1
0
mirror of https://github.com/Oxalide/vsphere-influxdb-go.git synced 2023-10-10 13:36:51 +02:00
vsphere-influxdb-go/vendor/github.com/influxdata/influxdb/tsdb/engine/tsm1/wal.go

1192 lines
28 KiB
Go
Raw Normal View History

2017-10-25 22:52:40 +02:00
package tsm1
import (
"bufio"
"encoding/binary"
"fmt"
"io"
"math"
"os"
"path/filepath"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/golang/snappy"
"github.com/influxdata/influxdb/models"
"github.com/influxdata/influxdb/pkg/limiter"
"github.com/influxdata/influxdb/pkg/pool"
"github.com/uber-go/zap"
)
const (
// DefaultSegmentSize of 10MB is the size at which segment files will be rolled over.
DefaultSegmentSize = 10 * 1024 * 1024
// WALFileExtension is the file extension we expect for wal segments.
WALFileExtension = "wal"
// WALFilePrefix is the prefix on all wal segment files.
WALFilePrefix = "_"
// walEncodeBufSize is the size of the wal entry encoding buffer
walEncodeBufSize = 4 * 1024 * 1024
float64EntryType = 1
integerEntryType = 2
booleanEntryType = 3
stringEntryType = 4
)
// WalEntryType is a byte written to a wal segment file that indicates what the following compressed block contains.
type WalEntryType byte
const (
// WriteWALEntryType indicates a write entry.
WriteWALEntryType WalEntryType = 0x01
// DeleteWALEntryType indicates a delete entry.
DeleteWALEntryType WalEntryType = 0x02
// DeleteRangeWALEntryType indicates a delete range entry.
DeleteRangeWALEntryType WalEntryType = 0x03
)
var (
// ErrWALClosed is returned when attempting to write to a closed WAL file.
ErrWALClosed = fmt.Errorf("WAL closed")
// ErrWALCorrupt is returned when reading a corrupt WAL entry.
ErrWALCorrupt = fmt.Errorf("corrupted WAL entry")
defaultWaitingWALWrites = runtime.GOMAXPROCS(0) * 2
// bytePool is a shared bytes pool buffer re-cycle []byte slices to reduce allocations.
bytesPool = pool.NewLimitedBytes(256, walEncodeBufSize*2)
)
// Statistics gathered by the WAL.
const (
statWALOldBytes = "oldSegmentsDiskBytes"
statWALCurrentBytes = "currentSegmentDiskBytes"
statWriteOk = "writeOk"
statWriteErr = "writeErr"
)
// WAL represents the write-ahead log used for writing TSM files.
type WAL struct {
// goroutines waiting for the next fsync
syncCount uint64
syncWaiters chan chan error
mu sync.RWMutex
lastWriteTime time.Time
path string
// write variables
currentSegmentID int
currentSegmentWriter *WALSegmentWriter
// cache and flush variables
once sync.Once
closing chan struct{}
// syncDelay sets the duration to wait before fsyncing writes. A value of 0 (default)
// will cause every write to be fsync'd. This must be set before the WAL
// is opened if a non-default value is required.
syncDelay time.Duration
// WALOutput is the writer used by the logger.
logger zap.Logger // Logger to be used for important messages
traceLogger zap.Logger // Logger to be used when trace-logging is on.
traceLogging bool
// SegmentSize is the file size at which a segment file will be rotated
SegmentSize int
// statistics for the WAL
stats *WALStatistics
limiter limiter.Fixed
}
// NewWAL initializes a new WAL at the given directory.
func NewWAL(path string) *WAL {
logger := zap.New(zap.NullEncoder())
return &WAL{
path: path,
// these options should be overriden by any options in the config
SegmentSize: DefaultSegmentSize,
closing: make(chan struct{}),
syncWaiters: make(chan chan error, 1024),
stats: &WALStatistics{},
limiter: limiter.NewFixed(defaultWaitingWALWrites),
logger: logger,
traceLogger: logger,
}
}
// enableTraceLogging must be called before the WAL is opened.
func (l *WAL) enableTraceLogging(enabled bool) {
l.traceLogging = enabled
if enabled {
l.traceLogger = l.logger
}
}
// WithLogger sets the WAL's logger.
func (l *WAL) WithLogger(log zap.Logger) {
l.logger = log.With(zap.String("service", "wal"))
if l.traceLogging {
l.traceLogger = l.logger
}
}
// WALStatistics maintains statistics about the WAL.
type WALStatistics struct {
OldBytes int64
CurrentBytes int64
WriteOK int64
WriteErr int64
}
// Statistics returns statistics for periodic monitoring.
func (l *WAL) Statistics(tags map[string]string) []models.Statistic {
return []models.Statistic{{
Name: "tsm1_wal",
Tags: tags,
Values: map[string]interface{}{
statWALOldBytes: atomic.LoadInt64(&l.stats.OldBytes),
statWALCurrentBytes: atomic.LoadInt64(&l.stats.CurrentBytes),
statWriteOk: atomic.LoadInt64(&l.stats.WriteOK),
statWriteErr: atomic.LoadInt64(&l.stats.WriteErr),
},
}}
}
// Path returns the directory the log was initialized with.
func (l *WAL) Path() string {
l.mu.RLock()
defer l.mu.RUnlock()
return l.path
}
// Open opens and initializes the Log. Open can recover from previous unclosed shutdowns.
func (l *WAL) Open() error {
l.mu.Lock()
defer l.mu.Unlock()
l.traceLogger.Info(fmt.Sprintf("tsm1 WAL starting with %d segment size", l.SegmentSize))
l.traceLogger.Info(fmt.Sprintf("tsm1 WAL writing to %s", l.path))
if err := os.MkdirAll(l.path, 0777); err != nil {
return err
}
segments, err := segmentFileNames(l.path)
if err != nil {
return err
}
if len(segments) > 0 {
lastSegment := segments[len(segments)-1]
id, err := idFromFileName(lastSegment)
if err != nil {
return err
}
l.currentSegmentID = id
stat, err := os.Stat(lastSegment)
if err != nil {
return err
}
if stat.Size() == 0 {
os.Remove(lastSegment)
segments = segments[:len(segments)-1]
}
if err := l.newSegmentFile(); err != nil {
return err
}
}
var totalOldDiskSize int64
for _, seg := range segments {
stat, err := os.Stat(seg)
if err != nil {
return err
}
totalOldDiskSize += stat.Size()
if stat.ModTime().After(l.lastWriteTime) {
l.lastWriteTime = stat.ModTime().UTC()
}
}
atomic.StoreInt64(&l.stats.OldBytes, totalOldDiskSize)
l.closing = make(chan struct{})
return nil
}
// scheduleSync will schedule an fsync to the current wal segment and notify any
// waiting gorutines. If an fsync is already scheduled, subsequent calls will
// not schedule a new fsync and will be handle by the existing scheduled fsync.
func (l *WAL) scheduleSync() {
// If we're not the first to sync, then another goroutine is fsyncing the wal for us.
if !atomic.CompareAndSwapUint64(&l.syncCount, 0, 1) {
return
}
// Fsync the wal and notify all pending waiters
go func() {
var timerCh <-chan time.Time
// time.NewTicker requires a > 0 delay, since 0 indicates no delay, use a closed
// channel which will always be ready to read from.
if l.syncDelay == 0 {
// Create a RW chan and close it
timerChrw := make(chan time.Time)
close(timerChrw)
// Convert it to a read-only
timerCh = timerChrw
} else {
t := time.NewTicker(l.syncDelay)
defer t.Stop()
timerCh = t.C
}
for {
select {
case <-timerCh:
l.mu.Lock()
if len(l.syncWaiters) == 0 {
atomic.StoreUint64(&l.syncCount, 0)
l.mu.Unlock()
return
}
l.sync()
l.mu.Unlock()
case <-l.closing:
atomic.StoreUint64(&l.syncCount, 0)
return
}
}
}()
}
// sync fsyncs the current wal segments and notifies any waiters. Callers must ensure
// a write lock on the WAL is obtained before calling sync.
func (l *WAL) sync() {
err := l.currentSegmentWriter.sync()
for len(l.syncWaiters) > 0 {
errC := <-l.syncWaiters
errC <- err
}
}
// WriteMulti writes the given values to the WAL. It returns the WAL segment ID to
// which the points were written. If an error is returned the segment ID should
// be ignored.
func (l *WAL) WriteMulti(values map[string][]Value) (int, error) {
entry := &WriteWALEntry{
Values: values,
}
id, err := l.writeToLog(entry)
if err != nil {
atomic.AddInt64(&l.stats.WriteErr, 1)
return -1, err
}
atomic.AddInt64(&l.stats.WriteOK, 1)
return id, nil
}
// ClosedSegments returns a slice of the names of the closed segment files.
func (l *WAL) ClosedSegments() ([]string, error) {
l.mu.RLock()
defer l.mu.RUnlock()
// Not loading files from disk so nothing to do
if l.path == "" {
return nil, nil
}
var currentFile string
if l.currentSegmentWriter != nil {
currentFile = l.currentSegmentWriter.path()
}
files, err := segmentFileNames(l.path)
if err != nil {
return nil, err
}
var closedFiles []string
for _, fn := range files {
// Skip the current path
if fn == currentFile {
continue
}
closedFiles = append(closedFiles, fn)
}
return closedFiles, nil
}
// Remove deletes the given segment file paths from disk and cleans up any associated objects.
func (l *WAL) Remove(files []string) error {
l.mu.Lock()
defer l.mu.Unlock()
for _, fn := range files {
l.traceLogger.Info(fmt.Sprintf("Removing %s", fn))
os.RemoveAll(fn)
}
// Refresh the on-disk size stats
segments, err := segmentFileNames(l.path)
if err != nil {
return err
}
var totalOldDiskSize int64
for _, seg := range segments {
stat, err := os.Stat(seg)
if err != nil {
return err
}
totalOldDiskSize += stat.Size()
}
atomic.StoreInt64(&l.stats.OldBytes, totalOldDiskSize)
return nil
}
// LastWriteTime is the last time anything was written to the WAL.
func (l *WAL) LastWriteTime() time.Time {
l.mu.RLock()
defer l.mu.RUnlock()
return l.lastWriteTime
}
func (l *WAL) DiskSizeBytes() int64 {
return atomic.LoadInt64(&l.stats.OldBytes) + atomic.LoadInt64(&l.stats.CurrentBytes)
}
func (l *WAL) writeToLog(entry WALEntry) (int, error) {
// limit how many concurrent encodings can be in flight. Since we can only
// write one at a time to disk, a slow disk can cause the allocations below
// to increase quickly. If we're backed up, wait until others have completed.
bytes := bytesPool.Get(entry.MarshalSize())
b, err := entry.Encode(bytes)
if err != nil {
bytesPool.Put(bytes)
return -1, err
}
encBuf := bytesPool.Get(snappy.MaxEncodedLen(len(b)))
compressed := snappy.Encode(encBuf, b)
bytesPool.Put(bytes)
syncErr := make(chan error)
segID, err := func() (int, error) {
l.mu.Lock()
defer l.mu.Unlock()
// Make sure the log has not been closed
select {
case <-l.closing:
return -1, ErrWALClosed
default:
}
// roll the segment file if needed
if err := l.rollSegment(); err != nil {
return -1, fmt.Errorf("error rolling WAL segment: %v", err)
}
// write and sync
if err := l.currentSegmentWriter.Write(entry.Type(), compressed); err != nil {
return -1, fmt.Errorf("error writing WAL entry: %v", err)
}
select {
case l.syncWaiters <- syncErr:
default:
return -1, fmt.Errorf("error syncing wal")
}
l.scheduleSync()
// Update stats for current segment size
atomic.StoreInt64(&l.stats.CurrentBytes, int64(l.currentSegmentWriter.size))
l.lastWriteTime = time.Now()
return l.currentSegmentID, nil
}()
bytesPool.Put(encBuf)
if err != nil {
return segID, err
}
// schedule an fsync and wait for it to complete
return segID, <-syncErr
}
// rollSegment checks if the current segment is due to roll over to a new segment;
// and if so, opens a new segment file for future writes.
func (l *WAL) rollSegment() error {
if l.currentSegmentWriter == nil || l.currentSegmentWriter.size > DefaultSegmentSize {
if err := l.newSegmentFile(); err != nil {
// A drop database or RP call could trigger this error if writes were in-flight
// when the drop statement executes.
return fmt.Errorf("error opening new segment file for wal (2): %v", err)
}
return nil
}
return nil
}
// CloseSegment closes the current segment if it is non-empty and opens a new one.
func (l *WAL) CloseSegment() error {
l.mu.Lock()
defer l.mu.Unlock()
if l.currentSegmentWriter == nil || l.currentSegmentWriter.size > 0 {
if err := l.newSegmentFile(); err != nil {
// A drop database or RP call could trigger this error if writes were in-flight
// when the drop statement executes.
return fmt.Errorf("error opening new segment file for wal (1): %v", err)
}
return nil
}
return nil
}
// Delete deletes the given keys, returning the segment ID for the operation.
func (l *WAL) Delete(keys []string) (int, error) {
if len(keys) == 0 {
return 0, nil
}
entry := &DeleteWALEntry{
Keys: keys,
}
id, err := l.writeToLog(entry)
if err != nil {
return -1, err
}
return id, nil
}
// DeleteRange deletes the given keys within the given time range,
// returning the segment ID for the operation.
func (l *WAL) DeleteRange(keys []string, min, max int64) (int, error) {
if len(keys) == 0 {
return 0, nil
}
entry := &DeleteRangeWALEntry{
Keys: keys,
Min: min,
Max: max,
}
id, err := l.writeToLog(entry)
if err != nil {
return -1, err
}
return id, nil
}
// Close will finish any flush that is currently in progress and close file handles.
func (l *WAL) Close() error {
l.mu.Lock()
defer l.mu.Unlock()
l.once.Do(func() {
// Close, but don't set to nil so future goroutines can still be signaled
l.traceLogger.Info(fmt.Sprintf("Closing %s", l.path))
close(l.closing)
if l.currentSegmentWriter != nil {
l.sync()
l.currentSegmentWriter.close()
l.currentSegmentWriter = nil
}
})
return nil
}
// segmentFileNames will return all files that are WAL segment files in sorted order by ascending ID.
func segmentFileNames(dir string) ([]string, error) {
names, err := filepath.Glob(filepath.Join(dir, fmt.Sprintf("%s*.%s", WALFilePrefix, WALFileExtension)))
if err != nil {
return nil, err
}
sort.Strings(names)
return names, nil
}
// newSegmentFile will close the current segment file and open a new one, updating bookkeeping info on the log.
func (l *WAL) newSegmentFile() error {
l.currentSegmentID++
if l.currentSegmentWriter != nil {
l.sync()
if err := l.currentSegmentWriter.close(); err != nil {
return err
}
atomic.StoreInt64(&l.stats.OldBytes, int64(l.currentSegmentWriter.size))
}
fileName := filepath.Join(l.path, fmt.Sprintf("%s%05d.%s", WALFilePrefix, l.currentSegmentID, WALFileExtension))
fd, err := os.OpenFile(fileName, os.O_CREATE|os.O_RDWR, 0666)
if err != nil {
return err
}
l.currentSegmentWriter = NewWALSegmentWriter(fd)
if stat, err := fd.Stat(); err == nil {
l.lastWriteTime = stat.ModTime()
}
// Reset the current segment size stat
atomic.StoreInt64(&l.stats.CurrentBytes, 0)
return nil
}
// WALEntry is record stored in each WAL segment. Each entry has a type
// and an opaque, type dependent byte slice data attribute.
type WALEntry interface {
Type() WalEntryType
Encode(dst []byte) ([]byte, error)
MarshalBinary() ([]byte, error)
UnmarshalBinary(b []byte) error
MarshalSize() int
}
// WriteWALEntry represents a write of points.
type WriteWALEntry struct {
Values map[string][]Value
sz int
}
func (w *WriteWALEntry) MarshalSize() int {
if w.sz > 0 || len(w.Values) == 0 {
return w.sz
}
encLen := 7 * len(w.Values) // Type (1), Key Length (2), and Count (4) for each key
// determine required length
for k, v := range w.Values {
encLen += len(k)
if len(v) == 0 {
return 0
}
encLen += 8 * len(v) // timestamps (8)
switch v[0].(type) {
case FloatValue, IntegerValue:
encLen += 8 * len(v)
case BooleanValue:
encLen += 1 * len(v)
case StringValue:
for _, vv := range v {
str, ok := vv.(StringValue)
if !ok {
return 0
}
encLen += 4 + len(str.value)
}
default:
return 0
}
}
w.sz = encLen
return w.sz
}
// Encode converts the WriteWALEntry into a byte stream using dst if it
// is large enough. If dst is too small, the slice will be grown to fit the
// encoded entry.
func (w *WriteWALEntry) Encode(dst []byte) ([]byte, error) {
// The entries values are encode as follows:
//
// For each key and slice of values, first a 1 byte type for the []Values
// slice is written. Following the type, the length and key bytes are written.
// Following the key, a 4 byte count followed by each value as a 8 byte time
// and N byte value. The value is dependent on the type being encoded. float64,
// int64, use 8 bytes, boolean uses 1 byte, and string is similar to the key encoding,
// except that string values have a 4-byte length, and keys only use 2 bytes.
//
// This structure is then repeated for each key an value slices.
//
// ┌────────────────────────────────────────────────────────────────────┐
// │ WriteWALEntry │
// ├──────┬─────────┬────────┬───────┬─────────┬─────────┬───┬──────┬───┤
// │ Type │ Key Len │ Key │ Count │ Time │ Value │...│ Type │...│
// │1 byte│ 2 bytes │ N bytes│4 bytes│ 8 bytes │ N bytes │ │1 byte│ │
// └──────┴─────────┴────────┴───────┴─────────┴─────────┴───┴──────┴───┘
encLen := w.MarshalSize() // Type (1), Key Length (2), and Count (4) for each key
// allocate or re-slice to correct size
if len(dst) < encLen {
dst = make([]byte, encLen)
} else {
dst = dst[:encLen]
}
// Finally, encode the entry
var n int
var curType byte
for k, v := range w.Values {
switch v[0].(type) {
case FloatValue:
curType = float64EntryType
case IntegerValue:
curType = integerEntryType
case BooleanValue:
curType = booleanEntryType
case StringValue:
curType = stringEntryType
default:
return nil, fmt.Errorf("unsupported value type: %T", v[0])
}
dst[n] = curType
n++
binary.BigEndian.PutUint16(dst[n:n+2], uint16(len(k)))
n += 2
n += copy(dst[n:], k)
binary.BigEndian.PutUint32(dst[n:n+4], uint32(len(v)))
n += 4
for _, vv := range v {
binary.BigEndian.PutUint64(dst[n:n+8], uint64(vv.UnixNano()))
n += 8
switch vv := vv.(type) {
case FloatValue:
if curType != float64EntryType {
return nil, fmt.Errorf("incorrect value found in %T slice: %T", v[0].Value(), vv)
}
binary.BigEndian.PutUint64(dst[n:n+8], math.Float64bits(vv.value))
n += 8
case IntegerValue:
if curType != integerEntryType {
return nil, fmt.Errorf("incorrect value found in %T slice: %T", v[0].Value(), vv)
}
binary.BigEndian.PutUint64(dst[n:n+8], uint64(vv.value))
n += 8
case BooleanValue:
if curType != booleanEntryType {
return nil, fmt.Errorf("incorrect value found in %T slice: %T", v[0].Value(), vv)
}
if vv.value {
dst[n] = 1
} else {
dst[n] = 0
}
n++
case StringValue:
if curType != stringEntryType {
return nil, fmt.Errorf("incorrect value found in %T slice: %T", v[0].Value(), vv)
}
binary.BigEndian.PutUint32(dst[n:n+4], uint32(len(vv.value)))
n += 4
n += copy(dst[n:], vv.value)
default:
return nil, fmt.Errorf("unsupported value found in %T slice: %T", v[0].Value(), vv)
}
}
}
return dst[:n], nil
}
// MarshalBinary returns a binary representation of the entry in a new byte slice.
func (w *WriteWALEntry) MarshalBinary() ([]byte, error) {
// Temp buffer to write marshaled points into
b := make([]byte, w.MarshalSize())
return w.Encode(b)
}
// UnmarshalBinary deserializes the byte slice into w.
func (w *WriteWALEntry) UnmarshalBinary(b []byte) error {
var i int
for i < len(b) {
typ := b[i]
i++
if i+2 > len(b) {
return ErrWALCorrupt
}
length := int(binary.BigEndian.Uint16(b[i : i+2]))
i += 2
if i+length > len(b) {
return ErrWALCorrupt
}
k := string(b[i : i+length])
i += length
if i+4 > len(b) {
return ErrWALCorrupt
}
nvals := int(binary.BigEndian.Uint32(b[i : i+4]))
i += 4
switch typ {
case float64EntryType:
if i+16*nvals > len(b) {
return ErrWALCorrupt
}
values := make([]Value, 0, nvals)
for j := 0; j < nvals; j++ {
un := int64(binary.BigEndian.Uint64(b[i : i+8]))
i += 8
v := math.Float64frombits((binary.BigEndian.Uint64(b[i : i+8])))
i += 8
values = append(values, NewFloatValue(un, v))
}
w.Values[k] = values
case integerEntryType:
if i+16*nvals > len(b) {
return ErrWALCorrupt
}
values := make([]Value, 0, nvals)
for j := 0; j < nvals; j++ {
un := int64(binary.BigEndian.Uint64(b[i : i+8]))
i += 8
v := int64(binary.BigEndian.Uint64(b[i : i+8]))
i += 8
values = append(values, NewIntegerValue(un, v))
}
w.Values[k] = values
case booleanEntryType:
if i+9*nvals > len(b) {
return ErrWALCorrupt
}
values := make([]Value, 0, nvals)
for j := 0; j < nvals; j++ {
un := int64(binary.BigEndian.Uint64(b[i : i+8]))
i += 8
v := b[i]
i += 1
if v == 1 {
values = append(values, NewBooleanValue(un, true))
} else {
values = append(values, NewBooleanValue(un, false))
}
}
w.Values[k] = values
case stringEntryType:
values := make([]Value, 0, nvals)
for j := 0; j < nvals; j++ {
if i+12 > len(b) {
return ErrWALCorrupt
}
un := int64(binary.BigEndian.Uint64(b[i : i+8]))
i += 8
length := int(binary.BigEndian.Uint32(b[i : i+4]))
if i+length > len(b) {
return ErrWALCorrupt
}
i += 4
if i+length > len(b) {
return ErrWALCorrupt
}
v := string(b[i : i+length])
i += length
values = append(values, NewStringValue(un, v))
}
w.Values[k] = values
default:
return fmt.Errorf("unsupported value type: %#v", typ)
}
}
return nil
}
// Type returns WriteWALEntryType.
func (w *WriteWALEntry) Type() WalEntryType {
return WriteWALEntryType
}
// DeleteWALEntry represents the deletion of multiple series.
type DeleteWALEntry struct {
Keys []string
sz int
}
// MarshalBinary returns a binary representation of the entry in a new byte slice.
func (w *DeleteWALEntry) MarshalBinary() ([]byte, error) {
b := make([]byte, w.MarshalSize())
return w.Encode(b)
}
// UnmarshalBinary deserializes the byte slice into w.
func (w *DeleteWALEntry) UnmarshalBinary(b []byte) error {
w.Keys = strings.Split(string(b), "\n")
return nil
}
func (w *DeleteWALEntry) MarshalSize() int {
if w.sz > 0 || len(w.Keys) == 0 {
return w.sz
}
encLen := len(w.Keys) // newlines
for _, k := range w.Keys {
encLen += len(k)
}
w.sz = encLen
return encLen
}
// Encode converts the DeleteWALEntry into a byte slice, appending to dst.
func (w *DeleteWALEntry) Encode(dst []byte) ([]byte, error) {
sz := w.MarshalSize()
if len(dst) < sz {
dst = make([]byte, sz)
}
var n int
for _, k := range w.Keys {
n += copy(dst[n:], k)
n += copy(dst[n:], "\n")
}
// We return n-1 to strip off the last newline so that unmarshalling the value
// does not produce an empty string
return []byte(dst[:n-1]), nil
}
// Type returns DeleteWALEntryType.
func (w *DeleteWALEntry) Type() WalEntryType {
return DeleteWALEntryType
}
// DeleteRangeWALEntry represents the deletion of multiple series.
type DeleteRangeWALEntry struct {
Keys []string
Min, Max int64
sz int
}
// MarshalBinary returns a binary representation of the entry in a new byte slice.
func (w *DeleteRangeWALEntry) MarshalBinary() ([]byte, error) {
b := make([]byte, w.MarshalSize())
return w.Encode(b)
}
// UnmarshalBinary deserializes the byte slice into w.
func (w *DeleteRangeWALEntry) UnmarshalBinary(b []byte) error {
if len(b) < 16 {
return ErrWALCorrupt
}
w.Min = int64(binary.BigEndian.Uint64(b[:8]))
w.Max = int64(binary.BigEndian.Uint64(b[8:16]))
i := 16
for i < len(b) {
if i+4 > len(b) {
return ErrWALCorrupt
}
sz := int(binary.BigEndian.Uint32(b[i : i+4]))
i += 4
if i+sz > len(b) {
return ErrWALCorrupt
}
w.Keys = append(w.Keys, string(b[i:i+sz]))
i += sz
}
return nil
}
func (w *DeleteRangeWALEntry) MarshalSize() int {
if w.sz > 0 {
return w.sz
}
sz := 16 + len(w.Keys)*4
for _, k := range w.Keys {
sz += len(k)
}
w.sz = sz
return sz
}
// Encode converts the DeleteRangeWALEntry into a byte slice, appending to b.
func (w *DeleteRangeWALEntry) Encode(b []byte) ([]byte, error) {
sz := w.MarshalSize()
if len(b) < sz {
b = make([]byte, sz)
}
binary.BigEndian.PutUint64(b[:8], uint64(w.Min))
binary.BigEndian.PutUint64(b[8:16], uint64(w.Max))
i := 16
for _, k := range w.Keys {
binary.BigEndian.PutUint32(b[i:i+4], uint32(len(k)))
i += 4
i += copy(b[i:], k)
}
return b[:i], nil
}
// Type returns DeleteRangeWALEntryType.
func (w *DeleteRangeWALEntry) Type() WalEntryType {
return DeleteRangeWALEntryType
}
// WALSegmentWriter writes WAL segments.
type WALSegmentWriter struct {
bw *bufio.Writer
w io.WriteCloser
size int
}
// NewWALSegmentWriter returns a new WALSegmentWriter writing to w.
func NewWALSegmentWriter(w io.WriteCloser) *WALSegmentWriter {
return &WALSegmentWriter{
bw: bufio.NewWriter(w),
w: w,
}
}
func (w *WALSegmentWriter) path() string {
if f, ok := w.w.(*os.File); ok {
return f.Name()
}
return ""
}
// Write writes entryType and the buffer containing compressed entry data.
func (w *WALSegmentWriter) Write(entryType WalEntryType, compressed []byte) error {
var buf [5]byte
buf[0] = byte(entryType)
binary.BigEndian.PutUint32(buf[1:5], uint32(len(compressed)))
if _, err := w.bw.Write(buf[:]); err != nil {
return err
}
if _, err := w.bw.Write(compressed); err != nil {
return err
}
w.size += len(buf) + len(compressed)
return nil
}
// Sync flushes the file systems in-memory copy of recently written data to disk,
// if w is writing to an os.File.
func (w *WALSegmentWriter) sync() error {
if err := w.bw.Flush(); err != nil {
return err
}
if f, ok := w.w.(*os.File); ok {
return f.Sync()
}
return nil
}
func (w *WALSegmentWriter) Flush() error {
return w.bw.Flush()
}
func (w *WALSegmentWriter) close() error {
if err := w.Flush(); err != nil {
return err
}
return w.w.Close()
}
// WALSegmentReader reads WAL segments.
type WALSegmentReader struct {
rc io.ReadCloser
r *bufio.Reader
entry WALEntry
n int64
err error
}
// NewWALSegmentReader returns a new WALSegmentReader reading from r.
func NewWALSegmentReader(r io.ReadCloser) *WALSegmentReader {
return &WALSegmentReader{
rc: r,
r: bufio.NewReader(r),
}
}
func (r *WALSegmentReader) Reset(rc io.ReadCloser) {
r.rc = rc
r.r.Reset(rc)
r.entry = nil
r.n = 0
r.err = nil
}
// Next indicates if there is a value to read.
func (r *WALSegmentReader) Next() bool {
var nReadOK int
// read the type and the length of the entry
var lv [5]byte
n, err := io.ReadFull(r.r, lv[:])
if err == io.EOF {
return false
}
if err != nil {
r.err = err
// We return true here because we want the client code to call read which
// will return the this error to be handled.
return true
}
nReadOK += n
entryType := lv[0]
length := binary.BigEndian.Uint32(lv[1:5])
b := *(getBuf(int(length)))
defer putBuf(&b)
// read the compressed block and decompress it
n, err = io.ReadFull(r.r, b[:length])
if err != nil {
r.err = err
return true
}
nReadOK += n
decLen, err := snappy.DecodedLen(b[:length])
if err != nil {
r.err = err
return true
}
decBuf := *(getBuf(decLen))
defer putBuf(&decBuf)
data, err := snappy.Decode(decBuf, b[:length])
if err != nil {
r.err = err
return true
}
// and marshal it and send it to the cache
switch WalEntryType(entryType) {
case WriteWALEntryType:
r.entry = &WriteWALEntry{
Values: make(map[string][]Value),
}
case DeleteWALEntryType:
r.entry = &DeleteWALEntry{}
case DeleteRangeWALEntryType:
r.entry = &DeleteRangeWALEntry{}
default:
r.err = fmt.Errorf("unknown wal entry type: %v", entryType)
return true
}
r.err = r.entry.UnmarshalBinary(data)
if r.err == nil {
// Read and decode of this entry was successful.
r.n += int64(nReadOK)
}
return true
}
// Read returns the next entry in the reader.
func (r *WALSegmentReader) Read() (WALEntry, error) {
if r.err != nil {
return nil, r.err
}
return r.entry, nil
}
// Count returns the total number of bytes read successfully from the segment, as
// of the last call to Read(). The segment is guaranteed to be valid up to and
// including this number of bytes.
func (r *WALSegmentReader) Count() int64 {
return r.n
}
// Error returns the last error encountered by the reader.
func (r *WALSegmentReader) Error() error {
return r.err
}
// Close closes the underlying io.Reader.
func (r *WALSegmentReader) Close() error {
if r.rc == nil {
return nil
}
err := r.rc.Close()
r.rc = nil
return err
}
// idFromFileName parses the segment file ID from its name.
func idFromFileName(name string) (int, error) {
parts := strings.Split(filepath.Base(name), ".")
if len(parts) != 2 {
return 0, fmt.Errorf("file %s has wrong name format to have an id", name)
}
id, err := strconv.ParseUint(parts[0][1:], 10, 32)
return int(id), err
}