vdr/thread.c
Klaus Schmidinger fa6845328c Version 1.7.31
VDR developer version 1.7.31 is now available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-1.7.31.tar.bz2

A 'diff' against the previous version is available at

       ftp://ftp.tvdr.de/vdr/Developer/vdr-1.7.30-1.7.31.diff

MD5 checksums:

a3edd18a352465dd26c97c1990f7bcfd  vdr-1.7.31.tar.bz2
32ff98697d1b383478a6e1932e4afc9c  vdr-1.7.30-1.7.31.diff

WARNING:
========

This is a developer version. Even though I use it in my productive
environment. I strongly recommend that you only use it under controlled
conditions and for testing and debugging.

The default skin "LCARS" displays the signal strengths and qualities of
all devices in its main menu. For devices that have an stb0899 frontend chip
(like the TT-budget S2-3200) retrieving this information from the driver is
rather slow, which results in a sluggish response to user input in the main
menu. To speed this up you may want to apply the patches from

   ftp://ftp.tvdr.de/vdr/Developer/Driver-Patches

to the LinuxDVB driver source.

The changes since version 1.7.30:

- If regenerating an index file fails and no data is written to the file, VDR now
   reports this error and removes the empty index file.
- The setup parameter "Recording/Instant rec. time (min)" can now be set to '0',
   which means to record only the currently running event (based on a patch from Matti
   Lehtimäki).
- Decreased the ring buffer put/get trigger sizes from 1/3 to 1/10.
- The script given to VDR with the '-r' option is now also called whenever a
   recording is deleted (thanks to Alexander Wenzel).
- Improved detecting frames in MPEG 4 video (reported by Andrey Pridvorov).
- cPatPmtParser::ParsePmt() now also recognizes stream type 0x81 as "AC3", so that
   recordings that have been converted from the old PES format to TS can be played
   (suggested by Jens Vogel).
- Fixed a leftover frame counter in the LCARS skin's replay display after jumping to
   an editing mark and resuming replay.
- The new class cIoThrottle is used to allow I/O intense threads to temporarily
   suspend their activities in case buffers run full (suggested by Torsten Lang).
   Currently the cutter thread is suspended if the TS or Recorder buffer use more
   than 50% of their capacity. Plugin authors may want to participate in this
   mechanism if they use intense background I/O.
- Increased the size of the TS buffer to 5MB and that of the Recorder buffer to
   20MB to better handle HD recordings (suggested by Torsten Lang).
- Moved cleaning up the EPG data and writing the epg.data file into a separate
   thread to avoid sluggish response to user input on slow systems (based on a patch from
   Sören Moch).
- Fixed sorting folders before recordings in case of UTF-8 (thanks to Sören Moch).
- Reactivated stripping control characters from EPG texts and adapted it to UTF-8.
- Added missing decrementing of 'len' in libsi/si.c's String::decodeText() functions.
- When checking whether a video directory is empty, file names that start with a
   dot ('.') are no longer automatically ignored and implicitly removed if the directory
   contains no other files. Instead, RemoveEmptyDirectories() now has an additional
   parameter that can be given a list of files that shall be ignored when considering
   whether a directory is empty. This allows users to continue to use files such as
   ".keep" to prevent a directory from being deleted when it is empty. Currently the
   only file name that is ignored is ".sort".
2012-09-30 16:05:19 +02:00

597 lines
14 KiB
C

/*
* thread.c: A simple thread base class
*
* See the main source file 'vdr.c' for copyright information and
* how to reach the author.
*
* $Id: thread.c 2.5 2012/09/20 09:05:50 kls Exp $
*/
#include "thread.h"
#include <errno.h>
#include <linux/unistd.h>
#include <malloc.h>
#include <stdarg.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/prctl.h>
#include <unistd.h>
#include "tools.h"
static bool GetAbsTime(struct timespec *Abstime, int MillisecondsFromNow)
{
struct timeval now;
if (gettimeofday(&now, NULL) == 0) { // get current time
now.tv_sec += MillisecondsFromNow / 1000; // add full seconds
now.tv_usec += (MillisecondsFromNow % 1000) * 1000; // add microseconds
if (now.tv_usec >= 1000000) { // take care of an overflow
now.tv_sec++;
now.tv_usec -= 1000000;
}
Abstime->tv_sec = now.tv_sec; // seconds
Abstime->tv_nsec = now.tv_usec * 1000; // nano seconds
return true;
}
return false;
}
// --- cCondWait -------------------------------------------------------------
cCondWait::cCondWait(void)
{
signaled = false;
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
}
cCondWait::~cCondWait()
{
pthread_cond_broadcast(&cond); // wake up any sleepers
pthread_cond_destroy(&cond);
pthread_mutex_destroy(&mutex);
}
void cCondWait::SleepMs(int TimeoutMs)
{
cCondWait w;
w.Wait(max(TimeoutMs, 3)); // making sure the time is >2ms to avoid a possible busy wait
}
bool cCondWait::Wait(int TimeoutMs)
{
pthread_mutex_lock(&mutex);
if (!signaled) {
if (TimeoutMs) {
struct timespec abstime;
if (GetAbsTime(&abstime, TimeoutMs)) {
while (!signaled) {
if (pthread_cond_timedwait(&cond, &mutex, &abstime) == ETIMEDOUT)
break;
}
}
}
else
pthread_cond_wait(&cond, &mutex);
}
bool r = signaled;
signaled = false;
pthread_mutex_unlock(&mutex);
return r;
}
void cCondWait::Signal(void)
{
pthread_mutex_lock(&mutex);
signaled = true;
pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&mutex);
}
// --- cCondVar --------------------------------------------------------------
cCondVar::cCondVar(void)
{
pthread_cond_init(&cond, 0);
}
cCondVar::~cCondVar()
{
pthread_cond_broadcast(&cond); // wake up any sleepers
pthread_cond_destroy(&cond);
}
void cCondVar::Wait(cMutex &Mutex)
{
if (Mutex.locked) {
int locked = Mutex.locked;
Mutex.locked = 0; // have to clear the locked count here, as pthread_cond_wait
// does an implicit unlock of the mutex
pthread_cond_wait(&cond, &Mutex.mutex);
Mutex.locked = locked;
}
}
bool cCondVar::TimedWait(cMutex &Mutex, int TimeoutMs)
{
bool r = true; // true = condition signaled, false = timeout
if (Mutex.locked) {
struct timespec abstime;
if (GetAbsTime(&abstime, TimeoutMs)) {
int locked = Mutex.locked;
Mutex.locked = 0; // have to clear the locked count here, as pthread_cond_timedwait
// does an implicit unlock of the mutex.
if (pthread_cond_timedwait(&cond, &Mutex.mutex, &abstime) == ETIMEDOUT)
r = false;
Mutex.locked = locked;
}
}
return r;
}
void cCondVar::Broadcast(void)
{
pthread_cond_broadcast(&cond);
}
// --- cRwLock ---------------------------------------------------------------
cRwLock::cRwLock(bool PreferWriter)
{
pthread_rwlockattr_t attr;
pthread_rwlockattr_init(&attr);
pthread_rwlockattr_setkind_np(&attr, PreferWriter ? PTHREAD_RWLOCK_PREFER_WRITER_NP : PTHREAD_RWLOCK_PREFER_READER_NP);
pthread_rwlock_init(&rwlock, &attr);
}
cRwLock::~cRwLock()
{
pthread_rwlock_destroy(&rwlock);
}
bool cRwLock::Lock(bool Write, int TimeoutMs)
{
int Result = 0;
struct timespec abstime;
if (TimeoutMs) {
if (!GetAbsTime(&abstime, TimeoutMs))
TimeoutMs = 0;
}
if (Write)
Result = TimeoutMs ? pthread_rwlock_timedwrlock(&rwlock, &abstime) : pthread_rwlock_wrlock(&rwlock);
else
Result = TimeoutMs ? pthread_rwlock_timedrdlock(&rwlock, &abstime) : pthread_rwlock_rdlock(&rwlock);
return Result == 0;
}
void cRwLock::Unlock(void)
{
pthread_rwlock_unlock(&rwlock);
}
// --- cMutex ----------------------------------------------------------------
cMutex::cMutex(void)
{
locked = 0;
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK_NP);
pthread_mutex_init(&mutex, &attr);
}
cMutex::~cMutex()
{
pthread_mutex_destroy(&mutex);
}
void cMutex::Lock(void)
{
pthread_mutex_lock(&mutex);
locked++;
}
void cMutex::Unlock(void)
{
if (!--locked)
pthread_mutex_unlock(&mutex);
}
// --- cThread ---------------------------------------------------------------
tThreadId cThread::mainThreadId = 0;
cThread::cThread(const char *Description)
{
active = running = false;
childTid = 0;
childThreadId = 0;
description = NULL;
if (Description)
SetDescription("%s", Description);
}
cThread::~cThread()
{
Cancel(); // just in case the derived class didn't call it
free(description);
}
void cThread::SetPriority(int Priority)
{
if (setpriority(PRIO_PROCESS, 0, Priority) < 0)
LOG_ERROR;
}
void cThread::SetIOPriority(int Priority)
{
if (syscall(SYS_ioprio_set, 1, 0, (Priority & 0xff) | (2 << 13)) < 0) // best effort class
LOG_ERROR;
}
void cThread::SetDescription(const char *Description, ...)
{
free(description);
description = NULL;
if (Description) {
va_list ap;
va_start(ap, Description);
description = strdup(cString::vsprintf(Description, ap));
va_end(ap);
}
}
void *cThread::StartThread(cThread *Thread)
{
Thread->childThreadId = ThreadId();
if (Thread->description) {
dsyslog("%s thread started (pid=%d, tid=%d)", Thread->description, getpid(), Thread->childThreadId);
#ifdef PR_SET_NAME
if (prctl(PR_SET_NAME, Thread->description, 0, 0, 0) < 0)
esyslog("%s thread naming failed (pid=%d, tid=%d)", Thread->description, getpid(), Thread->childThreadId);
#endif
}
Thread->Action();
if (Thread->description)
dsyslog("%s thread ended (pid=%d, tid=%d)", Thread->description, getpid(), Thread->childThreadId);
Thread->running = false;
Thread->active = false;
return NULL;
}
#define THREAD_STOP_TIMEOUT 3000 // ms to wait for a thread to stop before newly starting it
#define THREAD_STOP_SLEEP 30 // ms to sleep while waiting for a thread to stop
bool cThread::Start(void)
{
if (!running) {
if (active) {
// Wait until the previous incarnation of this thread has completely ended
// before starting it newly:
cTimeMs RestartTimeout;
while (!running && active && RestartTimeout.Elapsed() < THREAD_STOP_TIMEOUT)
cCondWait::SleepMs(THREAD_STOP_SLEEP);
}
if (!active) {
active = running = true;
if (pthread_create(&childTid, NULL, (void *(*) (void *))&StartThread, (void *)this) == 0) {
pthread_detach(childTid); // auto-reap
}
else {
LOG_ERROR;
active = running = false;
return false;
}
}
}
return true;
}
bool cThread::Active(void)
{
if (active) {
//
// Single UNIX Spec v2 says:
//
// The pthread_kill() function is used to request
// that a signal be delivered to the specified thread.
//
// As in kill(), if sig is zero, error checking is
// performed but no signal is actually sent.
//
int err;
if ((err = pthread_kill(childTid, 0)) != 0) {
if (err != ESRCH)
LOG_ERROR;
childTid = 0;
active = running = false;
}
else
return true;
}
return false;
}
void cThread::Cancel(int WaitSeconds)
{
running = false;
if (active && WaitSeconds > -1) {
if (WaitSeconds > 0) {
for (time_t t0 = time(NULL) + WaitSeconds; time(NULL) < t0; ) {
if (!Active())
return;
cCondWait::SleepMs(10);
}
esyslog("ERROR: %s thread %d won't end (waited %d seconds) - canceling it...", description ? description : "", childThreadId, WaitSeconds);
}
pthread_cancel(childTid);
childTid = 0;
active = false;
}
}
tThreadId cThread::ThreadId(void)
{
return syscall(__NR_gettid);
}
void cThread::SetMainThreadId(void)
{
if (mainThreadId == 0)
mainThreadId = ThreadId();
else
esyslog("ERROR: attempt to set main thread id to %d while it already is %d", ThreadId(), mainThreadId);
}
// --- cMutexLock ------------------------------------------------------------
cMutexLock::cMutexLock(cMutex *Mutex)
{
mutex = NULL;
locked = false;
Lock(Mutex);
}
cMutexLock::~cMutexLock()
{
if (mutex && locked)
mutex->Unlock();
}
bool cMutexLock::Lock(cMutex *Mutex)
{
if (Mutex && !mutex) {
mutex = Mutex;
Mutex->Lock();
locked = true;
return true;
}
return false;
}
// --- cThreadLock -----------------------------------------------------------
cThreadLock::cThreadLock(cThread *Thread)
{
thread = NULL;
locked = false;
Lock(Thread);
}
cThreadLock::~cThreadLock()
{
if (thread && locked)
thread->Unlock();
}
bool cThreadLock::Lock(cThread *Thread)
{
if (Thread && !thread) {
thread = Thread;
Thread->Lock();
locked = true;
return true;
}
return false;
}
// --- cIoThrottle -----------------------------------------------------------
cMutex cIoThrottle::mutex;
int cIoThrottle::count = 0;
cIoThrottle::cIoThrottle(void)
{
active = false;
}
cIoThrottle::~cIoThrottle()
{
Release();
}
void cIoThrottle::Activate(void)
{
if (!active) {
mutex.Lock();
count++;
active = true;
dsyslog("i/o throttle activated, count = %d (tid=%d)", count, cThread::ThreadId());
mutex.Unlock();
}
}
void cIoThrottle::Release(void)
{
if (active) {
mutex.Lock();
count--;
active = false;
dsyslog("i/o throttle released, count = %d (tid=%d)", count, cThread::ThreadId());
mutex.Unlock();
}
}
bool cIoThrottle::Engaged(void)
{
return count > 0;
}
// --- cPipe -----------------------------------------------------------------
// cPipe::Open() and cPipe::Close() are based on code originally received from
// Andreas Vitting <Andreas@huji.de>
cPipe::cPipe(void)
{
pid = -1;
f = NULL;
}
cPipe::~cPipe()
{
Close();
}
bool cPipe::Open(const char *Command, const char *Mode)
{
int fd[2];
if (pipe(fd) < 0) {
LOG_ERROR;
return false;
}
if ((pid = fork()) < 0) { // fork failed
LOG_ERROR;
close(fd[0]);
close(fd[1]);
return false;
}
const char *mode = "w";
int iopipe = 0;
if (pid > 0) { // parent process
if (strcmp(Mode, "r") == 0) {
mode = "r";
iopipe = 1;
}
close(fd[iopipe]);
if ((f = fdopen(fd[1 - iopipe], mode)) == NULL) {
LOG_ERROR;
close(fd[1 - iopipe]);
}
return f != NULL;
}
else { // child process
int iofd = STDOUT_FILENO;
if (strcmp(Mode, "w") == 0) {
mode = "r";
iopipe = 1;
iofd = STDIN_FILENO;
}
close(fd[iopipe]);
if (dup2(fd[1 - iopipe], iofd) == -1) { // now redirect
LOG_ERROR;
close(fd[1 - iopipe]);
_exit(-1);
}
else {
int MaxPossibleFileDescriptors = getdtablesize();
for (int i = STDERR_FILENO + 1; i < MaxPossibleFileDescriptors; i++)
close(i); //close all dup'ed filedescriptors
if (execl("/bin/sh", "sh", "-c", Command, NULL) == -1) {
LOG_ERROR_STR(Command);
close(fd[1 - iopipe]);
_exit(-1);
}
}
_exit(0);
}
}
int cPipe::Close(void)
{
int ret = -1;
if (f) {
fclose(f);
f = NULL;
}
if (pid > 0) {
int status = 0;
int i = 5;
while (i > 0) {
ret = waitpid(pid, &status, WNOHANG);
if (ret < 0) {
if (errno != EINTR && errno != ECHILD) {
LOG_ERROR;
break;
}
}
else if (ret == pid)
break;
i--;
cCondWait::SleepMs(100);
}
if (!i) {
kill(pid, SIGKILL);
ret = -1;
}
else if (ret == -1 || !WIFEXITED(status))
ret = -1;
pid = -1;
}
return ret;
}
// --- SystemExec ------------------------------------------------------------
int SystemExec(const char *Command, bool Detached)
{
pid_t pid;
if ((pid = fork()) < 0) { // fork failed
LOG_ERROR;
return -1;
}
if (pid > 0) { // parent process
int status = 0;
if (waitpid(pid, &status, 0) < 0) {
LOG_ERROR;
return -1;
}
return status;
}
else { // child process
if (Detached) {
// Fork again and let first child die - grandchild stays alive without parent
if (fork() > 0)
_exit(0);
// Start a new session
pid_t sid = setsid();
if (sid < 0)
LOG_ERROR;
// close STDIN and re-open as /dev/null
int devnull = open("/dev/null", O_RDONLY);
if (devnull < 0 || dup2(devnull, 0) < 0)
LOG_ERROR;
}
int MaxPossibleFileDescriptors = getdtablesize();
for (int i = STDERR_FILENO + 1; i < MaxPossibleFileDescriptors; i++)
close(i); //close all dup'ed filedescriptors
if (execl("/bin/sh", "sh", "-c", Command, NULL) == -1) {
LOG_ERROR_STR(Command);
_exit(-1);
}
_exit(0);
}
}