers. - You can now set DumpSVDRPDataTransfer in svdrp.c to true to have all SVDRP communication printed to the console for debugging. - Added a missing 'const' to cReceiver::Receive(), to protect the given Data from being modified. - The SVDRP commands that deal with timers (DELT, LSTT, MODT, NEWT, NEXT and UPDT) as well as any log messages that refer to timers, now use a unique id for each timer, which remains valid as long as this instance of VDR is running. This means that timers are no longer continuously numbered from 1 to N in LSTT. There may be gaps in the sequence, in case timers have been deleted. - The Timers menu now displays the name of the remote VDR in front of the timer's file name, if this is a remote timer. - The new options "Setup/Miscellaneous/SVDRP peering", ".../SVDRP host name" and ".../SVDRP default host" can be used to configure automatic peering between VDRs in the same network. Peering is disabled by default and can be enabled by setting "SVDRP peering" to "yes". - The function cTimer::ToText() no longer returns a newline character at the end of the string. The newline is now added by the caller as necessary. This was changed because cTimer::ToText() is now also needed in a context where the terminating newline can't be used. Consequently, cChannel::ToText() and cMark::ToText() have been modified accordingly. - All timer related response strings from SVDRP commands now use the channel ID instead of channel numbers. - The "Edit timer" menu now has a new parameter "Record on", which can be used to select the VDR on which this timer shall record. Timers can be freely moved between connected VDRs by simply selecting the desired machine in this field. - The SVDRP command DELT no longer checks whether the timer that shall be deleted is currently recording. - The character 0x0D is now stripped from EPG texts (reported by Janne Pänkälä). - The EPG scanner no longer moves the dish if there is a positioner. - The 'newplugin' script now creates the 'po' subdirectory for translations (thanks to Thomas Reufer). - Skins can now implement cSkinDisplayMenu::MenuOrientation() to display horizontal menus (thanks to Stefan Braun). - Fixed a possible stack overflow in cListBase::Sort() (thanks to Oliver Endriss). - Changed the description of the --chartab option in the INSTALL file to refer to "DVB SI table strings" instead of "EPG data". - The width and height of the OSD are now limited to the actual maximum dimensions of the output device, taking into account the top and left offset. - The new setup option "Recording/Record key handling" can be used to define what happens if the Record key on the remote control is pressed during live tv (suggested by Dietmar Spingler). - Empty adaptation field TS packets are now skipped when recording (thanks to Christopher Reimer, based on the "AFFcleaner" by Stefan Pöschel).
2195 lines
64 KiB
C
2195 lines
64 KiB
C
/*
|
|
* osd.c: Abstract On Screen Display layer
|
|
*
|
|
* See the main source file 'vdr.c' for copyright information and
|
|
* how to reach the author.
|
|
*
|
|
* $Id: osd.c 4.3 2015/09/10 14:12:06 kls Exp $
|
|
*/
|
|
|
|
#include "osd.h"
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/unistd.h>
|
|
#include "device.h"
|
|
#include "tools.h"
|
|
|
|
tColor HsvToColor(double H, double S, double V)
|
|
{
|
|
if (S > 0) {
|
|
H /= 60;
|
|
int i = floor(H);
|
|
double f = H - i;
|
|
double p = V * (1 - S);
|
|
double q = V * (1 - S * f);
|
|
double t = V * (1 - S * (1 - f));
|
|
switch (i) {
|
|
case 0: return RgbToColor(V, t, p);
|
|
case 1: return RgbToColor(q, V, p);
|
|
case 2: return RgbToColor(p, V, t);
|
|
case 3: return RgbToColor(p, q, V);
|
|
case 4: return RgbToColor(t, p, V);
|
|
default: return RgbToColor(V, p, q);
|
|
}
|
|
}
|
|
else { // greyscale
|
|
uint8_t n = V * 0xFF;
|
|
return RgbToColor(n, n, n);
|
|
}
|
|
}
|
|
|
|
tColor RgbShade(tColor Color, double Factor)
|
|
{
|
|
double f = fabs(constrain(Factor, -1.0, 1.0));
|
|
double w = Factor > 0 ? f * 0xFF : 0;
|
|
return (Color & 0xFF000000) |
|
|
(min(0xFF, int((1 - f) * ((Color >> 16) & 0xFF) + w + 0.5)) << 16) |
|
|
(min(0xFF, int((1 - f) * ((Color >> 8) & 0xFF) + w + 0.5)) << 8) |
|
|
(min(0xFF, int((1 - f) * ( Color & 0xFF) + w + 0.5)) );
|
|
}
|
|
|
|
#define USE_ALPHA_LUT
|
|
#ifdef USE_ALPHA_LUT
|
|
// Alpha blending with lookup table (by Reinhard Nissl <rnissl@gmx.de>)
|
|
// A little slower (138 %) on fast machines than the implementation below and faster
|
|
// on slow machines (79 %), but requires some 318KB of RAM for the lookup table.
|
|
static uint16_t AlphaLutFactors[255][256][2];
|
|
static uint8_t AlphaLutAlpha[255][256];
|
|
|
|
class cInitAlphaLut {
|
|
public:
|
|
cInitAlphaLut(void)
|
|
{
|
|
for (int alphaA = 0; alphaA < 255; alphaA++) {
|
|
int range = (alphaA == 255 ? 255 : 254);
|
|
for (int alphaB = 0; alphaB < 256; alphaB++) {
|
|
int alphaO_x_range = 255 * alphaA + alphaB * (range - alphaA);
|
|
if (!alphaO_x_range)
|
|
alphaO_x_range++;
|
|
int factorA = (256 * 255 * alphaA + alphaO_x_range / 2) / alphaO_x_range;
|
|
int factorB = (256 * alphaB * (range - alphaA) + alphaO_x_range / 2) / alphaO_x_range;
|
|
AlphaLutFactors[alphaA][alphaB][0] = factorA;
|
|
AlphaLutFactors[alphaA][alphaB][1] = factorB;
|
|
AlphaLutAlpha[alphaA][alphaB] = alphaO_x_range / range;
|
|
}
|
|
}
|
|
}
|
|
} InitAlphaLut;
|
|
|
|
tColor AlphaBlend(tColor ColorFg, tColor ColorBg, uint8_t AlphaLayer)
|
|
{
|
|
tColor Alpha = (ColorFg & 0xFF000000) >> 24;
|
|
Alpha *= AlphaLayer;
|
|
Alpha >>= 8;
|
|
uint16_t *lut = &AlphaLutFactors[Alpha][(ColorBg & 0xFF000000) >> 24][0];
|
|
return (tColor)((AlphaLutAlpha[Alpha][(ColorBg & 0xFF000000) >> 24] << 24)
|
|
| (((((ColorFg & 0x00FF00FF) * lut[0] + (ColorBg & 0x00FF00FF) * lut[1])) & 0xFF00FF00)
|
|
| ((((ColorFg & 0x0000FF00) * lut[0] + (ColorBg & 0x0000FF00) * lut[1])) & 0x00FF0000)) >> 8);
|
|
}
|
|
#else
|
|
// Alpha blending without lookup table.
|
|
// Also works fast, but doesn't return the theoretically correct result.
|
|
// It's "good enough", though.
|
|
static tColor Multiply(tColor Color, uint8_t Alpha)
|
|
{
|
|
tColor RB = (Color & 0x00FF00FF) * Alpha;
|
|
RB = ((RB + ((RB >> 8) & 0x00FF00FF) + 0x00800080) >> 8) & 0x00FF00FF;
|
|
tColor AG = ((Color >> 8) & 0x00FF00FF) * Alpha;
|
|
AG = ((AG + ((AG >> 8) & 0x00FF00FF) + 0x00800080)) & 0xFF00FF00;
|
|
return AG | RB;
|
|
}
|
|
|
|
tColor AlphaBlend(tColor ColorFg, tColor ColorBg, uint8_t AlphaLayer)
|
|
{
|
|
tColor Alpha = (ColorFg & 0xFF000000) >> 24;
|
|
if (AlphaLayer < ALPHA_OPAQUE) {
|
|
Alpha *= AlphaLayer;
|
|
Alpha = ((Alpha + ((Alpha >> 8) & 0x000000FF) + 0x00000080) >> 8) & 0x000000FF;
|
|
}
|
|
return Multiply(ColorFg, Alpha) + Multiply(ColorBg, 255 - Alpha);
|
|
}
|
|
#endif
|
|
|
|
// --- cPalette --------------------------------------------------------------
|
|
|
|
cPalette::cPalette(int Bpp)
|
|
{
|
|
SetBpp(Bpp);
|
|
SetAntiAliasGranularity(10, 10);
|
|
}
|
|
|
|
cPalette::~cPalette()
|
|
{
|
|
}
|
|
|
|
void cPalette::SetAntiAliasGranularity(uint FixedColors, uint BlendColors)
|
|
{
|
|
if (FixedColors >= MAXNUMCOLORS || BlendColors == 0)
|
|
antiAliasGranularity = MAXNUMCOLORS - 1;
|
|
else {
|
|
int ColorsForBlending = MAXNUMCOLORS - FixedColors;
|
|
int ColorsPerBlend = ColorsForBlending / BlendColors + 2; // +2 = the full foreground and background colors, which are among the fixed colors
|
|
antiAliasGranularity = double(MAXNUMCOLORS - 1) / (ColorsPerBlend - 1);
|
|
}
|
|
}
|
|
|
|
void cPalette::Reset(void)
|
|
{
|
|
numColors = 0;
|
|
modified = false;
|
|
}
|
|
|
|
int cPalette::Index(tColor Color)
|
|
{
|
|
// Check if color is already defined:
|
|
for (int i = 0; i < numColors; i++) {
|
|
if (color[i] == Color)
|
|
return i;
|
|
}
|
|
// No exact color, try a close one:
|
|
int i = ClosestColor(Color, 4);
|
|
if (i >= 0)
|
|
return i;
|
|
// No close one, try to define a new one:
|
|
if (numColors < maxColors) {
|
|
color[numColors++] = Color;
|
|
modified = true;
|
|
return numColors - 1;
|
|
}
|
|
// Out of colors, so any close color must do:
|
|
return ClosestColor(Color);
|
|
}
|
|
|
|
void cPalette::SetBpp(int Bpp)
|
|
{
|
|
bpp = Bpp;
|
|
maxColors = 1 << bpp;
|
|
Reset();
|
|
}
|
|
|
|
void cPalette::SetColor(int Index, tColor Color)
|
|
{
|
|
if (Index < maxColors) {
|
|
if (numColors <= Index) {
|
|
numColors = Index + 1;
|
|
modified = true;
|
|
}
|
|
else
|
|
modified |= color[Index] != Color;
|
|
color[Index] = Color;
|
|
}
|
|
}
|
|
|
|
const tColor *cPalette::Colors(int &NumColors) const
|
|
{
|
|
NumColors = numColors;
|
|
return numColors ? color : NULL;
|
|
}
|
|
|
|
void cPalette::Take(const cPalette &Palette, tIndexes *Indexes, tColor ColorFg, tColor ColorBg)
|
|
{
|
|
for (int i = 0; i < Palette.numColors; i++) {
|
|
tColor Color = Palette.color[i];
|
|
if (ColorFg || ColorBg) {
|
|
switch (i) {
|
|
case 0: Color = ColorBg; break;
|
|
case 1: Color = ColorFg; break;
|
|
default: ;
|
|
}
|
|
}
|
|
int n = Index(Color);
|
|
if (Indexes)
|
|
(*Indexes)[i] = n;
|
|
}
|
|
}
|
|
|
|
void cPalette::Replace(const cPalette &Palette)
|
|
{
|
|
for (int i = 0; i < Palette.numColors; i++)
|
|
SetColor(i, Palette.color[i]);
|
|
numColors = Palette.numColors;
|
|
antiAliasGranularity = Palette.antiAliasGranularity;
|
|
}
|
|
|
|
tColor cPalette::Blend(tColor ColorFg, tColor ColorBg, uint8_t Level) const
|
|
{
|
|
if (antiAliasGranularity > 0)
|
|
Level = uint8_t(int(Level / antiAliasGranularity + 0.5) * antiAliasGranularity);
|
|
int Af = (ColorFg & 0xFF000000) >> 24;
|
|
int Rf = (ColorFg & 0x00FF0000) >> 16;
|
|
int Gf = (ColorFg & 0x0000FF00) >> 8;
|
|
int Bf = (ColorFg & 0x000000FF);
|
|
int Ab = (ColorBg & 0xFF000000) >> 24;
|
|
int Rb = (ColorBg & 0x00FF0000) >> 16;
|
|
int Gb = (ColorBg & 0x0000FF00) >> 8;
|
|
int Bb = (ColorBg & 0x000000FF);
|
|
int A = (Ab + (Af - Ab) * Level / 0xFF) & 0xFF;
|
|
int R = (Rb + (Rf - Rb) * Level / 0xFF) & 0xFF;
|
|
int G = (Gb + (Gf - Gb) * Level / 0xFF) & 0xFF;
|
|
int B = (Bb + (Bf - Bb) * Level / 0xFF) & 0xFF;
|
|
return (A << 24) | (R << 16) | (G << 8) | B;
|
|
}
|
|
|
|
int cPalette::ClosestColor(tColor Color, int MaxDiff) const
|
|
{
|
|
int n = 0;
|
|
int d = INT_MAX;
|
|
int A1 = (Color & 0xFF000000) >> 24;
|
|
int R1 = (Color & 0x00FF0000) >> 16;
|
|
int G1 = (Color & 0x0000FF00) >> 8;
|
|
int B1 = (Color & 0x000000FF);
|
|
for (int i = 0; i < numColors && d > 0; i++) {
|
|
int A2 = (color[i] & 0xFF000000) >> 24;
|
|
int R2 = (color[i] & 0x00FF0000) >> 16;
|
|
int G2 = (color[i] & 0x0000FF00) >> 8;
|
|
int B2 = (color[i] & 0x000000FF);
|
|
int diff = 0;
|
|
if (A1 || A2) // fully transparent colors are considered equal
|
|
diff = (abs(A1 - A2) << 1) + (abs(R1 - R2) << 1) + (abs(G1 - G2) << 1) + (abs(B1 - B2) << 1);
|
|
if (diff < d) {
|
|
d = diff;
|
|
n = i;
|
|
}
|
|
}
|
|
return d <= MaxDiff ? n : -1;
|
|
}
|
|
|
|
// --- cBitmap ---------------------------------------------------------------
|
|
|
|
cBitmap::cBitmap(int Width, int Height, int Bpp, int X0, int Y0)
|
|
:cPalette(Bpp)
|
|
{
|
|
bitmap = NULL;
|
|
x0 = X0;
|
|
y0 = Y0;
|
|
width = height = 0;
|
|
SetSize(Width, Height);
|
|
}
|
|
|
|
cBitmap::cBitmap(const char *FileName)
|
|
{
|
|
bitmap = NULL;
|
|
x0 = 0;
|
|
y0 = 0;
|
|
width = height = 0;
|
|
LoadXpm(FileName);
|
|
}
|
|
|
|
cBitmap::cBitmap(const char *const Xpm[])
|
|
{
|
|
bitmap = NULL;
|
|
x0 = 0;
|
|
y0 = 0;
|
|
width = height = 0;
|
|
SetXpm(Xpm);
|
|
}
|
|
|
|
cBitmap::~cBitmap()
|
|
{
|
|
free(bitmap);
|
|
}
|
|
|
|
void cBitmap::SetSize(int Width, int Height)
|
|
{
|
|
if (bitmap && Width == width && Height == height)
|
|
return;
|
|
width = Width;
|
|
height = Height;
|
|
free(bitmap);
|
|
bitmap = NULL;
|
|
dirtyX1 = 0;
|
|
dirtyY1 = 0;
|
|
dirtyX2 = width - 1;
|
|
dirtyY2 = height - 1;
|
|
if (width > 0 && height > 0) {
|
|
bitmap = MALLOC(tIndex, width * height);
|
|
if (bitmap)
|
|
memset(bitmap, 0x00, width * height);
|
|
else
|
|
esyslog("ERROR: can't allocate bitmap!");
|
|
}
|
|
else
|
|
esyslog("ERROR: invalid bitmap parameters (%d, %d)!", width, height);
|
|
}
|
|
|
|
bool cBitmap::Contains(int x, int y) const
|
|
{
|
|
x -= x0;
|
|
y -= y0;
|
|
return 0 <= x && x < width && 0 <= y && y < height;
|
|
}
|
|
|
|
bool cBitmap::Covers(int x1, int y1, int x2, int y2) const
|
|
{
|
|
x1 -= x0;
|
|
y1 -= y0;
|
|
x2 -= x0;
|
|
y2 -= y0;
|
|
return x1 <= 0 && y1 <= 0 && x2 >= width - 1 && y2 >= height - 1;
|
|
}
|
|
|
|
bool cBitmap::Intersects(int x1, int y1, int x2, int y2) const
|
|
{
|
|
x1 -= x0;
|
|
y1 -= y0;
|
|
x2 -= x0;
|
|
y2 -= y0;
|
|
return !(x2 < 0 || x1 >= width || y2 < 0 || y1 >= height);
|
|
}
|
|
|
|
bool cBitmap::Dirty(int &x1, int &y1, int &x2, int &y2)
|
|
{
|
|
if (dirtyX2 >= 0) {
|
|
x1 = dirtyX1;
|
|
y1 = dirtyY1;
|
|
x2 = dirtyX2;
|
|
y2 = dirtyY2;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void cBitmap::Clean(void)
|
|
{
|
|
dirtyX1 = width;
|
|
dirtyY1 = height;
|
|
dirtyX2 = -1;
|
|
dirtyY2 = -1;
|
|
}
|
|
|
|
bool cBitmap::LoadXpm(const char *FileName)
|
|
{
|
|
bool Result = false;
|
|
FILE *f = fopen(FileName, "r");
|
|
if (f) {
|
|
char **Xpm = NULL;
|
|
bool isXpm = false;
|
|
int lines = 0;
|
|
int index = 0;
|
|
char *s;
|
|
cReadLine ReadLine;
|
|
while ((s = ReadLine.Read(f)) != NULL) {
|
|
s = skipspace(s);
|
|
if (!isXpm) {
|
|
if (strcmp(s, "/* XPM */") != 0) {
|
|
esyslog("ERROR: invalid header in XPM file '%s'", FileName);
|
|
break;
|
|
}
|
|
isXpm = true;
|
|
}
|
|
else if (*s++ == '"') {
|
|
if (!lines) {
|
|
int w, h, n, c;
|
|
if (4 != sscanf(s, "%d %d %d %d", &w, &h, &n, &c)) {
|
|
esyslog("ERROR: faulty 'values' line in XPM file '%s'", FileName);
|
|
isXpm = false;
|
|
break;
|
|
}
|
|
lines = h + n + 1;
|
|
Xpm = MALLOC(char *, lines);
|
|
memset(Xpm, 0, lines * sizeof(char*));
|
|
}
|
|
char *q = strchr(s, '"');
|
|
if (!q) {
|
|
esyslog("ERROR: missing quotes in XPM file '%s'", FileName);
|
|
isXpm = false;
|
|
break;
|
|
}
|
|
*q = 0;
|
|
if (index < lines)
|
|
Xpm[index++] = strdup(s);
|
|
else {
|
|
esyslog("ERROR: too many lines in XPM file '%s'", FileName);
|
|
isXpm = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (isXpm) {
|
|
if (index == lines)
|
|
Result = SetXpm(Xpm);
|
|
else
|
|
esyslog("ERROR: too few lines in XPM file '%s'", FileName);
|
|
}
|
|
if (Xpm) {
|
|
for (int i = 0; i < index; i++)
|
|
free(Xpm[i]);
|
|
}
|
|
free(Xpm);
|
|
fclose(f);
|
|
}
|
|
else
|
|
esyslog("ERROR: can't open XPM file '%s'", FileName);
|
|
return Result;
|
|
}
|
|
|
|
bool cBitmap::SetXpm(const char *const Xpm[], bool IgnoreNone)
|
|
{
|
|
if (!Xpm)
|
|
return false;
|
|
const char *const *p = Xpm;
|
|
int w, h, n, c;
|
|
if (4 != sscanf(*p, "%d %d %d %d", &w, &h, &n, &c)) {
|
|
esyslog("ERROR: faulty 'values' line in XPM: '%s'", *p);
|
|
return false;
|
|
}
|
|
if (n > MAXNUMCOLORS) {
|
|
esyslog("ERROR: too many colors in XPM: %d", n);
|
|
return false;
|
|
}
|
|
int b = 0;
|
|
while (1 << (1 << b) < (IgnoreNone ? n - 1 : n))
|
|
b++;
|
|
SetBpp(1 << b);
|
|
SetSize(w, h);
|
|
int NoneColorIndex = MAXNUMCOLORS;
|
|
for (int i = 0; i < n; i++) {
|
|
const char *s = *++p;
|
|
if (int(strlen(s)) < c) {
|
|
esyslog("ERROR: faulty 'colors' line in XPM: '%s'", s);
|
|
return false;
|
|
}
|
|
s = skipspace(s + c);
|
|
if (*s != 'c') {
|
|
esyslog("ERROR: unknown color key in XPM: '%c'", *s);
|
|
return false;
|
|
}
|
|
s = skipspace(s + 1);
|
|
if (strcasecmp(s, "none") == 0) {
|
|
NoneColorIndex = i;
|
|
if (!IgnoreNone)
|
|
SetColor(i, clrTransparent);
|
|
continue;
|
|
}
|
|
if (*s != '#') {
|
|
esyslog("ERROR: unknown color code in XPM: '%c'", *s);
|
|
return false;
|
|
}
|
|
tColor color = strtoul(++s, NULL, 16) | 0xFF000000;
|
|
SetColor((IgnoreNone && i > NoneColorIndex) ? i - 1 : i, color);
|
|
}
|
|
for (int y = 0; y < h; y++) {
|
|
const char *s = *++p;
|
|
if (int(strlen(s)) != w * c) {
|
|
esyslog("ERROR: faulty pixel line in XPM: %d '%s'", y, s);
|
|
return false;
|
|
}
|
|
for (int x = 0; x < w; x++) {
|
|
for (int i = 0; i <= n; i++) {
|
|
if (i == n) {
|
|
esyslog("ERROR: undefined pixel color in XPM: %d %d '%s'", x, y, s);
|
|
return false;
|
|
}
|
|
if (strncmp(Xpm[i + 1], s, c) == 0) {
|
|
if (i == NoneColorIndex)
|
|
NoneColorIndex = MAXNUMCOLORS;
|
|
SetIndex(x, y, (IgnoreNone && i > NoneColorIndex) ? i - 1 : i);
|
|
break;
|
|
}
|
|
}
|
|
s += c;
|
|
}
|
|
}
|
|
if (NoneColorIndex < MAXNUMCOLORS && !IgnoreNone)
|
|
return SetXpm(Xpm, true);
|
|
return true;
|
|
}
|
|
|
|
void cBitmap::SetIndex(int x, int y, tIndex Index)
|
|
{
|
|
if (bitmap) {
|
|
if (0 <= x && x < width && 0 <= y && y < height) {
|
|
if (bitmap[width * y + x] != Index) {
|
|
bitmap[width * y + x] = Index;
|
|
if (dirtyX1 > x) dirtyX1 = x;
|
|
if (dirtyY1 > y) dirtyY1 = y;
|
|
if (dirtyX2 < x) dirtyX2 = x;
|
|
if (dirtyY2 < y) dirtyY2 = y;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void cBitmap::Fill(tIndex Index)
|
|
{
|
|
if (bitmap) {
|
|
memset(bitmap, Index, width * height);
|
|
dirtyX1 = 0;
|
|
dirtyY1 = 0;
|
|
dirtyX2 = width - 1;
|
|
dirtyY2 = height - 1;
|
|
}
|
|
}
|
|
|
|
void cBitmap::DrawPixel(int x, int y, tColor Color)
|
|
{
|
|
x -= x0;
|
|
y -= y0;
|
|
SetIndex(x, y, Index(Color));
|
|
}
|
|
|
|
void cBitmap::DrawBitmap(int x, int y, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool ReplacePalette, bool Overlay)
|
|
{
|
|
if (bitmap && Bitmap.bitmap && Intersects(x, y, x + Bitmap.Width() - 1, y + Bitmap.Height() - 1)) {
|
|
if (Covers(x, y, x + Bitmap.Width() - 1, y + Bitmap.Height() - 1))
|
|
Reset();
|
|
x -= x0;
|
|
y -= y0;
|
|
if (ReplacePalette && Covers(x + x0, y + y0, x + x0 + Bitmap.Width() - 1, y + y0 + Bitmap.Height() - 1)) {
|
|
Replace(Bitmap);
|
|
for (int ix = 0; ix < Bitmap.width; ix++) {
|
|
for (int iy = 0; iy < Bitmap.height; iy++) {
|
|
if (!Overlay || Bitmap.bitmap[Bitmap.width * iy + ix] != 0)
|
|
SetIndex(x + ix, y + iy, Bitmap.bitmap[Bitmap.width * iy + ix]);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
tIndexes Indexes;
|
|
Take(Bitmap, &Indexes, ColorFg, ColorBg);
|
|
for (int ix = 0; ix < Bitmap.width; ix++) {
|
|
for (int iy = 0; iy < Bitmap.height; iy++) {
|
|
if (!Overlay || Bitmap.bitmap[Bitmap.width * iy + ix] != 0)
|
|
SetIndex(x + ix, y + iy, Indexes[int(Bitmap.bitmap[Bitmap.width * iy + ix])]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void cBitmap::DrawText(int x, int y, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width, int Height, int Alignment)
|
|
{
|
|
if (bitmap) {
|
|
int w = Font->Width(s);
|
|
int h = Font->Height();
|
|
int limit = 0;
|
|
int cw = Width ? Width : w;
|
|
int ch = Height ? Height : h;
|
|
if (!Intersects(x, y, x + cw - 1, y + ch - 1))
|
|
return;
|
|
if (ColorBg != clrTransparent)
|
|
DrawRectangle(x, y, x + cw - 1, y + ch - 1, ColorBg);
|
|
if (Width || Height) {
|
|
limit = x + cw - x0;
|
|
if (Width) {
|
|
if ((Alignment & taLeft) != 0) {
|
|
if ((Alignment & taBorder) != 0)
|
|
x += max(h / TEXT_ALIGN_BORDER, 1);
|
|
}
|
|
else if ((Alignment & taRight) != 0) {
|
|
if (w < Width)
|
|
x += Width - w;
|
|
if ((Alignment & taBorder) != 0)
|
|
x -= max(h / TEXT_ALIGN_BORDER, 1);
|
|
}
|
|
else { // taCentered
|
|
if (w < Width)
|
|
x += (Width - w) / 2;
|
|
}
|
|
}
|
|
if (Height) {
|
|
if ((Alignment & taTop) != 0)
|
|
;
|
|
else if ((Alignment & taBottom) != 0) {
|
|
if (h < Height)
|
|
y += Height - h;
|
|
}
|
|
else { // taCentered
|
|
if (h < Height)
|
|
y += (Height - h) / 2;
|
|
}
|
|
}
|
|
}
|
|
x -= x0;
|
|
y -= y0;
|
|
Font->DrawText(this, x, y, s, ColorFg, ColorBg, limit);
|
|
}
|
|
}
|
|
|
|
void cBitmap::DrawRectangle(int x1, int y1, int x2, int y2, tColor Color)
|
|
{
|
|
if (bitmap && Intersects(x1, y1, x2, y2)) {
|
|
if (Covers(x1, y1, x2, y2))
|
|
Reset();
|
|
x1 -= x0;
|
|
y1 -= y0;
|
|
x2 -= x0;
|
|
y2 -= y0;
|
|
x1 = max(x1, 0);
|
|
y1 = max(y1, 0);
|
|
x2 = min(x2, width - 1);
|
|
y2 = min(y2, height - 1);
|
|
tIndex c = Index(Color);
|
|
for (int y = y1; y <= y2; y++) {
|
|
for (int x = x1; x <= x2; x++)
|
|
SetIndex(x, y, c);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cBitmap::DrawEllipse(int x1, int y1, int x2, int y2, tColor Color, int Quadrants)
|
|
{
|
|
if (!Intersects(x1, y1, x2, y2))
|
|
return;
|
|
// Algorithm based on http://homepage.smc.edu/kennedy_john/BELIPSE.PDF
|
|
int rx = x2 - x1;
|
|
int ry = y2 - y1;
|
|
int cx = (x1 + x2) / 2;
|
|
int cy = (y1 + y2) / 2;
|
|
switch (abs(Quadrants)) {
|
|
case 0: rx /= 2; ry /= 2; break;
|
|
case 1: cx = x1; cy = y2; break;
|
|
case 2: cx = x2; cy = y2; break;
|
|
case 3: cx = x2; cy = y1; break;
|
|
case 4: cx = x1; cy = y1; break;
|
|
case 5: cx = x1; ry /= 2; break;
|
|
case 6: cy = y2; rx /= 2; break;
|
|
case 7: cx = x2; ry /= 2; break;
|
|
case 8: cy = y1; rx /= 2; break;
|
|
default: ;
|
|
}
|
|
int TwoASquare = max(1, 2 * rx * rx);
|
|
int TwoBSquare = max(1, 2 * ry * ry);
|
|
int x = rx;
|
|
int y = 0;
|
|
int XChange = ry * ry * (1 - 2 * rx);
|
|
int YChange = rx * rx;
|
|
int EllipseError = 0;
|
|
int StoppingX = TwoBSquare * rx;
|
|
int StoppingY = 0;
|
|
while (StoppingX >= StoppingY) {
|
|
switch (Quadrants) {
|
|
case 5: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); // no break
|
|
case 1: DrawRectangle(cx, cy - y, cx + x, cy - y, Color); break;
|
|
case 7: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); // no break
|
|
case 2: DrawRectangle(cx - x, cy - y, cx, cy - y, Color); break;
|
|
case 3: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); break;
|
|
case 4: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); break;
|
|
case 0:
|
|
case 6: DrawRectangle(cx - x, cy - y, cx + x, cy - y, Color); if (Quadrants == 6) break;
|
|
case 8: DrawRectangle(cx - x, cy + y, cx + x, cy + y, Color); break;
|
|
case -1: DrawRectangle(cx + x, cy - y, x2, cy - y, Color); break;
|
|
case -2: DrawRectangle(x1, cy - y, cx - x, cy - y, Color); break;
|
|
case -3: DrawRectangle(x1, cy + y, cx - x, cy + y, Color); break;
|
|
case -4: DrawRectangle(cx + x, cy + y, x2, cy + y, Color); break;
|
|
default: ;
|
|
}
|
|
y++;
|
|
StoppingY += TwoASquare;
|
|
EllipseError += YChange;
|
|
YChange += TwoASquare;
|
|
if (2 * EllipseError + XChange > 0) {
|
|
x--;
|
|
StoppingX -= TwoBSquare;
|
|
EllipseError += XChange;
|
|
XChange += TwoBSquare;
|
|
}
|
|
}
|
|
x = 0;
|
|
y = ry;
|
|
XChange = ry * ry;
|
|
YChange = rx * rx * (1 - 2 * ry);
|
|
EllipseError = 0;
|
|
StoppingX = 0;
|
|
StoppingY = TwoASquare * ry;
|
|
while (StoppingX <= StoppingY) {
|
|
switch (Quadrants) {
|
|
case 5: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); // no break
|
|
case 1: DrawRectangle(cx, cy - y, cx + x, cy - y, Color); break;
|
|
case 7: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); // no break
|
|
case 2: DrawRectangle(cx - x, cy - y, cx, cy - y, Color); break;
|
|
case 3: DrawRectangle(cx - x, cy + y, cx, cy + y, Color); break;
|
|
case 4: DrawRectangle(cx, cy + y, cx + x, cy + y, Color); break;
|
|
case 0:
|
|
case 6: DrawRectangle(cx - x, cy - y, cx + x, cy - y, Color); if (Quadrants == 6) break;
|
|
case 8: DrawRectangle(cx - x, cy + y, cx + x, cy + y, Color); break;
|
|
case -1: DrawRectangle(cx + x, cy - y, x2, cy - y, Color); break;
|
|
case -2: DrawRectangle(x1, cy - y, cx - x, cy - y, Color); break;
|
|
case -3: DrawRectangle(x1, cy + y, cx - x, cy + y, Color); break;
|
|
case -4: DrawRectangle(cx + x, cy + y, x2, cy + y, Color); break;
|
|
default: ;
|
|
}
|
|
x++;
|
|
StoppingX += TwoBSquare;
|
|
EllipseError += XChange;
|
|
XChange += TwoBSquare;
|
|
if (2 * EllipseError + YChange > 0) {
|
|
y--;
|
|
StoppingY -= TwoASquare;
|
|
EllipseError += YChange;
|
|
YChange += TwoASquare;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cBitmap::DrawSlope(int x1, int y1, int x2, int y2, tColor Color, int Type)
|
|
{
|
|
if (!Intersects(x1, y1, x2, y2))
|
|
return;
|
|
bool upper = Type & 0x01;
|
|
bool falling = Type & 0x02;
|
|
bool vertical = Type & 0x04;
|
|
if (vertical) {
|
|
for (int y = y1; y <= y2; y++) {
|
|
double c = cos((y - y1) * M_PI / (y2 - y1 + 1));
|
|
if (falling)
|
|
c = -c;
|
|
int x = int((x2 - x1 + 1) * c / 2);
|
|
if (upper && !falling || !upper && falling)
|
|
DrawRectangle(x1, y, (x1 + x2) / 2 + x, y, Color);
|
|
else
|
|
DrawRectangle((x1 + x2) / 2 + x, y, x2, y, Color);
|
|
}
|
|
}
|
|
else {
|
|
for (int x = x1; x <= x2; x++) {
|
|
double c = cos((x - x1) * M_PI / (x2 - x1 + 1));
|
|
if (falling)
|
|
c = -c;
|
|
int y = int((y2 - y1 + 1) * c / 2);
|
|
if (upper)
|
|
DrawRectangle(x, y1, x, (y1 + y2) / 2 + y, Color);
|
|
else
|
|
DrawRectangle(x, (y1 + y2) / 2 + y, x, y2, Color);
|
|
}
|
|
}
|
|
}
|
|
|
|
const tIndex *cBitmap::Data(int x, int y) const
|
|
{
|
|
return &bitmap[y * width + x];
|
|
}
|
|
|
|
void cBitmap::ReduceBpp(const cPalette &Palette)
|
|
{
|
|
int NewBpp = Palette.Bpp();
|
|
if (Bpp() == 4 && NewBpp == 2) {
|
|
for (int i = width * height; i--; ) {
|
|
tIndex p = bitmap[i];
|
|
bitmap[i] = (p >> 2) | ((p & 0x03) != 0);
|
|
}
|
|
}
|
|
else if (Bpp() == 8) {
|
|
if (NewBpp == 2) {
|
|
for (int i = width * height; i--; ) {
|
|
tIndex p = bitmap[i];
|
|
bitmap[i] = (p >> 6) | ((p & 0x30) != 0);
|
|
}
|
|
}
|
|
else if (NewBpp == 4) {
|
|
for (int i = width * height; i--; ) {
|
|
tIndex p = bitmap[i];
|
|
bitmap[i] = p >> 4;
|
|
}
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
else
|
|
return;
|
|
SetBpp(NewBpp);
|
|
Replace(Palette);
|
|
}
|
|
|
|
void cBitmap::ShrinkBpp(int NewBpp)
|
|
{
|
|
int NumOldColors;
|
|
const tColor *Colors = this->Colors(NumOldColors);
|
|
if (Colors) {
|
|
// Find the most frequently used colors and create a map table:
|
|
int Used[MAXNUMCOLORS] = { 0 };
|
|
int Map[MAXNUMCOLORS] = { 0 };
|
|
for (int i = width * height; i--; )
|
|
Used[bitmap[i]]++;
|
|
int MaxNewColors = (NewBpp == 4) ? 16 : 4;
|
|
cPalette NewPalette(NewBpp);
|
|
for (int i = 0; i < MaxNewColors; i++) {
|
|
int Max = 0;
|
|
int Index = -1;
|
|
for (int n = 0; n < NumOldColors; n++) {
|
|
if (Used[n] > Max) {
|
|
Max = Used[n];
|
|
Index = n;
|
|
}
|
|
}
|
|
if (Index >= 0) {
|
|
Used[Index] = 0;
|
|
Map[Index] = i;
|
|
NewPalette.SetColor(i, Colors[Index]);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
// Complete the map table for all other colors (will be set to closest match):
|
|
for (int n = 0; n < NumOldColors; n++) {
|
|
if (Used[n])
|
|
Map[n] = NewPalette.Index(Colors[n]);
|
|
}
|
|
// Do the actual index mapping:
|
|
for (int i = width * height; i--; )
|
|
bitmap[i] = Map[bitmap[i]];
|
|
SetBpp(NewBpp);
|
|
Replace(NewPalette);
|
|
}
|
|
}
|
|
|
|
cBitmap *cBitmap::Scaled(double FactorX, double FactorY, bool AntiAlias) const
|
|
{
|
|
// Fixed point scaling code based on www.inversereality.org/files/bitmapscaling.pdf
|
|
// by deltener@mindtremors.com
|
|
cBitmap *b = new cBitmap(int(round(Width() * FactorX)), int(round(Height() * FactorY)), Bpp(), X0(), Y0());
|
|
int RatioX = (Width() << 16) / b->Width();
|
|
int RatioY = (Height() << 16) / b->Height();
|
|
if (!AntiAlias || FactorX <= 1.0 && FactorY <= 1.0) {
|
|
// Downscaling - no anti-aliasing:
|
|
b->Replace(*this); // copy palette
|
|
tIndex *DestRow = b->bitmap;
|
|
int SourceY = 0;
|
|
for (int y = 0; y < b->Height(); y++) {
|
|
int SourceX = 0;
|
|
tIndex *SourceRow = bitmap + (SourceY >> 16) * Width();
|
|
tIndex *Dest = DestRow;
|
|
for (int x = 0; x < b->Width(); x++) {
|
|
*Dest++ = SourceRow[SourceX >> 16];
|
|
SourceX += RatioX;
|
|
}
|
|
SourceY += RatioY;
|
|
DestRow += b->Width();
|
|
}
|
|
}
|
|
else {
|
|
// Upscaling - anti-aliasing:
|
|
b->SetBpp(8);
|
|
b->Replace(*this); // copy palette (must be done *after* SetBpp()!)
|
|
int SourceY = 0;
|
|
for (int y = 0; y < b->Height(); y++) {
|
|
int SourceX = 0;
|
|
int sy = min(SourceY >> 16, Height() - 2);
|
|
uint8_t BlendY = 0xFF - ((SourceY >> 8) & 0xFF);
|
|
for (int x = 0; x < b->Width(); x++) {
|
|
int sx = min(SourceX >> 16, Width() - 2);
|
|
uint8_t BlendX = 0xFF - ((SourceX >> 8) & 0xFF);
|
|
tColor c1 = b->Blend(GetColor(sx, sy), GetColor(sx + 1, sy), BlendX);
|
|
tColor c2 = b->Blend(GetColor(sx, sy + 1), GetColor(sx + 1, sy + 1), BlendX);
|
|
tColor c3 = b->Blend(c1, c2, BlendY);
|
|
b->DrawPixel(x + X0(), y + Y0(), c3);
|
|
SourceX += RatioX;
|
|
}
|
|
SourceY += RatioY;
|
|
}
|
|
}
|
|
return b;
|
|
}
|
|
|
|
// --- cRect -----------------------------------------------------------------
|
|
|
|
const cRect cRect::Null;
|
|
|
|
void cRect::Grow(int Dx, int Dy)
|
|
{
|
|
point.Shift(-Dx, -Dy);
|
|
size.Grow(Dx, Dy);
|
|
}
|
|
|
|
bool cRect::Contains(const cPoint &Point) const
|
|
{
|
|
return Left() <= Point.X() &&
|
|
Top() <= Point.Y() &&
|
|
Right() >= Point.X() &&
|
|
Bottom() >= Point.Y();
|
|
}
|
|
|
|
bool cRect::Contains(const cRect &Rect) const
|
|
{
|
|
return Left() <= Rect.Left() &&
|
|
Top() <= Rect.Top() &&
|
|
Right() >= Rect.Right() &&
|
|
Bottom() >= Rect.Bottom();
|
|
}
|
|
|
|
bool cRect::Intersects(const cRect &Rect) const
|
|
{
|
|
return !(Left() > Rect.Right() ||
|
|
Top() > Rect.Bottom() ||
|
|
Right() < Rect.Left() ||
|
|
Bottom() < Rect.Top());
|
|
}
|
|
|
|
cRect cRect::Intersected(const cRect &Rect) const
|
|
{
|
|
cRect r;
|
|
if (!IsEmpty() && !Rect.IsEmpty()) {
|
|
r.SetLeft(max(Left(), Rect.Left()));
|
|
r.SetTop(max(Top(), Rect.Top()));
|
|
r.SetRight(min(Right(), Rect.Right()));
|
|
r.SetBottom(min(Bottom(), Rect.Bottom()));
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void cRect::Combine(const cRect &Rect)
|
|
{
|
|
if (IsEmpty())
|
|
*this = Rect;
|
|
if (Rect.IsEmpty())
|
|
return;
|
|
// must set right/bottom *before* top/left!
|
|
SetRight(max(Right(), Rect.Right()));
|
|
SetBottom(max(Bottom(), Rect.Bottom()));
|
|
SetLeft(min(Left(), Rect.Left()));
|
|
SetTop(min(Top(), Rect.Top()));
|
|
}
|
|
|
|
void cRect::Combine(const cPoint &Point)
|
|
{
|
|
if (IsEmpty())
|
|
Set(Point.X(), Point.Y(), 1, 1);
|
|
// must set right/bottom *before* top/left!
|
|
SetRight(max(Right(), Point.X()));
|
|
SetBottom(max(Bottom(), Point.Y()));
|
|
SetLeft(min(Left(), Point.X()));
|
|
SetTop(min(Top(), Point.Y()));
|
|
}
|
|
|
|
// --- cPixmap ---------------------------------------------------------------
|
|
|
|
cMutex cPixmap::mutex;
|
|
|
|
cPixmap::cPixmap(void)
|
|
{
|
|
layer = -1;
|
|
alpha = ALPHA_OPAQUE;
|
|
tile = false;
|
|
}
|
|
|
|
cPixmap::cPixmap(int Layer, const cRect &ViewPort, const cRect &DrawPort)
|
|
{
|
|
layer = Layer;
|
|
if (layer >= MAXPIXMAPLAYERS) {
|
|
layer = MAXPIXMAPLAYERS - 1;
|
|
esyslog("ERROR: pixmap layer %d limited to %d", Layer, layer);
|
|
}
|
|
viewPort = ViewPort;
|
|
if (!DrawPort.IsEmpty())
|
|
drawPort = DrawPort;
|
|
else {
|
|
drawPort = viewPort;
|
|
drawPort.SetPoint(0, 0);
|
|
}
|
|
alpha = ALPHA_OPAQUE;
|
|
tile = false;
|
|
}
|
|
|
|
void cPixmap::MarkViewPortDirty(const cRect &Rect)
|
|
{
|
|
if (layer >= 0)
|
|
dirtyViewPort.Combine(Rect.Intersected(viewPort));
|
|
}
|
|
|
|
void cPixmap::MarkViewPortDirty(const cPoint &Point)
|
|
{
|
|
if (layer >= 0 && viewPort.Contains(Point))
|
|
dirtyViewPort.Combine(Point);
|
|
}
|
|
|
|
void cPixmap::MarkDrawPortDirty(const cRect &Rect)
|
|
{
|
|
dirtyDrawPort.Combine(Rect.Intersected(drawPort));
|
|
if (tile)
|
|
MarkViewPortDirty(viewPort);
|
|
else
|
|
MarkViewPortDirty(Rect.Shifted(viewPort.Point()));
|
|
}
|
|
|
|
void cPixmap::MarkDrawPortDirty(const cPoint &Point)
|
|
{
|
|
if (drawPort.Contains(Point)) {
|
|
dirtyDrawPort.Combine(Point);
|
|
if (tile)
|
|
MarkViewPortDirty(viewPort);
|
|
else
|
|
MarkViewPortDirty(Point.Shifted(viewPort.Point()));
|
|
}
|
|
}
|
|
|
|
void cPixmap::SetClean(void)
|
|
{
|
|
dirtyViewPort = dirtyDrawPort = cRect();
|
|
}
|
|
|
|
void cPixmap::SetLayer(int Layer)
|
|
{
|
|
Lock();
|
|
if (Layer >= MAXPIXMAPLAYERS) {
|
|
esyslog("ERROR: pixmap layer %d limited to %d", Layer, MAXPIXMAPLAYERS - 1);
|
|
Layer = MAXPIXMAPLAYERS - 1;
|
|
}
|
|
// The sequence here is important, because the view port is only marked as dirty
|
|
// if the layer is >= 0:
|
|
if (layer >= 0) {
|
|
MarkViewPortDirty(viewPort); // the pixmap is visible and may or may not become invisible
|
|
layer = Layer;
|
|
}
|
|
else if (Layer >= 0) {
|
|
layer = Layer;
|
|
MarkViewPortDirty(viewPort); // the pixmap was invisible and has become visible
|
|
}
|
|
else
|
|
layer = Layer; // the pixmap was invisible and remains so
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmap::SetAlpha(int Alpha)
|
|
{
|
|
Lock();
|
|
Alpha = constrain(Alpha, ALPHA_TRANSPARENT, ALPHA_OPAQUE);
|
|
if (Alpha != alpha) {
|
|
MarkViewPortDirty(viewPort);
|
|
alpha = Alpha;
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmap::SetTile(bool Tile)
|
|
{
|
|
Lock();
|
|
if (Tile != tile) {
|
|
if (drawPort.Point() != cPoint(0, 0) || drawPort.Width() < viewPort.Width() || drawPort.Height() < viewPort.Height())
|
|
MarkViewPortDirty(viewPort);
|
|
tile = Tile;
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmap::SetViewPort(const cRect &Rect)
|
|
{
|
|
Lock();
|
|
if (Rect != viewPort) {
|
|
if (tile)
|
|
MarkViewPortDirty(viewPort);
|
|
else
|
|
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
|
|
viewPort = Rect;
|
|
if (tile)
|
|
MarkViewPortDirty(viewPort);
|
|
else
|
|
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmap::SetDrawPortPoint(const cPoint &Point, bool Dirty)
|
|
{
|
|
Lock();
|
|
if (Point != drawPort.Point()) {
|
|
if (Dirty) {
|
|
if (tile)
|
|
MarkViewPortDirty(viewPort);
|
|
else
|
|
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
|
|
}
|
|
drawPort.SetPoint(Point);
|
|
if (Dirty && !tile)
|
|
MarkViewPortDirty(drawPort.Shifted(viewPort.Point()));
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
// --- cImage ----------------------------------------------------------------
|
|
|
|
cImage::cImage(void)
|
|
{
|
|
data = NULL;
|
|
}
|
|
|
|
cImage::cImage(const cImage &Image)
|
|
{
|
|
size = Image.Size();
|
|
int l = size.Width() * size.Height() * sizeof(tColor);
|
|
data = MALLOC(tColor, l);
|
|
memcpy(data, Image.Data(), l);
|
|
}
|
|
|
|
cImage::cImage(const cSize &Size, const tColor *Data)
|
|
{
|
|
size = Size;
|
|
int l = size.Width() * size.Height() * sizeof(tColor);
|
|
data = MALLOC(tColor, l);
|
|
if (Data)
|
|
memcpy(data, Data, l);
|
|
}
|
|
|
|
cImage::~cImage()
|
|
{
|
|
free(data);
|
|
}
|
|
|
|
void cImage::Clear(void)
|
|
{
|
|
memset(data, 0x00, Width() * Height() * sizeof(tColor));
|
|
}
|
|
|
|
void cImage::Fill(tColor Color)
|
|
{
|
|
for (int i = Width() * Height() - 1; i >= 0; i--)
|
|
data[i] = Color;
|
|
}
|
|
|
|
// --- cPixmapMemory ---------------------------------------------------------
|
|
|
|
cPixmapMemory::cPixmapMemory(void)
|
|
{
|
|
data = NULL;
|
|
panning = false;
|
|
}
|
|
|
|
cPixmapMemory::cPixmapMemory(int Layer, const cRect &ViewPort, const cRect &DrawPort)
|
|
:cPixmap(Layer, ViewPort, DrawPort)
|
|
{
|
|
data = MALLOC(tColor, this->DrawPort().Width() * this->DrawPort().Height());
|
|
panning = false;
|
|
}
|
|
|
|
cPixmapMemory::~cPixmapMemory()
|
|
{
|
|
free(data);
|
|
}
|
|
|
|
void cPixmapMemory::Clear(void)
|
|
{
|
|
Lock();
|
|
memset(data, 0x00, DrawPort().Width() * DrawPort().Height() * sizeof(tColor));
|
|
MarkDrawPortDirty(DrawPort());
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::Fill(tColor Color)
|
|
{
|
|
Lock();
|
|
for (int i = DrawPort().Width() * DrawPort().Height() - 1; i >= 0; i--)
|
|
data[i] = Color;
|
|
MarkDrawPortDirty(DrawPort());
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmap::DrawPixmap(const cPixmap *Pixmap, const cRect &Dirty)
|
|
{
|
|
if (Pixmap->Tile() && (Pixmap->DrawPort().Point() != cPoint(0, 0) || Pixmap->DrawPort().Size() < Pixmap->ViewPort().Size())) {
|
|
cPoint t0 = Pixmap->DrawPort().Point().Shifted(Pixmap->ViewPort().Point()); // the origin of the draw port in absolute OSD coordinates
|
|
// Find the top/leftmost location where the draw port touches the view port:
|
|
while (t0.X() > Pixmap->ViewPort().Left())
|
|
t0.Shift(-Pixmap->DrawPort().Width(), 0);
|
|
while (t0.Y() > Pixmap->ViewPort().Top())
|
|
t0.Shift(0, -Pixmap->DrawPort().Height());
|
|
cPoint t = t0;;
|
|
while (t.Y() <= Pixmap->ViewPort().Bottom()) {
|
|
while (t.X() <= Pixmap->ViewPort().Right()) {
|
|
cRect Source = Pixmap->DrawPort(); // assume the entire pixmap needs to be rendered
|
|
Source.Shift(Pixmap->ViewPort().Point()); // Source is now in absolute OSD coordinates
|
|
cPoint Delta = Source.Point() - t;
|
|
Source.SetPoint(t); // Source is now where the pixmap's data shall be drawn
|
|
Source = Source.Intersected(Pixmap->ViewPort()); // Source is now limited to the pixmap's view port
|
|
Source = Source.Intersected(Dirty); // Source is now limited to the actual dirty rectangle
|
|
if (!Source.IsEmpty()) {
|
|
cPoint Dest = Source.Point().Shifted(-ViewPort().Point()); // remember the destination point
|
|
Source.Shift(Delta); // Source is now back at the pixmap's draw port location, still in absolute OSD coordinates
|
|
Source.Shift(-Pixmap->ViewPort().Point()); // Source is now relative to the pixmap's view port again
|
|
Source.Shift(-Pixmap->DrawPort().Point()); // Source is now relative to the pixmap's data
|
|
if (Pixmap->Layer() == 0)
|
|
Copy(Pixmap, Source, Dest); // this is the "background" pixmap
|
|
else
|
|
Render(Pixmap, Source, Dest); // all others are alpha blended over the background
|
|
}
|
|
t.Shift(Pixmap->DrawPort().Width(), 0); // increase one draw port width to the right
|
|
}
|
|
t.SetX(t0.X()); // go back to the leftmost position
|
|
t.Shift(0, Pixmap->DrawPort().Height()); // increase one draw port height down
|
|
}
|
|
}
|
|
else {
|
|
cRect Source = Pixmap->DrawPort(); // assume the entire pixmap needs to be rendered
|
|
Source.Shift(Pixmap->ViewPort().Point()); // Source is now in absolute OSD coordinates
|
|
Source = Source.Intersected(Pixmap->ViewPort()); // Source is now limited to the pixmap's view port
|
|
Source = Source.Intersected(Dirty); // Source is now limited to the actual dirty rectangle
|
|
if (!Source.IsEmpty()) {
|
|
cPoint Dest = Source.Point().Shifted(-ViewPort().Point()); // remember the destination point
|
|
Source.Shift(-Pixmap->ViewPort().Point()); // Source is now relative to the pixmap's draw port again
|
|
Source.Shift(-Pixmap->DrawPort().Point()); // Source is now relative to the pixmap's data
|
|
if (Pixmap->Layer() == 0)
|
|
Copy(Pixmap, Source, Dest); // this is the "background" pixmap
|
|
else
|
|
Render(Pixmap, Source, Dest); // all others are alpha blended over the background
|
|
}
|
|
}
|
|
}
|
|
|
|
void cPixmapMemory::DrawImage(const cPoint &Point, const cImage &Image)
|
|
{
|
|
Lock();
|
|
cRect r = cRect(Point, Image.Size()).Intersected(DrawPort().Size());
|
|
if (!r.IsEmpty()) {
|
|
int ws = Image.Size().Width();
|
|
int wd = DrawPort().Width();
|
|
int w = r.Width() * sizeof(tColor);
|
|
const tColor *ps = Image.Data();
|
|
if (Point.Y() < 0)
|
|
ps -= Point.Y() * ws;
|
|
if (Point.X() < 0)
|
|
ps -= Point.X();
|
|
tColor *pd = data + wd * r.Top() + r.Left();
|
|
for (int y = r.Height(); y-- > 0; ) {
|
|
memcpy(pd, ps, w);
|
|
ps += ws;
|
|
pd += wd;
|
|
}
|
|
MarkDrawPortDirty(r);
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::DrawImage(const cPoint &Point, int ImageHandle)
|
|
{
|
|
Lock();
|
|
if (const cImage *Image = cOsdProvider::GetImageData(ImageHandle))
|
|
DrawImage(Point, *Image);
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::DrawPixel(const cPoint &Point, tColor Color)
|
|
{
|
|
Lock();
|
|
if (DrawPort().Size().Contains(Point)) {
|
|
int p = Point.Y() * DrawPort().Width() + Point.X();
|
|
if (Layer() == 0 && !IS_OPAQUE(Color))
|
|
data[p] = AlphaBlend(Color, data[p]);
|
|
else
|
|
data[p] = Color;
|
|
MarkDrawPortDirty(Point);
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::DrawBitmap(const cPoint &Point, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool Overlay)
|
|
{
|
|
Lock();
|
|
cRect r = cRect(Point, cSize(Bitmap.Width(), Bitmap.Height())).Intersected(DrawPort().Size());
|
|
if (!r.IsEmpty()) {
|
|
bool UseColors = ColorFg || ColorBg;
|
|
int wd = DrawPort().Width();
|
|
tColor *pd = data + wd * r.Top() + r.Left();
|
|
for (int y = r.Top(); y <= r.Bottom(); y++) {
|
|
tColor *cd = pd;
|
|
for (int x = r.Left(); x <= r.Right(); x++) {
|
|
tIndex Index = *Bitmap.Data(x - Point.X(), y - Point.Y());
|
|
if (Index || !Overlay) {
|
|
if (UseColors)
|
|
*cd = Index ? ColorFg : ColorBg;
|
|
else
|
|
*cd = Bitmap.Color(Index);
|
|
}
|
|
cd++;
|
|
}
|
|
pd += wd;
|
|
}
|
|
MarkDrawPortDirty(r);
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::DrawText(const cPoint &Point, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width, int Height, int Alignment)
|
|
{
|
|
Lock();
|
|
int x = Point.X();
|
|
int y = Point.Y();
|
|
int w = Font->Width(s);
|
|
int h = Font->Height();
|
|
int limit = 0;
|
|
int cw = Width ? Width : w;
|
|
int ch = Height ? Height : h;
|
|
cRect r(x, y, cw, ch);
|
|
if (ColorBg != clrTransparent)
|
|
DrawRectangle(r, ColorBg);
|
|
if (Width || Height) {
|
|
limit = x + cw;
|
|
if (Width) {
|
|
if ((Alignment & taLeft) != 0) {
|
|
if ((Alignment & taBorder) != 0)
|
|
x += max(h / TEXT_ALIGN_BORDER, 1);
|
|
}
|
|
else if ((Alignment & taRight) != 0) {
|
|
if (w < Width)
|
|
x += Width - w;
|
|
if ((Alignment & taBorder) != 0)
|
|
x -= max(h / TEXT_ALIGN_BORDER, 1);
|
|
}
|
|
else { // taCentered
|
|
if (w < Width)
|
|
x += (Width - w) / 2;
|
|
}
|
|
}
|
|
if (Height) {
|
|
if ((Alignment & taTop) != 0)
|
|
;
|
|
else if ((Alignment & taBottom) != 0) {
|
|
if (h < Height)
|
|
y += Height - h;
|
|
}
|
|
else { // taCentered
|
|
if (h < Height)
|
|
y += (Height - h) / 2;
|
|
}
|
|
}
|
|
}
|
|
Font->DrawText(this, x, y, s, ColorFg, ColorBg, limit);
|
|
MarkDrawPortDirty(r);
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::DrawRectangle(const cRect &Rect, tColor Color)
|
|
{
|
|
Lock();
|
|
cRect r = Rect.Intersected(DrawPort().Size());
|
|
if (!r.IsEmpty()) {
|
|
int wd = DrawPort().Width();
|
|
int w = r.Width() * sizeof(tColor);
|
|
tColor *ps = NULL;
|
|
tColor *pd = data + wd * r.Top() + r.Left();
|
|
for (int y = r.Height(); y-- > 0; ) {
|
|
if (ps)
|
|
memcpy(pd, ps, w); // all other lines are copied fast from the first one
|
|
else {
|
|
// explicitly fill the first line:
|
|
tColor *cd = ps = pd;
|
|
for (int x = r.Width(); x-- > 0; ) {
|
|
*cd = Color;
|
|
cd++;
|
|
}
|
|
}
|
|
pd += wd;
|
|
}
|
|
MarkDrawPortDirty(r);
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::DrawEllipse(const cRect &Rect, tColor Color, int Quadrants)
|
|
{
|
|
//TODO use anti-aliasing?
|
|
//TODO fix alignment
|
|
Lock();
|
|
// Algorithm based on http://homepage.smc.edu/kennedy_john/BELIPSE.PDF
|
|
int x1 = Rect.Left();
|
|
int y1 = Rect.Top();
|
|
int x2 = Rect.Right();
|
|
int y2 = Rect.Bottom();
|
|
int rx = x2 - x1;
|
|
int ry = y2 - y1;
|
|
int cx = (x1 + x2) / 2;
|
|
int cy = (y1 + y2) / 2;
|
|
switch (abs(Quadrants)) {
|
|
case 0: rx /= 2; ry /= 2; break;
|
|
case 1: cx = x1; cy = y2; break;
|
|
case 2: cx = x2; cy = y2; break;
|
|
case 3: cx = x2; cy = y1; break;
|
|
case 4: cx = x1; cy = y1; break;
|
|
case 5: cx = x1; ry /= 2; break;
|
|
case 6: cy = y2; rx /= 2; break;
|
|
case 7: cx = x2; ry /= 2; break;
|
|
case 8: cy = y1; rx /= 2; break;
|
|
default: ;
|
|
}
|
|
int TwoASquare = max(1, 2 * rx * rx);
|
|
int TwoBSquare = max(1, 2 * ry * ry);
|
|
int x = rx;
|
|
int y = 0;
|
|
int XChange = ry * ry * (1 - 2 * rx);
|
|
int YChange = rx * rx;
|
|
int EllipseError = 0;
|
|
int StoppingX = TwoBSquare * rx;
|
|
int StoppingY = 0;
|
|
while (StoppingX >= StoppingY) {
|
|
switch (Quadrants) {
|
|
case 5: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); // no break
|
|
case 1: DrawRectangle(cRect(cx, cy - y, x + 1, 1), Color); break;
|
|
case 7: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); // no break
|
|
case 2: DrawRectangle(cRect(cx - x, cy - y, x + 1, 1), Color); break;
|
|
case 3: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); break;
|
|
case 4: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); break;
|
|
case 0:
|
|
case 6: DrawRectangle(cRect(cx - x, cy - y, 2 * x + 1, 1), Color); if (Quadrants == 6) break;
|
|
case 8: DrawRectangle(cRect(cx - x, cy + y, 2 * x + 1, 1), Color); break;
|
|
case -1: DrawRectangle(cRect(cx + x, cy - y, rx - x + 1, 1), Color); break;
|
|
case -2: DrawRectangle(cRect(x1, cy - y, cx - x - x1 + 1, 1), Color); break;
|
|
case -3: DrawRectangle(cRect(x1, cy + y, cx - x - x1 + 1, 1), Color); break;
|
|
case -4: DrawRectangle(cRect(cx + x, cy + y, rx - x + 1, 1), Color); break;
|
|
default: ;
|
|
}
|
|
y++;
|
|
StoppingY += TwoASquare;
|
|
EllipseError += YChange;
|
|
YChange += TwoASquare;
|
|
if (2 * EllipseError + XChange > 0) {
|
|
x--;
|
|
StoppingX -= TwoBSquare;
|
|
EllipseError += XChange;
|
|
XChange += TwoBSquare;
|
|
}
|
|
}
|
|
x = 0;
|
|
y = ry;
|
|
XChange = ry * ry;
|
|
YChange = rx * rx * (1 - 2 * ry);
|
|
EllipseError = 0;
|
|
StoppingX = 0;
|
|
StoppingY = TwoASquare * ry;
|
|
while (StoppingX <= StoppingY) {
|
|
switch (Quadrants) {
|
|
case 5: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); // no break
|
|
case 1: DrawRectangle(cRect(cx, cy - y, x + 1, 1), Color); break;
|
|
case 7: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); // no break
|
|
case 2: DrawRectangle(cRect(cx - x, cy - y, x + 1, 1), Color); break;
|
|
case 3: DrawRectangle(cRect(cx - x, cy + y, x + 1, 1), Color); break;
|
|
case 4: DrawRectangle(cRect(cx, cy + y, x + 1, 1), Color); break;
|
|
case 0:
|
|
case 6: DrawRectangle(cRect(cx - x, cy - y, 2 * x + 1, 1), Color); if (Quadrants == 6) break;
|
|
case 8: DrawRectangle(cRect(cx - x, cy + y, 2 * x + 1, 1), Color); break;
|
|
case -1: DrawRectangle(cRect(cx + x, cy - y, rx - x + 1, 1), Color); break;
|
|
case -2: DrawRectangle(cRect(x1, cy - y, cx - x - x1 + 1, 1), Color); break;
|
|
case -3: DrawRectangle(cRect(x1, cy + y, cx - x - x1 + 1, 1), Color); break;
|
|
case -4: DrawRectangle(cRect(cx + x, cy + y, rx - x + 1, 1), Color); break;
|
|
default: ;
|
|
}
|
|
x++;
|
|
StoppingX += TwoBSquare;
|
|
EllipseError += XChange;
|
|
XChange += TwoBSquare;
|
|
if (2 * EllipseError + YChange > 0) {
|
|
y--;
|
|
StoppingY -= TwoASquare;
|
|
EllipseError += YChange;
|
|
YChange += TwoASquare;
|
|
}
|
|
}
|
|
MarkDrawPortDirty(Rect);
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::DrawSlope(const cRect &Rect, tColor Color, int Type)
|
|
{
|
|
//TODO anti-aliasing?
|
|
//TODO also simplify cBitmap::DrawSlope()
|
|
Lock();
|
|
bool upper = Type & 0x01;
|
|
bool falling = Type & 0x02;
|
|
bool vertical = Type & 0x04;
|
|
int x1 = Rect.Left();
|
|
int y1 = Rect.Top();
|
|
int x2 = Rect.Right();
|
|
int y2 = Rect.Bottom();
|
|
int w = Rect.Width();
|
|
int h = Rect.Height();
|
|
if (vertical) {
|
|
for (int y = y1; y <= y2; y++) {
|
|
double c = cos((y - y1) * M_PI / h);
|
|
if (falling)
|
|
c = -c;
|
|
int x = (x1 + x2) / 2 + int(w * c / 2);
|
|
if (upper && !falling || !upper && falling)
|
|
DrawRectangle(cRect(x1, y, x - x1 + 1, 1), Color);
|
|
else
|
|
DrawRectangle(cRect(x, y, x2 - x + 1, 1), Color);
|
|
}
|
|
}
|
|
else {
|
|
for (int x = x1; x <= x2; x++) {
|
|
double c = cos((x - x1) * M_PI / w);
|
|
if (falling)
|
|
c = -c;
|
|
int y = (y1 + y2) / 2 + int(h * c / 2);
|
|
if (upper)
|
|
DrawRectangle(cRect(x, y1, 1, y - y1 + 1), Color);
|
|
else
|
|
DrawRectangle(cRect(x, y, 1, y2 - y + 1), Color);
|
|
}
|
|
}
|
|
MarkDrawPortDirty(Rect);
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::Render(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest)
|
|
{
|
|
Lock();
|
|
if (Pixmap->Alpha() != ALPHA_TRANSPARENT) {
|
|
if (const cPixmapMemory *pm = dynamic_cast<const cPixmapMemory *>(Pixmap)) {
|
|
cRect s = Source.Intersected(Pixmap->DrawPort().Size());
|
|
if (!s.IsEmpty()) {
|
|
cPoint v = Dest - Source.Point();
|
|
cRect d = s.Shifted(v).Intersected(DrawPort().Size());
|
|
if (!d.IsEmpty()) {
|
|
s = d.Shifted(-v);
|
|
int a = pm->Alpha();
|
|
int ws = pm->DrawPort().Width();
|
|
int wd = DrawPort().Width();
|
|
const tColor *ps = pm->data + ws * s.Top() + s.Left();
|
|
tColor *pd = data + wd * d.Top() + d.Left();
|
|
for (int y = d.Height(); y-- > 0; ) {
|
|
const tColor *cs = ps;
|
|
tColor *cd = pd;
|
|
for (int x = d.Width(); x-- > 0; ) {
|
|
*cd = AlphaBlend(*cs, *cd, a);
|
|
cs++;
|
|
cd++;
|
|
}
|
|
ps += ws;
|
|
pd += wd;
|
|
}
|
|
MarkDrawPortDirty(d);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::Copy(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest)
|
|
{
|
|
Lock();
|
|
if (const cPixmapMemory *pm = dynamic_cast<const cPixmapMemory *>(Pixmap)) {
|
|
cRect s = Source.Intersected(pm->DrawPort().Size());
|
|
if (!s.IsEmpty()) {
|
|
cPoint v = Dest - Source.Point();
|
|
cRect d = s.Shifted(v).Intersected(DrawPort().Size());
|
|
if (!d.IsEmpty()) {
|
|
s = d.Shifted(-v);
|
|
int ws = pm->DrawPort().Width();
|
|
int wd = DrawPort().Width();
|
|
int w = d.Width() * sizeof(tColor);
|
|
const tColor *ps = pm->data + ws * s.Top() + s.Left();
|
|
tColor *pd = data + wd * d.Top() + d.Left();
|
|
for (int y = d.Height(); y-- > 0; ) {
|
|
memcpy(pd, ps, w);
|
|
ps += ws;
|
|
pd += wd;
|
|
}
|
|
MarkDrawPortDirty(d);
|
|
}
|
|
}
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::Scroll(const cPoint &Dest, const cRect &Source)
|
|
{
|
|
Lock();
|
|
cRect s;
|
|
if (&Source == &cRect::Null)
|
|
s = DrawPort().Shifted(-DrawPort().Point());
|
|
else
|
|
s = Source.Intersected(DrawPort().Size());
|
|
if (!s.IsEmpty()) {
|
|
cPoint v = Dest - Source.Point();
|
|
cRect d = s.Shifted(v).Intersected(DrawPort().Size());
|
|
if (!d.IsEmpty()) {
|
|
s = d.Shifted(-v);
|
|
if (d.Point() != s.Point()) {
|
|
int ws = DrawPort().Width();
|
|
int wd = ws;
|
|
int w = d.Width() * sizeof(tColor);
|
|
const tColor *ps = data + ws * s.Top() + s.Left();
|
|
tColor *pd = data + wd * d.Top() + d.Left();
|
|
for (int y = d.Height(); y-- > 0; ) {
|
|
memmove(pd, ps, w); // source and destination might overlap!
|
|
ps += ws;
|
|
pd += wd;
|
|
}
|
|
if (panning)
|
|
SetDrawPortPoint(DrawPort().Point().Shifted(s.Point() - d.Point()), false);
|
|
else
|
|
MarkDrawPortDirty(d);
|
|
}
|
|
}
|
|
}
|
|
Unlock();
|
|
}
|
|
|
|
void cPixmapMemory::Pan(const cPoint &Dest, const cRect &Source)
|
|
{
|
|
Lock();
|
|
panning = true;
|
|
Scroll(Dest, Source);
|
|
panning = false;
|
|
Unlock();
|
|
}
|
|
|
|
// --- cOsd ------------------------------------------------------------------
|
|
|
|
static const char *OsdErrorTexts[] = {
|
|
"ok",
|
|
"too many areas",
|
|
"too many colors",
|
|
"bpp not supported",
|
|
"areas overlap",
|
|
"wrong alignment",
|
|
"out of memory",
|
|
"wrong area size",
|
|
"unknown",
|
|
};
|
|
|
|
int cOsd::osdLeft = 0;
|
|
int cOsd::osdTop = 0;
|
|
int cOsd::osdWidth = 0;
|
|
int cOsd::osdHeight = 0;
|
|
cSize cOsd::maxPixmapSize(2048, 2048);
|
|
cVector<cOsd *> cOsd::Osds;
|
|
cMutex cOsd::mutex;
|
|
|
|
cOsd::cOsd(int Left, int Top, uint Level)
|
|
{
|
|
cMutexLock MutexLock(&mutex);
|
|
isTrueColor = false;
|
|
savedBitmap = NULL;
|
|
numBitmaps = 0;
|
|
savedPixmap = NULL;
|
|
left = Left;
|
|
top = Top;
|
|
width = height = 0;
|
|
level = Level;
|
|
active = false;
|
|
for (int i = 0; i < Osds.Size(); i++) {
|
|
if (Osds[i]->level > level) {
|
|
Osds.Insert(this, i);
|
|
return;
|
|
}
|
|
}
|
|
Osds.Append(this);
|
|
}
|
|
|
|
cOsd::~cOsd()
|
|
{
|
|
cMutexLock MutexLock(&mutex);
|
|
for (int i = 0; i < numBitmaps; i++)
|
|
delete bitmaps[i];
|
|
delete savedBitmap;
|
|
delete savedPixmap;
|
|
for (int i = 0; i < pixmaps.Size(); i++)
|
|
delete pixmaps[i];
|
|
for (int i = 0; i < Osds.Size(); i++) {
|
|
if (Osds[i] == this) {
|
|
Osds.Remove(i);
|
|
if (Osds.Size())
|
|
Osds[0]->SetActive(true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cOsd::SetOsdPosition(int Left, int Top, int Width, int Height)
|
|
{
|
|
osdLeft = Left;
|
|
osdTop = Top;
|
|
osdWidth = constrain(Width, MINOSDWIDTH, MAXOSDWIDTH);
|
|
osdHeight = constrain(Height, MINOSDHEIGHT, MAXOSDHEIGHT);
|
|
}
|
|
|
|
void cOsd::SetAntiAliasGranularity(uint FixedColors, uint BlendColors)
|
|
{
|
|
if (isTrueColor)
|
|
return;
|
|
for (int i = 0; i < numBitmaps; i++)
|
|
bitmaps[i]->SetAntiAliasGranularity(FixedColors, BlendColors);
|
|
}
|
|
|
|
cBitmap *cOsd::GetBitmap(int Area)
|
|
{
|
|
return Area < numBitmaps ? (isTrueColor ? bitmaps[0] : bitmaps[Area]) : NULL;
|
|
}
|
|
|
|
const cSize &cOsd::MaxPixmapSize(void) const
|
|
{
|
|
return maxPixmapSize;
|
|
}
|
|
|
|
cPixmap *cOsd::CreatePixmap(int Layer, const cRect &ViewPort, const cRect &DrawPort)
|
|
{
|
|
if (isTrueColor) {
|
|
LOCK_PIXMAPS;
|
|
cPixmap *Pixmap = new cPixmapMemory(Layer, ViewPort, DrawPort);
|
|
if (AddPixmap(Pixmap))
|
|
return Pixmap;
|
|
delete Pixmap;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void cOsd::DestroyPixmap(cPixmap *Pixmap)
|
|
{
|
|
if (Pixmap) {
|
|
LOCK_PIXMAPS;
|
|
for (int i = 1; i < pixmaps.Size(); i++) { // begin at 1 - don't let the background pixmap be destroyed!
|
|
if (pixmaps[i] == Pixmap) {
|
|
if (Pixmap->Layer() >= 0)
|
|
pixmaps[0]->MarkViewPortDirty(Pixmap->ViewPort());
|
|
delete Pixmap;
|
|
pixmaps[i] = NULL;
|
|
return;
|
|
}
|
|
}
|
|
esyslog("ERROR: attempt to destroy an unregistered pixmap");
|
|
}
|
|
}
|
|
|
|
cPixmap *cOsd::AddPixmap(cPixmap *Pixmap)
|
|
{
|
|
if (Pixmap) {
|
|
LOCK_PIXMAPS;
|
|
for (int i = 0; i < pixmaps.Size(); i++) {
|
|
if (!pixmaps[i])
|
|
return pixmaps[i] = Pixmap;
|
|
}
|
|
pixmaps.Append(Pixmap);
|
|
}
|
|
return Pixmap;
|
|
}
|
|
|
|
cPixmap *cOsd::RenderPixmaps(void)
|
|
{
|
|
cPixmap *Pixmap = NULL;
|
|
if (isTrueColor) {
|
|
LOCK_PIXMAPS;
|
|
// Collect overlapping dirty rectangles:
|
|
cRect d;
|
|
for (int i = 0; i < pixmaps.Size(); i++) {
|
|
if (cPixmap *pm = pixmaps[i]) {
|
|
if (!pm->DirtyViewPort().IsEmpty()) {
|
|
if (d.IsEmpty() || d.Intersects(pm->DirtyViewPort())) {
|
|
d.Combine(pm->DirtyViewPort());
|
|
pm->SetClean();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!d.IsEmpty()) {
|
|
//#define DebugDirty
|
|
#ifdef DebugDirty
|
|
static cRect OldDirty;
|
|
cRect NewDirty = d;
|
|
d.Combine(OldDirty);
|
|
OldDirty = NewDirty;
|
|
#endif
|
|
Pixmap = CreatePixmap(-1, d);
|
|
if (Pixmap) {
|
|
Pixmap->Clear();
|
|
// Render the individual pixmaps into the resulting pixmap:
|
|
for (int Layer = 0; Layer < MAXPIXMAPLAYERS; Layer++) {
|
|
for (int i = 0; i < pixmaps.Size(); i++) {
|
|
if (cPixmap *pm = pixmaps[i]) {
|
|
if (pm->Layer() == Layer)
|
|
Pixmap->DrawPixmap(pm, d);
|
|
}
|
|
}
|
|
}
|
|
#ifdef DebugDirty
|
|
cPixmapMemory DirtyIndicator(7, NewDirty);
|
|
static tColor DirtyIndicatorColors[] = { 0x7FFFFF00, 0x7F00FFFF };
|
|
static int DirtyIndicatorIndex = 0;
|
|
DirtyIndicator.Fill(DirtyIndicatorColors[DirtyIndicatorIndex]);
|
|
DirtyIndicatorIndex = 1 - DirtyIndicatorIndex;
|
|
Pixmap->Render(&DirtyIndicator, DirtyIndicator.DrawPort(), DirtyIndicator.ViewPort().Point().Shifted(-Pixmap->ViewPort().Point()));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
return Pixmap;
|
|
}
|
|
|
|
eOsdError cOsd::CanHandleAreas(const tArea *Areas, int NumAreas)
|
|
{
|
|
if (NumAreas > MAXOSDAREAS)
|
|
return oeTooManyAreas;
|
|
eOsdError Result = oeOk;
|
|
for (int i = 0; i < NumAreas; i++) {
|
|
if (Areas[i].x1 > Areas[i].x2 || Areas[i].y1 > Areas[i].y2 || Areas[i].x1 < 0 || Areas[i].y1 < 0)
|
|
return oeWrongAlignment;
|
|
for (int j = i + 1; j < NumAreas; j++) {
|
|
if (Areas[i].Intersects(Areas[j])) {
|
|
Result = oeAreasOverlap;
|
|
break;
|
|
}
|
|
}
|
|
if (Areas[i].bpp == 32) {
|
|
if (NumAreas > 1)
|
|
return oeTooManyAreas;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
eOsdError cOsd::SetAreas(const tArea *Areas, int NumAreas)
|
|
{
|
|
eOsdError Result = CanHandleAreas(Areas, NumAreas);
|
|
if (Result == oeOk) {
|
|
while (numBitmaps)
|
|
delete bitmaps[--numBitmaps];
|
|
for (int i = 0; i < pixmaps.Size(); i++) {
|
|
delete pixmaps[i];
|
|
pixmaps[i] = NULL;
|
|
}
|
|
width = height = 0;
|
|
isTrueColor = NumAreas == 1 && Areas[0].bpp == 32;
|
|
if (isTrueColor) {
|
|
width = Areas[0].x2 - Areas[0].x1 + 1;
|
|
height = Areas[0].y2 - Areas[0].y1 + 1;
|
|
cPixmap *Pixmap = CreatePixmap(0, cRect(Areas[0].x1, Areas[0].y1, width, height));
|
|
if (Pixmap)
|
|
Pixmap->Clear();
|
|
else
|
|
Result = oeOutOfMemory;
|
|
bitmaps[numBitmaps++] = new cBitmap(10, 10, 8); // dummy bitmap for GetBitmap()
|
|
}
|
|
else {
|
|
for (int i = 0; i < NumAreas; i++) {
|
|
bitmaps[numBitmaps++] = new cBitmap(Areas[i].Width(), Areas[i].Height(), Areas[i].bpp, Areas[i].x1, Areas[i].y1);
|
|
width = max(width, Areas[i].x2 + 1);
|
|
height = max(height, Areas[i].y2 + 1);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
esyslog("ERROR: cOsd::SetAreas returned %d (%s)", Result, Result < oeUnknown ? OsdErrorTexts[Result] : OsdErrorTexts[oeUnknown]);
|
|
return Result;
|
|
}
|
|
|
|
void cOsd::SaveRegion(int x1, int y1, int x2, int y2)
|
|
{
|
|
if (isTrueColor) {
|
|
delete savedPixmap;
|
|
cRect r(x1, y1, x2 - x1 + 1, y2 - y1 + 1);
|
|
savedPixmap = new cPixmapMemory(0, r);
|
|
savedPixmap->Copy(pixmaps[0], r, cPoint(0, 0));
|
|
}
|
|
else {
|
|
delete savedBitmap;
|
|
savedBitmap = new cBitmap(x2 - x1 + 1, y2 - y1 + 1, 8, x1, y1);
|
|
for (int i = 0; i < numBitmaps; i++)
|
|
savedBitmap->DrawBitmap(bitmaps[i]->X0(), bitmaps[i]->Y0(), *bitmaps[i]);
|
|
}
|
|
}
|
|
|
|
void cOsd::RestoreRegion(void)
|
|
{
|
|
if (isTrueColor) {
|
|
if (savedPixmap) {
|
|
pixmaps[0]->Copy(savedPixmap, savedPixmap->DrawPort(), savedPixmap->ViewPort().Point());
|
|
delete savedPixmap;
|
|
savedPixmap = NULL;
|
|
}
|
|
}
|
|
else {
|
|
if (savedBitmap) {
|
|
DrawBitmap(savedBitmap->X0(), savedBitmap->Y0(), *savedBitmap);
|
|
delete savedBitmap;
|
|
savedBitmap = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
eOsdError cOsd::SetPalette(const cPalette &Palette, int Area)
|
|
{
|
|
if (isTrueColor)
|
|
return oeOk;
|
|
if (Area < numBitmaps) {
|
|
bitmaps[Area]->Take(Palette);
|
|
return oeOk;
|
|
}
|
|
return oeUnknown;
|
|
}
|
|
|
|
void cOsd::DrawImage(const cPoint &Point, const cImage &Image)
|
|
{
|
|
if (isTrueColor)
|
|
pixmaps[0]->DrawImage(Point, Image);
|
|
}
|
|
|
|
void cOsd::DrawImage(const cPoint &Point, int ImageHandle)
|
|
{
|
|
if (isTrueColor)
|
|
pixmaps[0]->DrawImage(Point, ImageHandle);
|
|
}
|
|
|
|
void cOsd::DrawPixel(int x, int y, tColor Color)
|
|
{
|
|
if (isTrueColor)
|
|
pixmaps[0]->DrawPixel(cPoint(x, y), Color);
|
|
else {
|
|
for (int i = 0; i < numBitmaps; i++)
|
|
bitmaps[i]->DrawPixel(x, y, Color);
|
|
}
|
|
}
|
|
|
|
void cOsd::DrawBitmap(int x, int y, const cBitmap &Bitmap, tColor ColorFg, tColor ColorBg, bool ReplacePalette, bool Overlay)
|
|
{
|
|
if (isTrueColor)
|
|
pixmaps[0]->DrawBitmap(cPoint(x, y), Bitmap, ColorFg, ColorBg, Overlay);
|
|
else {
|
|
for (int i = 0; i < numBitmaps; i++)
|
|
bitmaps[i]->DrawBitmap(x, y, Bitmap, ColorFg, ColorBg, ReplacePalette, Overlay);
|
|
}
|
|
}
|
|
|
|
void cOsd::DrawScaledBitmap(int x, int y, const cBitmap &Bitmap, double FactorX, double FactorY, bool AntiAlias)
|
|
{
|
|
const cBitmap *b = &Bitmap;
|
|
if (!DoubleEqual(FactorX, 1.0) || !DoubleEqual(FactorY, 1.0))
|
|
b = b->Scaled(FactorX, FactorY, AntiAlias);
|
|
DrawBitmap(x, y, *b);
|
|
if (b != &Bitmap)
|
|
delete b;
|
|
}
|
|
|
|
void cOsd::DrawText(int x, int y, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width, int Height, int Alignment)
|
|
{
|
|
if (isTrueColor)
|
|
pixmaps[0]->DrawText(cPoint(x, y), s, ColorFg, ColorBg, Font, Width, Height, Alignment);
|
|
else {
|
|
for (int i = 0; i < numBitmaps; i++)
|
|
bitmaps[i]->DrawText(x, y, s, ColorFg, ColorBg, Font, Width, Height, Alignment);
|
|
}
|
|
}
|
|
|
|
void cOsd::DrawRectangle(int x1, int y1, int x2, int y2, tColor Color)
|
|
{
|
|
if (isTrueColor)
|
|
pixmaps[0]->DrawRectangle(cRect(x1, y1, x2 - x1 + 1, y2 - y1 + 1), Color);
|
|
else {
|
|
for (int i = 0; i < numBitmaps; i++)
|
|
bitmaps[i]->DrawRectangle(x1, y1, x2, y2, Color);
|
|
}
|
|
}
|
|
|
|
void cOsd::DrawEllipse(int x1, int y1, int x2, int y2, tColor Color, int Quadrants)
|
|
{
|
|
if (isTrueColor)
|
|
pixmaps[0]->DrawEllipse(cRect(x1, y1, x2 - x1 + 1, y2 - y1 + 1), Color, Quadrants);
|
|
else {
|
|
for (int i = 0; i < numBitmaps; i++)
|
|
bitmaps[i]->DrawEllipse(x1, y1, x2, y2, Color, Quadrants);
|
|
}
|
|
}
|
|
|
|
void cOsd::DrawSlope(int x1, int y1, int x2, int y2, tColor Color, int Type)
|
|
{
|
|
if (isTrueColor)
|
|
pixmaps[0]->DrawSlope(cRect(x1, y1, x2 - x1 + 1, y2 - y1 + 1), Color, Type);
|
|
else {
|
|
for (int i = 0; i < numBitmaps; i++)
|
|
bitmaps[i]->DrawSlope(x1, y1, x2, y2, Color, Type);
|
|
}
|
|
}
|
|
|
|
void cOsd::Flush(void)
|
|
{
|
|
}
|
|
|
|
// --- cOsdProvider ----------------------------------------------------------
|
|
|
|
cOsdProvider *cOsdProvider::osdProvider = NULL;
|
|
int cOsdProvider::oldWidth = 0;
|
|
int cOsdProvider::oldHeight = 0;
|
|
double cOsdProvider::oldAspect = 1.0;
|
|
cImage *cOsdProvider::images[MAXOSDIMAGES] = { NULL };
|
|
int cOsdProvider::osdState = 0;
|
|
|
|
cOsdProvider::cOsdProvider(void)
|
|
{
|
|
delete osdProvider;
|
|
osdProvider = this;
|
|
}
|
|
|
|
cOsdProvider::~cOsdProvider()
|
|
{
|
|
osdProvider = NULL;
|
|
}
|
|
|
|
cOsd *cOsdProvider::NewOsd(int Left, int Top, uint Level)
|
|
{
|
|
cMutexLock MutexLock(&cOsd::mutex);
|
|
if (Level == OSD_LEVEL_DEFAULT && cOsd::IsOpen())
|
|
esyslog("ERROR: attempt to open OSD while it is already open - using dummy OSD!");
|
|
else if (osdProvider) {
|
|
cOsd *ActiveOsd = cOsd::Osds.Size() ? cOsd::Osds[0] : NULL;
|
|
cOsd *Osd = osdProvider->CreateOsd(Left, Top, Level);
|
|
if (Osd == cOsd::Osds[0]) {
|
|
if (ActiveOsd)
|
|
ActiveOsd->SetActive(false);
|
|
Osd->SetActive(true);
|
|
}
|
|
return Osd;
|
|
}
|
|
else
|
|
esyslog("ERROR: no OSD provider available - using dummy OSD!");
|
|
return new cOsd(Left, Top, 999); // create a dummy cOsd, so that access won't result in a segfault
|
|
}
|
|
|
|
void cOsdProvider::UpdateOsdSize(bool Force)
|
|
{
|
|
int Width;
|
|
int Height;
|
|
double Aspect;
|
|
cMutexLock MutexLock(&cOsd::mutex);
|
|
cDevice::PrimaryDevice()->GetOsdSize(Width, Height, Aspect);
|
|
if (Width != oldWidth || Height != oldHeight || !DoubleEqual(Aspect, oldAspect) || Force) {
|
|
Setup.OSDLeft = int(round(Width * Setup.OSDLeftP));
|
|
Setup.OSDTop = int(round(Height * Setup.OSDTopP));
|
|
Setup.OSDWidth = min(Width - Setup.OSDLeft, int(round(Width * Setup.OSDWidthP))) & ~0x07; // OSD width must be a multiple of 8
|
|
Setup.OSDHeight = min(Height - Setup.OSDTop, int(round(Height * Setup.OSDHeightP)));
|
|
Setup.OSDAspect = Aspect;
|
|
Setup.FontOsdSize = int(round(Height * Setup.FontOsdSizeP));
|
|
Setup.FontFixSize = int(round(Height * Setup.FontFixSizeP));
|
|
Setup.FontSmlSize = int(round(Height * Setup.FontSmlSizeP));
|
|
cFont::SetFont(fontOsd, Setup.FontOsd, Setup.FontOsdSize);
|
|
cFont::SetFont(fontFix, Setup.FontFix, Setup.FontFixSize);
|
|
cFont::SetFont(fontSml, Setup.FontSml, min(Setup.FontSmlSize, Setup.FontOsdSize));
|
|
oldWidth = Width;
|
|
oldHeight = Height;
|
|
oldAspect = Aspect;
|
|
dsyslog("OSD size changed to %dx%d @ %g", Width, Height, Aspect);
|
|
osdState++;
|
|
}
|
|
}
|
|
|
|
bool cOsdProvider::OsdSizeChanged(int &State)
|
|
{
|
|
cMutexLock MutexLock(&cOsd::mutex);
|
|
bool Result = osdState != State;
|
|
State = osdState;
|
|
return Result;
|
|
}
|
|
|
|
bool cOsdProvider::SupportsTrueColor(void)
|
|
{
|
|
if (osdProvider) {
|
|
return osdProvider->ProvidesTrueColor();
|
|
}
|
|
else
|
|
esyslog("ERROR: no OSD provider available in call to SupportsTrueColor()");
|
|
return false;
|
|
}
|
|
|
|
int cOsdProvider::StoreImageData(const cImage &Image)
|
|
{
|
|
LOCK_PIXMAPS;
|
|
for (int i = 1; i < MAXOSDIMAGES; i++) {
|
|
if (!images[i]) {
|
|
images[i] = new cImage(Image);
|
|
return i;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void cOsdProvider::DropImageData(int ImageHandle)
|
|
{
|
|
LOCK_PIXMAPS;
|
|
if (0 < ImageHandle && ImageHandle < MAXOSDIMAGES) {
|
|
delete images[ImageHandle];
|
|
images[ImageHandle] = NULL;
|
|
}
|
|
}
|
|
|
|
const cImage *cOsdProvider::GetImageData(int ImageHandle)
|
|
{
|
|
LOCK_PIXMAPS;
|
|
if (0 < ImageHandle && ImageHandle < MAXOSDIMAGES)
|
|
return images[ImageHandle];
|
|
return NULL;
|
|
}
|
|
|
|
int cOsdProvider::StoreImage(const cImage &Image)
|
|
{
|
|
if (osdProvider)
|
|
return osdProvider->StoreImageData(Image);
|
|
return 0;
|
|
}
|
|
|
|
void cOsdProvider::DropImage(int ImageHandle)
|
|
{
|
|
if (osdProvider)
|
|
osdProvider->DropImageData(ImageHandle);
|
|
}
|
|
|
|
void cOsdProvider::Shutdown(void)
|
|
{
|
|
delete osdProvider;
|
|
osdProvider = NULL;
|
|
}
|
|
|
|
// --- cTextScroller ---------------------------------------------------------
|
|
|
|
cTextScroller::cTextScroller(void)
|
|
{
|
|
osd = NULL;
|
|
left = top = width = height = 0;
|
|
font = NULL;
|
|
colorFg = 0;
|
|
colorBg = 0;
|
|
offset = 0;
|
|
shown = 0;
|
|
}
|
|
|
|
cTextScroller::cTextScroller(cOsd *Osd, int Left, int Top, int Width, int Height, const char *Text, const cFont *Font, tColor ColorFg, tColor ColorBg)
|
|
{
|
|
Set(Osd, Left, Top, Width, Height, Text, Font, ColorFg, ColorBg);
|
|
}
|
|
|
|
void cTextScroller::Set(cOsd *Osd, int Left, int Top, int Width, int Height, const char *Text, const cFont *Font, tColor ColorFg, tColor ColorBg)
|
|
{
|
|
osd = Osd;
|
|
left = Left;
|
|
top = Top;
|
|
width = Width;
|
|
height = Height;
|
|
font = Font;
|
|
colorFg = ColorFg;
|
|
colorBg = ColorBg;
|
|
offset = 0;
|
|
textWrapper.Set(Text, Font, Width);
|
|
shown = min(Total(), height / font->Height());
|
|
height = shown * font->Height(); // sets height to the actually used height, which may be less than Height
|
|
DrawText();
|
|
}
|
|
|
|
void cTextScroller::Reset(void)
|
|
{
|
|
osd = NULL; // just makes sure it won't draw anything
|
|
}
|
|
|
|
void cTextScroller::DrawText(void)
|
|
{
|
|
if (osd) {
|
|
for (int i = 0; i < shown; i++)
|
|
osd->DrawText(left, top + i * font->Height(), textWrapper.GetLine(offset + i), colorFg, colorBg, font, width);
|
|
}
|
|
}
|
|
|
|
void cTextScroller::Scroll(bool Up, bool Page)
|
|
{
|
|
if (Up) {
|
|
if (CanScrollUp()) {
|
|
offset -= Page ? shown : 1;
|
|
if (offset < 0)
|
|
offset = 0;
|
|
DrawText();
|
|
}
|
|
}
|
|
else {
|
|
if (CanScrollDown()) {
|
|
offset += Page ? shown : 1;
|
|
if (offset + shown > Total())
|
|
offset = Total() - shown;
|
|
DrawText();
|
|
}
|
|
}
|
|
}
|