1
0
mirror of https://github.com/Oxalide/vsphere-influxdb-go.git synced 2023-10-10 13:36:51 +02:00
vsphere-influxdb-go/vendor/github.com/influxdata/influxdb/tsdb/engine/tsm1/reader.go

1357 lines
35 KiB
Go
Raw Normal View History

2017-10-25 22:52:40 +02:00
package tsm1
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"math"
"os"
"sort"
"sync"
"sync/atomic"
)
// ErrFileInUse is returned when attempting to remove or close a TSM file that is still being used.
var ErrFileInUse = fmt.Errorf("file still in use")
// TSMReader is a reader for a TSM file.
type TSMReader struct {
// refs is the count of active references to this reader.
refs int64
mu sync.RWMutex
// accessor provides access and decoding of blocks for the reader.
accessor blockAccessor
// index is the index of all blocks.
index TSMIndex
// tombstoner ensures tombstoned keys are not available by the index.
tombstoner *Tombstoner
// size is the size of the file on disk.
size int64
// lastModified is the last time this file was modified on disk
lastModified int64
}
// TSMIndex represent the index section of a TSM file. The index records all
// blocks, their locations, sizes, min and max times.
type TSMIndex interface {
// Delete removes the given keys from the index.
Delete(keys []string)
// DeleteRange removes the given keys with data between minTime and maxTime from the index.
DeleteRange(keys []string, minTime, maxTime int64)
// Contains return true if the given key exists in the index.
Contains(key string) bool
// ContainsValue returns true if key and time might exist in this file. This function could
// return true even though the actual point does not exists. For example, the key may
// exist in this file, but not have a point exactly at time t.
ContainsValue(key string, timestamp int64) bool
// Entries returns all index entries for a key.
Entries(key string) []IndexEntry
// ReadEntries reads the index entries for key into entries.
ReadEntries(key string, entries *[]IndexEntry)
// Entry returns the index entry for the specified key and timestamp. If no entry
// matches the key and timestamp, nil is returned.
Entry(key string, timestamp int64) *IndexEntry
// Key returns the key in the index at the given position.
Key(index int) (string, byte, []IndexEntry)
// KeyAt returns the key in the index at the given position.
KeyAt(index int) ([]byte, byte)
// KeyCount returns the count of unique keys in the index.
KeyCount() int
// OverlapsTimeRange returns true if the time range of the file intersect min and max.
OverlapsTimeRange(min, max int64) bool
// OverlapsKeyRange returns true if the min and max keys of the file overlap the arguments min and max.
OverlapsKeyRange(min, max string) bool
// Size returns the size of the current index in bytes.
Size() uint32
// TimeRange returns the min and max time across all keys in the file.
TimeRange() (int64, int64)
// TombstoneRange returns ranges of time that are deleted for the given key.
TombstoneRange(key string) []TimeRange
// KeyRange returns the min and max keys in the file.
KeyRange() (string, string)
// Type returns the block type of the values stored for the key. Returns one of
// BlockFloat64, BlockInt64, BlockBool, BlockString. If key does not exist,
// an error is returned.
Type(key string) (byte, error)
// UnmarshalBinary populates an index from an encoded byte slice
// representation of an index.
UnmarshalBinary(b []byte) error
}
// BlockIterator allows iterating over each block in a TSM file in order. It provides
// raw access to the block bytes without decoding them.
type BlockIterator struct {
r *TSMReader
// i is the current key index
i int
// n is the total number of keys
n int
key string
entries []IndexEntry
err error
typ byte
}
// PeekNext returns the next key to be iterated or an empty string.
func (b *BlockIterator) PeekNext() string {
if len(b.entries) > 1 {
return b.key
} else if b.n-b.i > 1 {
key, _ := b.r.KeyAt(b.i + 1)
return string(key)
}
return ""
}
// Next returns true if there are more blocks to iterate through.
func (b *BlockIterator) Next() bool {
if b.n-b.i == 0 && len(b.entries) == 0 {
return false
}
if len(b.entries) > 0 {
b.entries = b.entries[1:]
if len(b.entries) > 0 {
return true
}
}
if b.n-b.i > 0 {
b.key, b.typ, b.entries = b.r.Key(b.i)
b.i++
if len(b.entries) > 0 {
return true
}
}
return false
}
// Read reads information about the next block to be iterated.
func (b *BlockIterator) Read() (key string, minTime int64, maxTime int64, typ byte, checksum uint32, buf []byte, err error) {
if b.err != nil {
return "", 0, 0, 0, 0, nil, b.err
}
checksum, buf, err = b.r.ReadBytes(&b.entries[0], nil)
if err != nil {
return "", 0, 0, 0, 0, nil, err
}
return b.key, b.entries[0].MinTime, b.entries[0].MaxTime, b.typ, checksum, buf, err
}
// blockAccessor abstracts a method of accessing blocks from a
// TSM file.
type blockAccessor interface {
init() (*indirectIndex, error)
read(key string, timestamp int64) ([]Value, error)
readAll(key string) ([]Value, error)
readBlock(entry *IndexEntry, values []Value) ([]Value, error)
readFloatBlock(entry *IndexEntry, values *[]FloatValue) ([]FloatValue, error)
readIntegerBlock(entry *IndexEntry, values *[]IntegerValue) ([]IntegerValue, error)
readStringBlock(entry *IndexEntry, values *[]StringValue) ([]StringValue, error)
readBooleanBlock(entry *IndexEntry, values *[]BooleanValue) ([]BooleanValue, error)
readBytes(entry *IndexEntry, buf []byte) (uint32, []byte, error)
rename(path string) error
path() string
close() error
}
// NewTSMReader returns a new TSMReader from the given file.
func NewTSMReader(f *os.File) (*TSMReader, error) {
t := &TSMReader{}
stat, err := f.Stat()
if err != nil {
return nil, err
}
t.size = stat.Size()
t.lastModified = stat.ModTime().UnixNano()
t.accessor = &mmapAccessor{
f: f,
}
index, err := t.accessor.init()
if err != nil {
return nil, err
}
t.index = index
t.tombstoner = &Tombstoner{Path: t.Path()}
if err := t.applyTombstones(); err != nil {
return nil, err
}
return t, nil
}
func (t *TSMReader) applyTombstones() error {
var cur, prev Tombstone
batch := make([]string, 0, 4096)
if err := t.tombstoner.Walk(func(ts Tombstone) error {
cur = ts
if len(batch) > 0 {
if prev.Min != cur.Min || prev.Max != cur.Max {
t.index.DeleteRange(batch, prev.Min, prev.Max)
batch = batch[:0]
}
}
batch = append(batch, ts.Key)
if len(batch) >= 4096 {
t.index.DeleteRange(batch, prev.Min, prev.Max)
batch = batch[:0]
}
prev = ts
return nil
}); err != nil {
return fmt.Errorf("init: read tombstones: %v", err)
}
if len(batch) > 0 {
t.index.DeleteRange(batch, cur.Min, cur.Max)
}
return nil
}
// Path returns the path of the file the TSMReader was initialized with.
func (t *TSMReader) Path() string {
t.mu.RLock()
p := t.accessor.path()
t.mu.RUnlock()
return p
}
// Key returns the key and the underlying entry at the numeric index.
func (t *TSMReader) Key(index int) (string, byte, []IndexEntry) {
return t.index.Key(index)
}
// KeyAt returns the key and key type at position idx in the index.
func (t *TSMReader) KeyAt(idx int) ([]byte, byte) {
return t.index.KeyAt(idx)
}
// ReadAt returns the values corresponding to the given index entry.
func (t *TSMReader) ReadAt(entry *IndexEntry, vals []Value) ([]Value, error) {
t.mu.RLock()
v, err := t.accessor.readBlock(entry, vals)
t.mu.RUnlock()
return v, err
}
// ReadFloatBlockAt returns the float values corresponding to the given index entry.
func (t *TSMReader) ReadFloatBlockAt(entry *IndexEntry, vals *[]FloatValue) ([]FloatValue, error) {
t.mu.RLock()
v, err := t.accessor.readFloatBlock(entry, vals)
t.mu.RUnlock()
return v, err
}
// ReadIntegerBlockAt returns the integer values corresponding to the given index entry.
func (t *TSMReader) ReadIntegerBlockAt(entry *IndexEntry, vals *[]IntegerValue) ([]IntegerValue, error) {
t.mu.RLock()
v, err := t.accessor.readIntegerBlock(entry, vals)
t.mu.RUnlock()
return v, err
}
// ReadStringBlockAt returns the string values corresponding to the given index entry.
func (t *TSMReader) ReadStringBlockAt(entry *IndexEntry, vals *[]StringValue) ([]StringValue, error) {
t.mu.RLock()
v, err := t.accessor.readStringBlock(entry, vals)
t.mu.RUnlock()
return v, err
}
// ReadBooleanBlockAt returns the boolean values corresponding to the given index entry.
func (t *TSMReader) ReadBooleanBlockAt(entry *IndexEntry, vals *[]BooleanValue) ([]BooleanValue, error) {
t.mu.RLock()
v, err := t.accessor.readBooleanBlock(entry, vals)
t.mu.RUnlock()
return v, err
}
// Read returns the values corresponding to the block at the given key and timestamp.
func (t *TSMReader) Read(key string, timestamp int64) ([]Value, error) {
t.mu.RLock()
v, err := t.accessor.read(key, timestamp)
t.mu.RUnlock()
return v, err
}
// ReadAll returns all values for a key in all blocks.
func (t *TSMReader) ReadAll(key string) ([]Value, error) {
t.mu.RLock()
v, err := t.accessor.readAll(key)
t.mu.RUnlock()
return v, err
}
func (t *TSMReader) ReadBytes(e *IndexEntry, b []byte) (uint32, []byte, error) {
t.mu.RLock()
n, v, err := t.accessor.readBytes(e, b)
t.mu.RUnlock()
return n, v, err
}
// Type returns the type of values stored at the given key.
func (t *TSMReader) Type(key string) (byte, error) {
return t.index.Type(key)
}
// Close closes the TSMReader.
func (t *TSMReader) Close() error {
t.mu.Lock()
defer t.mu.Unlock()
if t.InUse() {
return ErrFileInUse
}
if err := t.accessor.close(); err != nil {
return err
}
return nil
}
// Ref records a usage of this TSMReader. If there are active references
// when the reader is closed or removed, the reader will remain open until
// there are no more references.
func (t *TSMReader) Ref() {
atomic.AddInt64(&t.refs, 1)
}
// Unref removes a usage record of this TSMReader. If the Reader was closed
// by another goroutine while there were active references, the file will
// be closed and remove
func (t *TSMReader) Unref() {
atomic.AddInt64(&t.refs, -1)
}
// InUse returns whether the TSMReader currently has any active references.
func (t *TSMReader) InUse() bool {
refs := atomic.LoadInt64(&t.refs)
return refs > 0
}
// Remove removes any underlying files stored on disk for this reader.
func (t *TSMReader) Remove() error {
t.mu.Lock()
defer t.mu.Unlock()
return t.remove()
}
// Rename renames the underlying file to the new path.
func (t *TSMReader) Rename(path string) error {
t.mu.Lock()
defer t.mu.Unlock()
return t.accessor.rename(path)
}
// Remove removes any underlying files stored on disk for this reader.
func (t *TSMReader) remove() error {
path := t.accessor.path()
if t.InUse() {
return ErrFileInUse
}
if path != "" {
os.RemoveAll(path)
}
if err := t.tombstoner.Delete(); err != nil {
return err
}
return nil
}
// Contains returns whether the given key is present in the index.
func (t *TSMReader) Contains(key string) bool {
return t.index.Contains(key)
}
// ContainsValue returns true if key and time might exists in this file. This function could
// return true even though the actual point does not exist. For example, the key may
// exist in this file, but not have a point exactly at time t.
func (t *TSMReader) ContainsValue(key string, ts int64) bool {
return t.index.ContainsValue(key, ts)
}
// DeleteRange removes the given points for keys between minTime and maxTime. The series
// keys passed in must be sorted.
func (t *TSMReader) DeleteRange(keys []string, minTime, maxTime int64) error {
if len(keys) == 0 {
return nil
}
// If the keys can't exist in this TSM file, skip it.
minKey, maxKey := keys[0], keys[len(keys)-1]
if !t.index.OverlapsKeyRange(minKey, maxKey) {
return nil
}
// If the timerange can't exist in this TSM file, skip it.
if !t.index.OverlapsTimeRange(minTime, maxTime) {
return nil
}
if err := t.tombstoner.AddRange(keys, minTime, maxTime); err != nil {
return err
}
t.index.DeleteRange(keys, minTime, maxTime)
return nil
}
// Delete deletes blocks indicated by keys.
func (t *TSMReader) Delete(keys []string) error {
if err := t.tombstoner.Add(keys); err != nil {
return err
}
t.index.Delete(keys)
return nil
}
// TimeRange returns the min and max time across all keys in the file.
func (t *TSMReader) TimeRange() (int64, int64) {
return t.index.TimeRange()
}
// KeyRange returns the min and max key across all keys in the file.
func (t *TSMReader) KeyRange() (string, string) {
return t.index.KeyRange()
}
// KeyCount returns the count of unique keys in the TSMReader.
func (t *TSMReader) KeyCount() int {
return t.index.KeyCount()
}
// Entries returns all index entries for key.
func (t *TSMReader) Entries(key string) []IndexEntry {
return t.index.Entries(key)
}
// ReadEntries reads the index entries for key into entries.
func (t *TSMReader) ReadEntries(key string, entries *[]IndexEntry) {
t.index.ReadEntries(key, entries)
}
// IndexSize returns the size of the index in bytes.
func (t *TSMReader) IndexSize() uint32 {
return t.index.Size()
}
// Size returns the size of the underlying file in bytes.
func (t *TSMReader) Size() uint32 {
t.mu.RLock()
size := t.size
t.mu.RUnlock()
return uint32(size)
}
// LastModified returns the last time the underlying file was modified.
func (t *TSMReader) LastModified() int64 {
t.mu.RLock()
lm := t.lastModified
for _, ts := range t.tombstoner.TombstoneFiles() {
if ts.LastModified > lm {
lm = ts.LastModified
}
}
t.mu.RUnlock()
return lm
}
// HasTombstones return true if there are any tombstone entries recorded.
func (t *TSMReader) HasTombstones() bool {
t.mu.RLock()
b := t.tombstoner.HasTombstones()
t.mu.RUnlock()
return b
}
// TombstoneFiles returns any tombstone files associated with this TSM file.
func (t *TSMReader) TombstoneFiles() []FileStat {
t.mu.RLock()
fs := t.tombstoner.TombstoneFiles()
t.mu.RUnlock()
return fs
}
// TombstoneRange returns ranges of time that are deleted for the given key.
func (t *TSMReader) TombstoneRange(key string) []TimeRange {
t.mu.RLock()
tr := t.index.TombstoneRange(key)
t.mu.RUnlock()
return tr
}
// Stats returns the FileStat for the TSMReader's underlying file.
func (t *TSMReader) Stats() FileStat {
minTime, maxTime := t.index.TimeRange()
minKey, maxKey := t.index.KeyRange()
return FileStat{
Path: t.Path(),
Size: t.Size(),
LastModified: t.LastModified(),
MinTime: minTime,
MaxTime: maxTime,
MinKey: minKey,
MaxKey: maxKey,
HasTombstone: t.tombstoner.HasTombstones(),
}
}
// BlockIterator returns a BlockIterator for the underlying TSM file.
func (t *TSMReader) BlockIterator() *BlockIterator {
return &BlockIterator{
r: t,
n: t.index.KeyCount(),
}
}
// indirectIndex is a TSMIndex that uses a raw byte slice representation of an index. This
// implementation can be used for indexes that may be MMAPed into memory.
type indirectIndex struct {
mu sync.RWMutex
// indirectIndex works a follows. Assuming we have an index structure in memory as
// the diagram below:
//
// ┌────────────────────────────────────────────────────────────────────┐
// │ Index │
// ├─┬──────────────────────┬──┬───────────────────────┬───┬────────────┘
// │0│ │62│ │145│
// ├─┴───────┬─────────┬────┼──┴──────┬─────────┬──────┼───┴─────┬──────┐
// │Key 1 Len│ Key │... │Key 2 Len│ Key 2 │ ... │ Key 3 │ ... │
// │ 2 bytes │ N bytes │ │ 2 bytes │ N bytes │ │ 2 bytes │ │
// └─────────┴─────────┴────┴─────────┴─────────┴──────┴─────────┴──────┘
// We would build an `offsets` slices where each element pointers to the byte location
// for the first key in the index slice.
// ┌────────────────────────────────────────────────────────────────────┐
// │ Offsets │
// ├────┬────┬────┬─────────────────────────────────────────────────────┘
// │ 0 │ 62 │145 │
// └────┴────┴────┘
// Using this offset slice we can find `Key 2` by doing a binary search
// over the offsets slice. Instead of comparing the value in the offsets
// (e.g. `62`), we use that as an index into the underlying index to
// retrieve the key at postion `62` and perform our comparisons with that.
// When we have identified the correct position in the index for a given
// key, we could perform another binary search or a linear scan. This
// should be fast as well since each index entry is 28 bytes and all
// contiguous in memory. The current implementation uses a linear scan since the
// number of block entries is expected to be < 100 per key.
// b is the underlying index byte slice. This could be a copy on the heap or an MMAP
// slice reference
b []byte
// offsets contains the positions in b for each key. It points to the 2 byte length of
// key.
offsets []int32
// minKey, maxKey are the minium and maximum (lexicographically sorted) contained in the
// file
minKey, maxKey string
// minTime, maxTime are the minimum and maximum times contained in the file across all
// series.
minTime, maxTime int64
// tombstones contains only the tombstoned keys with subset of time values deleted. An
// entry would exist here if a subset of the points for a key were deleted and the file
// had not be re-compacted to remove the points on disk.
tombstones map[string][]TimeRange
}
// TimeRange holds a min and max timestamp.
type TimeRange struct {
Min, Max int64
}
// NewIndirectIndex returns a new indirect index.
func NewIndirectIndex() *indirectIndex {
return &indirectIndex{
tombstones: make(map[string][]TimeRange),
}
}
// search returns the index of i in offsets for where key is located. If key is not
// in the index, len(index) is returned.
func (d *indirectIndex) search(key []byte) int {
// We use a binary search across our indirect offsets (pointers to all the keys
// in the index slice).
i := sort.Search(len(d.offsets), func(i int) bool {
// i is the position in offsets we are at so get offset it points to
offset := d.offsets[i]
// It's pointing to the start of the key which is a 2 byte length
keyLen := int32(binary.BigEndian.Uint16(d.b[offset : offset+2]))
// See if it matches
return bytes.Compare(d.b[offset+2:offset+2+keyLen], key) >= 0
})
// See if we might have found the right index
if i < len(d.offsets) {
ofs := d.offsets[i]
_, k, err := readKey(d.b[ofs:])
if err != nil {
panic(fmt.Sprintf("error reading key: %v", err))
}
// The search may have returned an i == 0 which could indicated that the value
// searched should be inserted at postion 0. Make sure the key in the index
// matches the search value.
if !bytes.Equal(key, k) {
return len(d.b)
}
return int(ofs)
}
// The key is not in the index. i is the index where it would be inserted so return
// a value outside our offset range.
return len(d.b)
}
// Entries returns all index entries for a key.
func (d *indirectIndex) Entries(key string) []IndexEntry {
d.mu.RLock()
defer d.mu.RUnlock()
kb := []byte(key)
ofs := d.search(kb)
if ofs < len(d.b) {
n, k, err := readKey(d.b[ofs:])
if err != nil {
panic(fmt.Sprintf("error reading key: %v", err))
}
// The search may have returned an i == 0 which could indicated that the value
// searched should be inserted at position 0. Make sure the key in the index
// matches the search value.
if !bytes.Equal(kb, k) {
return nil
}
// Read and return all the entries
ofs += n
var entries indexEntries
if _, err := readEntries(d.b[ofs:], &entries); err != nil {
panic(fmt.Sprintf("error reading entries: %v", err))
}
return entries.entries
}
// The key is not in the index. i is the index where it would be inserted.
return nil
}
// ReadEntries returns all index entries for a key.
func (d *indirectIndex) ReadEntries(key string, entries *[]IndexEntry) {
*entries = d.Entries(key)
}
// Entry returns the index entry for the specified key and timestamp. If no entry
// matches the key an timestamp, nil is returned.
func (d *indirectIndex) Entry(key string, timestamp int64) *IndexEntry {
entries := d.Entries(key)
for _, entry := range entries {
if entry.Contains(timestamp) {
return &entry
}
}
return nil
}
// Key returns the key in the index at the given position.
func (d *indirectIndex) Key(idx int) (string, byte, []IndexEntry) {
d.mu.RLock()
defer d.mu.RUnlock()
if idx < 0 || idx >= len(d.offsets) {
return "", 0, nil
}
n, key, err := readKey(d.b[d.offsets[idx]:])
if err != nil {
return "", 0, nil
}
typ := d.b[int(d.offsets[idx])+n]
var entries indexEntries
if _, err := readEntries(d.b[int(d.offsets[idx])+n:], &entries); err != nil {
return "", 0, nil
}
return string(key), typ, entries.entries
}
// KeyAt returns the key in the index at the given position.
func (d *indirectIndex) KeyAt(idx int) ([]byte, byte) {
d.mu.RLock()
if idx < 0 || idx >= len(d.offsets) {
d.mu.RUnlock()
return nil, 0
}
n, key, _ := readKey(d.b[d.offsets[idx]:])
typ := d.b[d.offsets[idx]+int32(n)]
d.mu.RUnlock()
return key, typ
}
// KeyCount returns the count of unique keys in the index.
func (d *indirectIndex) KeyCount() int {
d.mu.RLock()
n := len(d.offsets)
d.mu.RUnlock()
return n
}
// Delete removes the given keys from the index.
func (d *indirectIndex) Delete(keys []string) {
if len(keys) == 0 {
return
}
if !sort.StringsAreSorted(keys) {
sort.Strings(keys)
}
d.mu.Lock()
defer d.mu.Unlock()
// Both keys and offsets are sorted. Walk both in order and skip
// any keys that exist in both.
offsets := make([]int32, 0, len(d.offsets))
for _, offset := range d.offsets {
_, indexKey, _ := readKey(d.b[offset:])
for len(keys) > 0 && keys[0] < string(indexKey) {
keys = keys[1:]
}
if len(keys) > 0 && keys[0] == string(indexKey) {
keys = keys[1:]
continue
}
offsets = append(offsets, int32(offset))
}
d.offsets = offsets
}
// DeleteRange removes the given keys with data between minTime and maxTime from the index.
func (d *indirectIndex) DeleteRange(keys []string, minTime, maxTime int64) {
// No keys, nothing to do
if len(keys) == 0 {
return
}
// If we're deleting the max time range, just use tombstoning to remove the
// key from the offsets slice
if minTime == math.MinInt64 && maxTime == math.MaxInt64 {
d.Delete(keys)
return
}
// Is the range passed in outside of the time range for the file?
min, max := d.TimeRange()
if minTime > max || maxTime < min {
return
}
tombstones := map[string][]TimeRange{}
for _, k := range keys {
// Is the range passed in outside the time range for this key?
entries := d.Entries(k)
// If multiple tombstones are saved for the same key
if len(entries) == 0 {
continue
}
min, max := entries[0].MinTime, entries[len(entries)-1].MaxTime
if minTime > max || maxTime < min {
continue
}
// Is the range passed in cover every value for the key?
if minTime <= min && maxTime >= max {
d.Delete(keys)
continue
}
tombstones[k] = append(tombstones[k], TimeRange{minTime, maxTime})
}
if len(tombstones) == 0 {
return
}
d.mu.Lock()
for k, v := range tombstones {
d.tombstones[k] = append(d.tombstones[k], v...)
}
d.mu.Unlock()
}
// TombstoneRange returns ranges of time that are deleted for the given key.
func (d *indirectIndex) TombstoneRange(key string) []TimeRange {
d.mu.RLock()
r := d.tombstones[key]
d.mu.RUnlock()
return r
}
// Contains return true if the given key exists in the index.
func (d *indirectIndex) Contains(key string) bool {
return len(d.Entries(key)) > 0
}
// ContainsValue returns true if key and time might exist in this file.
func (d *indirectIndex) ContainsValue(key string, timestamp int64) bool {
entry := d.Entry(key, timestamp)
if entry == nil {
return false
}
d.mu.RLock()
tombstones := d.tombstones[key]
d.mu.RUnlock()
for _, t := range tombstones {
if t.Min <= timestamp && t.Max >= timestamp {
return false
}
}
return true
}
// Type returns the block type of the values stored for the key.
func (d *indirectIndex) Type(key string) (byte, error) {
d.mu.RLock()
defer d.mu.RUnlock()
kb := []byte(key)
ofs := d.search(kb)
if ofs < len(d.b) {
n, _, err := readKey(d.b[ofs:])
if err != nil {
panic(fmt.Sprintf("error reading key: %v", err))
}
ofs += n
return d.b[ofs], nil
}
return 0, fmt.Errorf("key does not exist: %v", key)
}
// OverlapsTimeRange returns true if the time range of the file intersect min and max.
func (d *indirectIndex) OverlapsTimeRange(min, max int64) bool {
return d.minTime <= max && d.maxTime >= min
}
// OverlapsKeyRange returns true if the min and max keys of the file overlap the arguments min and max.
func (d *indirectIndex) OverlapsKeyRange(min, max string) bool {
return d.minKey <= max && d.maxKey >= min
}
// KeyRange returns the min and max keys in the index.
func (d *indirectIndex) KeyRange() (string, string) {
return d.minKey, d.maxKey
}
// TimeRange returns the min and max time across all keys in the index.
func (d *indirectIndex) TimeRange() (int64, int64) {
return d.minTime, d.maxTime
}
// MarshalBinary returns a byte slice encoded version of the index.
func (d *indirectIndex) MarshalBinary() ([]byte, error) {
d.mu.RLock()
defer d.mu.RUnlock()
return d.b, nil
}
// UnmarshalBinary populates an index from an encoded byte slice
// representation of an index.
func (d *indirectIndex) UnmarshalBinary(b []byte) error {
d.mu.Lock()
defer d.mu.Unlock()
// Keep a reference to the actual index bytes
d.b = b
if len(b) == 0 {
return nil
}
//var minKey, maxKey []byte
var minTime, maxTime int64 = math.MaxInt64, 0
// To create our "indirect" index, we need to find the location of all the keys in
// the raw byte slice. The keys are listed once each (in sorted order). Following
// each key is a time ordered list of index entry blocks for that key. The loop below
// basically skips across the slice keeping track of the counter when we are at a key
// field.
var i int32
iMax := int32(len(b))
for i < iMax {
d.offsets = append(d.offsets, i)
// Skip to the start of the values
// key length value (2) + type (1) + length of key
if i+2 >= iMax {
return fmt.Errorf("indirectIndex: not enough data for key length value")
}
i += 3 + int32(binary.BigEndian.Uint16(b[i:i+2]))
// count of index entries
if i+indexCountSize >= iMax {
return fmt.Errorf("indirectIndex: not enough data for index entries count")
}
count := int32(binary.BigEndian.Uint16(b[i : i+indexCountSize]))
i += indexCountSize
// Find the min time for the block
if i+8 >= iMax {
return fmt.Errorf("indirectIndex: not enough data for min time")
}
minT := int64(binary.BigEndian.Uint64(b[i : i+8]))
if minT < minTime {
minTime = minT
}
i += (count - 1) * indexEntrySize
// Find the max time for the block
if i+16 >= iMax {
return fmt.Errorf("indirectIndex: not enough data for max time")
}
maxT := int64(binary.BigEndian.Uint64(b[i+8 : i+16]))
if maxT > maxTime {
maxTime = maxT
}
i += indexEntrySize
}
firstOfs := d.offsets[0]
_, key, err := readKey(b[firstOfs:])
if err != nil {
return err
}
d.minKey = string(key)
lastOfs := d.offsets[len(d.offsets)-1]
_, key, err = readKey(b[lastOfs:])
if err != nil {
return err
}
d.maxKey = string(key)
d.minTime = minTime
d.maxTime = maxTime
return nil
}
// Size returns the size of the current index in bytes.
func (d *indirectIndex) Size() uint32 {
d.mu.RLock()
defer d.mu.RUnlock()
return uint32(len(d.b))
}
// mmapAccess is mmap based block accessor. It access blocks through an
// MMAP file interface.
type mmapAccessor struct {
mu sync.RWMutex
f *os.File
b []byte
index *indirectIndex
}
func (m *mmapAccessor) init() (*indirectIndex, error) {
m.mu.Lock()
defer m.mu.Unlock()
if err := verifyVersion(m.f); err != nil {
return nil, err
}
var err error
if _, err := m.f.Seek(0, 0); err != nil {
return nil, err
}
stat, err := m.f.Stat()
if err != nil {
return nil, err
}
m.b, err = mmap(m.f, 0, int(stat.Size()))
if err != nil {
return nil, err
}
if len(m.b) < 8 {
return nil, fmt.Errorf("mmapAccessor: byte slice too small for indirectIndex")
}
indexOfsPos := len(m.b) - 8
indexStart := binary.BigEndian.Uint64(m.b[indexOfsPos : indexOfsPos+8])
if indexStart >= uint64(indexOfsPos) {
return nil, fmt.Errorf("mmapAccessor: invalid indexStart")
}
m.index = NewIndirectIndex()
if err := m.index.UnmarshalBinary(m.b[indexStart:indexOfsPos]); err != nil {
return nil, err
}
return m.index, nil
}
func (m *mmapAccessor) rename(path string) error {
m.mu.Lock()
defer m.mu.Unlock()
err := munmap(m.b)
if err != nil {
return err
}
if err := m.f.Close(); err != nil {
return err
}
if err := renameFile(m.f.Name(), path); err != nil {
return err
}
m.f, err = os.Open(path)
if err != nil {
return err
}
if _, err := m.f.Seek(0, 0); err != nil {
return err
}
stat, err := m.f.Stat()
if err != nil {
return err
}
m.b, err = mmap(m.f, 0, int(stat.Size()))
if err != nil {
return err
}
return nil
}
func (m *mmapAccessor) read(key string, timestamp int64) ([]Value, error) {
entry := m.index.Entry(key, timestamp)
if entry == nil {
return nil, nil
}
return m.readBlock(entry, nil)
}
func (m *mmapAccessor) readBlock(entry *IndexEntry, values []Value) ([]Value, error) {
m.mu.RLock()
defer m.mu.RUnlock()
if int64(len(m.b)) < entry.Offset+int64(entry.Size) {
return nil, ErrTSMClosed
}
//TODO: Validate checksum
var err error
values, err = DecodeBlock(m.b[entry.Offset+4:entry.Offset+int64(entry.Size)], values)
if err != nil {
return nil, err
}
return values, nil
}
func (m *mmapAccessor) readFloatBlock(entry *IndexEntry, values *[]FloatValue) ([]FloatValue, error) {
m.mu.RLock()
if int64(len(m.b)) < entry.Offset+int64(entry.Size) {
m.mu.RUnlock()
return nil, ErrTSMClosed
}
a, err := DecodeFloatBlock(m.b[entry.Offset+4:entry.Offset+int64(entry.Size)], values)
m.mu.RUnlock()
if err != nil {
return nil, err
}
return a, nil
}
func (m *mmapAccessor) readIntegerBlock(entry *IndexEntry, values *[]IntegerValue) ([]IntegerValue, error) {
m.mu.RLock()
if int64(len(m.b)) < entry.Offset+int64(entry.Size) {
m.mu.RUnlock()
return nil, ErrTSMClosed
}
a, err := DecodeIntegerBlock(m.b[entry.Offset+4:entry.Offset+int64(entry.Size)], values)
m.mu.RUnlock()
if err != nil {
return nil, err
}
return a, nil
}
func (m *mmapAccessor) readStringBlock(entry *IndexEntry, values *[]StringValue) ([]StringValue, error) {
m.mu.RLock()
if int64(len(m.b)) < entry.Offset+int64(entry.Size) {
m.mu.RUnlock()
return nil, ErrTSMClosed
}
a, err := DecodeStringBlock(m.b[entry.Offset+4:entry.Offset+int64(entry.Size)], values)
m.mu.RUnlock()
if err != nil {
return nil, err
}
return a, nil
}
func (m *mmapAccessor) readBooleanBlock(entry *IndexEntry, values *[]BooleanValue) ([]BooleanValue, error) {
m.mu.RLock()
if int64(len(m.b)) < entry.Offset+int64(entry.Size) {
m.mu.RUnlock()
return nil, ErrTSMClosed
}
a, err := DecodeBooleanBlock(m.b[entry.Offset+4:entry.Offset+int64(entry.Size)], values)
m.mu.RUnlock()
if err != nil {
return nil, err
}
return a, nil
}
func (m *mmapAccessor) readBytes(entry *IndexEntry, b []byte) (uint32, []byte, error) {
m.mu.RLock()
defer m.mu.RUnlock()
if int64(len(m.b)) < entry.Offset+int64(entry.Size) {
return 0, nil, ErrTSMClosed
}
// return the bytes after the 4 byte checksum
return binary.BigEndian.Uint32(m.b[entry.Offset : entry.Offset+4]), m.b[entry.Offset+4 : entry.Offset+int64(entry.Size)], nil
}
// readAll returns all values for a key in all blocks.
func (m *mmapAccessor) readAll(key string) ([]Value, error) {
blocks := m.index.Entries(key)
if len(blocks) == 0 {
return nil, nil
}
tombstones := m.index.TombstoneRange(key)
m.mu.RLock()
defer m.mu.RUnlock()
var temp []Value
var err error
var values []Value
for _, block := range blocks {
var skip bool
for _, t := range tombstones {
// Should we skip this block because it contains points that have been deleted
if t.Min <= block.MinTime && t.Max >= block.MaxTime {
skip = true
break
}
}
if skip {
continue
}
//TODO: Validate checksum
temp = temp[:0]
// The +4 is the 4 byte checksum length
temp, err = DecodeBlock(m.b[block.Offset+4:block.Offset+int64(block.Size)], temp)
if err != nil {
return nil, err
}
// Filter out any values that were deleted
for _, t := range tombstones {
temp = Values(temp).Exclude(t.Min, t.Max)
}
values = append(values, temp...)
}
return values, nil
}
func (m *mmapAccessor) path() string {
m.mu.RLock()
path := m.f.Name()
m.mu.RUnlock()
return path
}
func (m *mmapAccessor) close() error {
m.mu.Lock()
defer m.mu.Unlock()
if m.b == nil {
return nil
}
err := munmap(m.b)
if err != nil {
return err
}
m.b = nil
return m.f.Close()
}
type indexEntries struct {
Type byte
entries []IndexEntry
}
func (a *indexEntries) Len() int { return len(a.entries) }
func (a *indexEntries) Swap(i, j int) { a.entries[i], a.entries[j] = a.entries[j], a.entries[i] }
func (a *indexEntries) Less(i, j int) bool {
return a.entries[i].MinTime < a.entries[j].MinTime
}
func (a *indexEntries) MarshalBinary() ([]byte, error) {
buf := make([]byte, len(a.entries)*indexEntrySize)
for i, entry := range a.entries {
entry.AppendTo(buf[indexEntrySize*i:])
}
return buf, nil
}
func (a *indexEntries) WriteTo(w io.Writer) (total int64, err error) {
var buf [indexEntrySize]byte
var n int
for _, entry := range a.entries {
entry.AppendTo(buf[:])
n, err = w.Write(buf[:])
total += int64(n)
if err != nil {
return total, err
}
}
return total, nil
}
func readKey(b []byte) (n int, key []byte, err error) {
// 2 byte size of key
n, size := 2, int(binary.BigEndian.Uint16(b[:2]))
// N byte key
key = b[n : n+size]
n += len(key)
return
}
func readEntries(b []byte, entries *indexEntries) (n int, err error) {
if len(b) < 1+indexCountSize {
return 0, fmt.Errorf("readEntries: data too short for headers")
}
// 1 byte block type
entries.Type = b[n]
n++
// 2 byte count of index entries
count := int(binary.BigEndian.Uint16(b[n : n+indexCountSize]))
n += indexCountSize
entries.entries = make([]IndexEntry, count)
for i := 0; i < count; i++ {
var ie IndexEntry
start := i*indexEntrySize + indexCountSize + indexTypeSize
end := start + indexEntrySize
if end > len(b) {
return 0, fmt.Errorf("readEntries: data too short for indexEntry %d", i)
}
if err := ie.UnmarshalBinary(b[start:end]); err != nil {
return 0, fmt.Errorf("readEntries: unmarshal error: %v", err)
}
entries.entries[i] = ie
n += indexEntrySize
}
return
}