// Generated by tmpl // https://github.com/benbjohnson/tmpl // // DO NOT EDIT! // Source: iterator.gen.go.tmpl package influxql import ( "container/heap" "encoding/binary" "fmt" "io" "sort" "sync" "time" "github.com/gogo/protobuf/proto" internal "github.com/influxdata/influxdb/influxql/internal" ) // DefaultStatsInterval is the default value for IteratorEncoder.StatsInterval. const DefaultStatsInterval = 10 * time.Second // FloatIterator represents a stream of float points. type FloatIterator interface { Iterator Next() (*FloatPoint, error) } // newFloatIterators converts a slice of Iterator to a slice of FloatIterator. // Drop and closes any iterator in itrs that is not a FloatIterator and cannot // be cast to a FloatIterator. func newFloatIterators(itrs []Iterator) []FloatIterator { a := make([]FloatIterator, 0, len(itrs)) for _, itr := range itrs { switch itr := itr.(type) { case FloatIterator: a = append(a, itr) case IntegerIterator: a = append(a, &integerFloatCastIterator{input: itr}) default: itr.Close() } } return a } // bufFloatIterator represents a buffered FloatIterator. type bufFloatIterator struct { itr FloatIterator buf *FloatPoint } // newBufFloatIterator returns a buffered FloatIterator. func newBufFloatIterator(itr FloatIterator) *bufFloatIterator { return &bufFloatIterator{itr: itr} } // Stats returns statistics from the input iterator. func (itr *bufFloatIterator) Stats() IteratorStats { return itr.itr.Stats() } // Close closes the underlying iterator. func (itr *bufFloatIterator) Close() error { return itr.itr.Close() } // peek returns the next point without removing it from the iterator. func (itr *bufFloatIterator) peek() (*FloatPoint, error) { p, err := itr.Next() if err != nil { return nil, err } itr.unread(p) return p, nil } // peekTime returns the time of the next point. // Returns zero time if no more points available. func (itr *bufFloatIterator) peekTime() (int64, error) { p, err := itr.peek() if p == nil || err != nil { return ZeroTime, err } return p.Time, nil } // Next returns the current buffer, if exists, or calls the underlying iterator. func (itr *bufFloatIterator) Next() (*FloatPoint, error) { buf := itr.buf if buf != nil { itr.buf = nil return buf, nil } return itr.itr.Next() } // NextInWindow returns the next value if it is between [startTime, endTime). // If the next value is outside the range then it is moved to the buffer. func (itr *bufFloatIterator) NextInWindow(startTime, endTime int64) (*FloatPoint, error) { v, err := itr.Next() if v == nil || err != nil { return nil, err } else if t := v.Time; t >= endTime || t < startTime { itr.unread(v) return nil, nil } return v, nil } // unread sets v to the buffer. It is read on the next call to Next(). func (itr *bufFloatIterator) unread(v *FloatPoint) { itr.buf = v } // floatMergeIterator represents an iterator that combines multiple float iterators. type floatMergeIterator struct { inputs []FloatIterator heap *floatMergeHeap init bool // Current iterator and window. curr *floatMergeHeapItem window struct { name string tags string startTime int64 endTime int64 } } // newFloatMergeIterator returns a new instance of floatMergeIterator. func newFloatMergeIterator(inputs []FloatIterator, opt IteratorOptions) *floatMergeIterator { itr := &floatMergeIterator{ inputs: inputs, heap: &floatMergeHeap{ items: make([]*floatMergeHeapItem, 0, len(inputs)), opt: opt, }, } // Initialize heap items. for _, input := range inputs { // Wrap in buffer, ignore any inputs without anymore points. bufInput := newBufFloatIterator(input) // Append to the heap. itr.heap.items = append(itr.heap.items, &floatMergeHeapItem{itr: bufInput}) } return itr } // Stats returns an aggregation of stats from the underlying iterators. func (itr *floatMergeIterator) Stats() IteratorStats { var stats IteratorStats for _, input := range itr.inputs { stats.Add(input.Stats()) } return stats } // Close closes the underlying iterators. func (itr *floatMergeIterator) Close() error { for _, input := range itr.inputs { input.Close() } itr.curr = nil itr.inputs = nil itr.heap.items = nil return nil } // Next returns the next point from the iterator. func (itr *floatMergeIterator) Next() (*FloatPoint, error) { // Initialize the heap. This needs to be done lazily on the first call to this iterator // so that iterator initialization done through the Select() call returns quickly. // Queries can only be interrupted after the Select() call completes so any operations // done during iterator creation cannot be interrupted, which is why we do it here // instead so an interrupt can happen while initializing the heap. if !itr.init { items := itr.heap.items itr.heap.items = make([]*floatMergeHeapItem, 0, len(items)) for _, item := range items { if p, err := item.itr.peek(); err != nil { return nil, err } else if p == nil { continue } itr.heap.items = append(itr.heap.items, item) } heap.Init(itr.heap) itr.init = true } for { // Retrieve the next iterator if we don't have one. if itr.curr == nil { if len(itr.heap.items) == 0 { return nil, nil } itr.curr = heap.Pop(itr.heap).(*floatMergeHeapItem) // Read point and set current window. p, err := itr.curr.itr.Next() if err != nil { return nil, err } tags := p.Tags.Subset(itr.heap.opt.Dimensions) itr.window.name, itr.window.tags = p.Name, tags.ID() itr.window.startTime, itr.window.endTime = itr.heap.opt.Window(p.Time) return p, nil } // Read the next point from the current iterator. p, err := itr.curr.itr.Next() if err != nil { return nil, err } // If there are no more points then remove iterator from heap and find next. if p == nil { itr.curr = nil continue } // Check if the point is inside of our current window. inWindow := true if window := itr.window; window.name != p.Name { inWindow = false } else if tags := p.Tags.Subset(itr.heap.opt.Dimensions); window.tags != tags.ID() { inWindow = false } else if opt := itr.heap.opt; opt.Ascending && p.Time >= window.endTime { inWindow = false } else if !opt.Ascending && p.Time < window.startTime { inWindow = false } // If it's outside our window then push iterator back on the heap and find new iterator. if !inWindow { itr.curr.itr.unread(p) heap.Push(itr.heap, itr.curr) itr.curr = nil continue } return p, nil } } // floatMergeHeap represents a heap of floatMergeHeapItems. // Items are sorted by their next window and then by name/tags. type floatMergeHeap struct { opt IteratorOptions items []*floatMergeHeapItem } func (h *floatMergeHeap) Len() int { return len(h.items) } func (h *floatMergeHeap) Swap(i, j int) { h.items[i], h.items[j] = h.items[j], h.items[i] } func (h *floatMergeHeap) Less(i, j int) bool { x, err := h.items[i].itr.peek() if err != nil { return true } y, err := h.items[j].itr.peek() if err != nil { return false } if h.opt.Ascending { if x.Name != y.Name { return x.Name < y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); xTags.ID() != yTags.ID() { return xTags.ID() < yTags.ID() } } else { if x.Name != y.Name { return x.Name > y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); xTags.ID() != yTags.ID() { return xTags.ID() > yTags.ID() } } xt, _ := h.opt.Window(x.Time) yt, _ := h.opt.Window(y.Time) if h.opt.Ascending { return xt < yt } return xt > yt } func (h *floatMergeHeap) Push(x interface{}) { h.items = append(h.items, x.(*floatMergeHeapItem)) } func (h *floatMergeHeap) Pop() interface{} { old := h.items n := len(old) item := old[n-1] h.items = old[0 : n-1] return item } type floatMergeHeapItem struct { itr *bufFloatIterator } // floatSortedMergeIterator is an iterator that sorts and merges multiple iterators into one. type floatSortedMergeIterator struct { inputs []FloatIterator heap *floatSortedMergeHeap init bool } // newFloatSortedMergeIterator returns an instance of floatSortedMergeIterator. func newFloatSortedMergeIterator(inputs []FloatIterator, opt IteratorOptions) Iterator { itr := &floatSortedMergeIterator{ inputs: inputs, heap: &floatSortedMergeHeap{ items: make([]*floatSortedMergeHeapItem, 0, len(inputs)), opt: opt, }, } // Initialize heap items. for _, input := range inputs { // Append to the heap. itr.heap.items = append(itr.heap.items, &floatSortedMergeHeapItem{itr: input}) } return itr } // Stats returns an aggregation of stats from the underlying iterators. func (itr *floatSortedMergeIterator) Stats() IteratorStats { var stats IteratorStats for _, input := range itr.inputs { stats.Add(input.Stats()) } return stats } // Close closes the underlying iterators. func (itr *floatSortedMergeIterator) Close() error { for _, input := range itr.inputs { input.Close() } return nil } // Next returns the next points from the iterator. func (itr *floatSortedMergeIterator) Next() (*FloatPoint, error) { return itr.pop() } // pop returns the next point from the heap. // Reads the next point from item's cursor and puts it back on the heap. func (itr *floatSortedMergeIterator) pop() (*FloatPoint, error) { // Initialize the heap. See the MergeIterator to see why this has to be done lazily. if !itr.init { items := itr.heap.items itr.heap.items = make([]*floatSortedMergeHeapItem, 0, len(items)) for _, item := range items { var err error if item.point, err = item.itr.Next(); err != nil { return nil, err } else if item.point == nil { continue } itr.heap.items = append(itr.heap.items, item) } heap.Init(itr.heap) itr.init = true } if len(itr.heap.items) == 0 { return nil, nil } // Read the next item from the heap. item := heap.Pop(itr.heap).(*floatSortedMergeHeapItem) if item.err != nil { return nil, item.err } else if item.point == nil { return nil, nil } // Copy the point for return. p := item.point.Clone() // Read the next item from the cursor. Push back to heap if one exists. if item.point, item.err = item.itr.Next(); item.point != nil { heap.Push(itr.heap, item) } return p, nil } // floatSortedMergeHeap represents a heap of floatSortedMergeHeapItems. type floatSortedMergeHeap struct { opt IteratorOptions items []*floatSortedMergeHeapItem } func (h *floatSortedMergeHeap) Len() int { return len(h.items) } func (h *floatSortedMergeHeap) Swap(i, j int) { h.items[i], h.items[j] = h.items[j], h.items[i] } func (h *floatSortedMergeHeap) Less(i, j int) bool { x, y := h.items[i].point, h.items[j].point if h.opt.Ascending { if x.Name != y.Name { return x.Name < y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); !xTags.Equals(&yTags) { return xTags.ID() < yTags.ID() } return x.Time < y.Time } if x.Name != y.Name { return x.Name > y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); !xTags.Equals(&yTags) { return xTags.ID() > yTags.ID() } return x.Time > y.Time } func (h *floatSortedMergeHeap) Push(x interface{}) { h.items = append(h.items, x.(*floatSortedMergeHeapItem)) } func (h *floatSortedMergeHeap) Pop() interface{} { old := h.items n := len(old) item := old[n-1] h.items = old[0 : n-1] return item } type floatSortedMergeHeapItem struct { point *FloatPoint err error itr FloatIterator } // floatParallelIterator represents an iterator that pulls data in a separate goroutine. type floatParallelIterator struct { input FloatIterator ch chan floatPointError once sync.Once closing chan struct{} wg sync.WaitGroup } // newFloatParallelIterator returns a new instance of floatParallelIterator. func newFloatParallelIterator(input FloatIterator) *floatParallelIterator { itr := &floatParallelIterator{ input: input, ch: make(chan floatPointError, 256), closing: make(chan struct{}), } itr.wg.Add(1) go itr.monitor() return itr } // Stats returns stats from the underlying iterator. func (itr *floatParallelIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the underlying iterators. func (itr *floatParallelIterator) Close() error { itr.once.Do(func() { close(itr.closing) }) itr.wg.Wait() return itr.input.Close() } // Next returns the next point from the iterator. func (itr *floatParallelIterator) Next() (*FloatPoint, error) { v, ok := <-itr.ch if !ok { return nil, io.EOF } return v.point, v.err } // monitor runs in a separate goroutine and actively pulls the next point. func (itr *floatParallelIterator) monitor() { defer close(itr.ch) defer itr.wg.Done() for { // Read next point. p, err := itr.input.Next() if p != nil { p = p.Clone() } select { case <-itr.closing: return case itr.ch <- floatPointError{point: p, err: err}: } } } type floatPointError struct { point *FloatPoint err error } // floatLimitIterator represents an iterator that limits points per group. type floatLimitIterator struct { input FloatIterator opt IteratorOptions n int prev struct { name string tags Tags } } // newFloatLimitIterator returns a new instance of floatLimitIterator. func newFloatLimitIterator(input FloatIterator, opt IteratorOptions) *floatLimitIterator { return &floatLimitIterator{ input: input, opt: opt, } } // Stats returns stats from the underlying iterator. func (itr *floatLimitIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the underlying iterators. func (itr *floatLimitIterator) Close() error { return itr.input.Close() } // Next returns the next point from the iterator. func (itr *floatLimitIterator) Next() (*FloatPoint, error) { for { p, err := itr.input.Next() if p == nil || err != nil { return nil, err } // Reset window and counter if a new window is encountered. if p.Name != itr.prev.name || !p.Tags.Equals(&itr.prev.tags) { itr.prev.name = p.Name itr.prev.tags = p.Tags itr.n = 0 } // Increment counter. itr.n++ // Read next point if not beyond the offset. if itr.n <= itr.opt.Offset { continue } // Read next point if we're beyond the limit. if itr.opt.Limit > 0 && (itr.n-itr.opt.Offset) > itr.opt.Limit { continue } return p, nil } } type floatFillIterator struct { input *bufFloatIterator prev FloatPoint startTime int64 endTime int64 auxFields []interface{} init bool opt IteratorOptions window struct { name string tags Tags time int64 offset int64 } } func newFloatFillIterator(input FloatIterator, expr Expr, opt IteratorOptions) *floatFillIterator { if opt.Fill == NullFill { if expr, ok := expr.(*Call); ok && expr.Name == "count" { opt.Fill = NumberFill opt.FillValue = float64(0) } } var startTime, endTime int64 if opt.Ascending { startTime, _ = opt.Window(opt.StartTime) endTime, _ = opt.Window(opt.EndTime) } else { startTime, _ = opt.Window(opt.EndTime) endTime, _ = opt.Window(opt.StartTime) } var auxFields []interface{} if len(opt.Aux) > 0 { auxFields = make([]interface{}, len(opt.Aux)) } return &floatFillIterator{ input: newBufFloatIterator(input), prev: FloatPoint{Nil: true}, startTime: startTime, endTime: endTime, auxFields: auxFields, opt: opt, } } func (itr *floatFillIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *floatFillIterator) Close() error { return itr.input.Close() } func (itr *floatFillIterator) Next() (*FloatPoint, error) { if !itr.init { p, err := itr.input.peek() if p == nil || err != nil { return nil, err } itr.window.name, itr.window.tags = p.Name, p.Tags itr.window.time = itr.startTime if itr.opt.Location != nil { _, itr.window.offset = itr.opt.Zone(itr.window.time) } itr.init = true } p, err := itr.input.Next() if err != nil { return nil, err } // Check if the next point is outside of our window or is nil. for p == nil || p.Name != itr.window.name || p.Tags.ID() != itr.window.tags.ID() { // If we are inside of an interval, unread the point and continue below to // constructing a new point. if itr.opt.Ascending { if itr.window.time <= itr.endTime { itr.input.unread(p) p = nil break } } else { if itr.window.time >= itr.endTime { itr.input.unread(p) p = nil break } } // We are *not* in a current interval. If there is no next point, // we are at the end of all intervals. if p == nil { return nil, nil } // Set the new interval. itr.window.name, itr.window.tags = p.Name, p.Tags itr.window.time = itr.startTime if itr.opt.Location != nil { _, itr.window.offset = itr.opt.Zone(itr.window.time) } itr.prev = FloatPoint{Nil: true} break } // Check if the point is our next expected point. if p == nil || (itr.opt.Ascending && p.Time > itr.window.time) || (!itr.opt.Ascending && p.Time < itr.window.time) { if p != nil { itr.input.unread(p) } p = &FloatPoint{ Name: itr.window.name, Tags: itr.window.tags, Time: itr.window.time, Aux: itr.auxFields, } switch itr.opt.Fill { case LinearFill: if !itr.prev.Nil { next, err := itr.input.peek() if err != nil { return nil, err } else if next != nil && next.Name == itr.window.name && next.Tags.ID() == itr.window.tags.ID() { interval := int64(itr.opt.Interval.Duration) start := itr.window.time / interval p.Value = linearFloat(start, itr.prev.Time/interval, next.Time/interval, itr.prev.Value, next.Value) } else { p.Nil = true } } else { p.Nil = true } case NullFill: p.Nil = true case NumberFill: p.Value = castToFloat(itr.opt.FillValue) case PreviousFill: if !itr.prev.Nil { p.Value = itr.prev.Value p.Nil = itr.prev.Nil } else { p.Nil = true } } } else { itr.prev = *p } // Advance the expected time. Do not advance to a new window here // as there may be lingering points with the same timestamp in the previous // window. if itr.opt.Ascending { itr.window.time += int64(itr.opt.Interval.Duration) } else { itr.window.time -= int64(itr.opt.Interval.Duration) } // Check to see if we have passed over an offset change and adjust the time // to account for this new offset. if itr.opt.Location != nil { if _, offset := itr.opt.Zone(itr.window.time - 1); offset != itr.window.offset { diff := itr.window.offset - offset if abs(diff) < int64(itr.opt.Interval.Duration) { itr.window.time += diff } itr.window.offset = offset } } return p, nil } // floatIntervalIterator represents a float implementation of IntervalIterator. type floatIntervalIterator struct { input FloatIterator opt IteratorOptions } func newFloatIntervalIterator(input FloatIterator, opt IteratorOptions) *floatIntervalIterator { return &floatIntervalIterator{input: input, opt: opt} } func (itr *floatIntervalIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *floatIntervalIterator) Close() error { return itr.input.Close() } func (itr *floatIntervalIterator) Next() (*FloatPoint, error) { p, err := itr.input.Next() if p == nil || err != nil { return nil, err } p.Time, _ = itr.opt.Window(p.Time) // If we see the minimum allowable time, set the time to zero so we don't // break the default returned time for aggregate queries without times. if p.Time == MinTime { p.Time = 0 } return p, nil } // floatInterruptIterator represents a float implementation of InterruptIterator. type floatInterruptIterator struct { input FloatIterator closing <-chan struct{} count int } func newFloatInterruptIterator(input FloatIterator, closing <-chan struct{}) *floatInterruptIterator { return &floatInterruptIterator{input: input, closing: closing} } func (itr *floatInterruptIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *floatInterruptIterator) Close() error { return itr.input.Close() } func (itr *floatInterruptIterator) Next() (*FloatPoint, error) { // Only check if the channel is closed every N points. This // intentionally checks on both 0 and N so that if the iterator // has been interrupted before the first point is emitted it will // not emit any points. if itr.count&0xFF == 0xFF { select { case <-itr.closing: return nil, itr.Close() default: // Reset iterator count to zero and fall through to emit the next point. itr.count = 0 } } // Increment the counter for every point read. itr.count++ return itr.input.Next() } // floatCloseInterruptIterator represents a float implementation of CloseInterruptIterator. type floatCloseInterruptIterator struct { input FloatIterator closing <-chan struct{} done chan struct{} once sync.Once } func newFloatCloseInterruptIterator(input FloatIterator, closing <-chan struct{}) *floatCloseInterruptIterator { itr := &floatCloseInterruptIterator{ input: input, closing: closing, done: make(chan struct{}), } go itr.monitor() return itr } func (itr *floatCloseInterruptIterator) monitor() { select { case <-itr.closing: itr.Close() case <-itr.done: } } func (itr *floatCloseInterruptIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *floatCloseInterruptIterator) Close() error { itr.once.Do(func() { close(itr.done) itr.input.Close() }) return nil } func (itr *floatCloseInterruptIterator) Next() (*FloatPoint, error) { p, err := itr.input.Next() if err != nil { // Check if the iterator was closed. select { case <-itr.done: return nil, nil default: return nil, err } } return p, nil } // auxFloatPoint represents a combination of a point and an error for the AuxIterator. type auxFloatPoint struct { point *FloatPoint err error } // floatAuxIterator represents a float implementation of AuxIterator. type floatAuxIterator struct { input *bufFloatIterator output chan auxFloatPoint fields *auxIteratorFields background bool } func newFloatAuxIterator(input FloatIterator, opt IteratorOptions) *floatAuxIterator { return &floatAuxIterator{ input: newBufFloatIterator(input), output: make(chan auxFloatPoint, 1), fields: newAuxIteratorFields(opt), } } func (itr *floatAuxIterator) Background() { itr.background = true itr.Start() go DrainIterator(itr) } func (itr *floatAuxIterator) Start() { go itr.stream() } func (itr *floatAuxIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *floatAuxIterator) Close() error { return itr.input.Close() } func (itr *floatAuxIterator) Next() (*FloatPoint, error) { p := <-itr.output return p.point, p.err } func (itr *floatAuxIterator) Iterator(name string, typ DataType) Iterator { return itr.fields.iterator(name, typ) } func (itr *floatAuxIterator) stream() { for { // Read next point. p, err := itr.input.Next() if err != nil { itr.output <- auxFloatPoint{err: err} itr.fields.sendError(err) break } else if p == nil { break } // Send point to output and to each field iterator. itr.output <- auxFloatPoint{point: p} if ok := itr.fields.send(p); !ok && itr.background { break } } close(itr.output) itr.fields.close() } // floatChanIterator represents a new instance of floatChanIterator. type floatChanIterator struct { buf struct { i int filled bool points [2]FloatPoint } err error cond *sync.Cond done bool } func (itr *floatChanIterator) Stats() IteratorStats { return IteratorStats{} } func (itr *floatChanIterator) Close() error { itr.cond.L.Lock() // Mark the channel iterator as done and signal all waiting goroutines to start again. itr.done = true itr.cond.Broadcast() // Do not defer the unlock so we don't create an unnecessary allocation. itr.cond.L.Unlock() return nil } func (itr *floatChanIterator) setBuf(name string, tags Tags, time int64, value interface{}) bool { itr.cond.L.Lock() defer itr.cond.L.Unlock() // Wait for either the iterator to be done (so we don't have to set the value) // or for the buffer to have been read and ready for another write. for !itr.done && itr.buf.filled { itr.cond.Wait() } // Do not set the value and return false to signal that the iterator is closed. // Do this after the above wait as the above for loop may have exited because // the iterator was closed. if itr.done { return false } switch v := value.(type) { case float64: itr.buf.points[itr.buf.i] = FloatPoint{Name: name, Tags: tags, Time: time, Value: v} case int64: itr.buf.points[itr.buf.i] = FloatPoint{Name: name, Tags: tags, Time: time, Value: float64(v)} default: itr.buf.points[itr.buf.i] = FloatPoint{Name: name, Tags: tags, Time: time, Nil: true} } itr.buf.filled = true // Signal to all waiting goroutines that a new value is ready to read. itr.cond.Signal() return true } func (itr *floatChanIterator) setErr(err error) { itr.cond.L.Lock() defer itr.cond.L.Unlock() itr.err = err // Signal to all waiting goroutines that a new value is ready to read. itr.cond.Signal() } func (itr *floatChanIterator) Next() (*FloatPoint, error) { itr.cond.L.Lock() defer itr.cond.L.Unlock() // Check for an error and return one if there. if itr.err != nil { return nil, itr.err } // Wait until either a value is available in the buffer or // the iterator is closed. for !itr.done && !itr.buf.filled { itr.cond.Wait() } // Return nil once the channel is done and the buffer is empty. if itr.done && !itr.buf.filled { return nil, nil } // Always read from the buffer if it exists, even if the iterator // is closed. This prevents the last value from being truncated by // the parent iterator. p := &itr.buf.points[itr.buf.i] itr.buf.i = (itr.buf.i + 1) % len(itr.buf.points) itr.buf.filled = false itr.cond.Signal() return p, nil } // floatReduceFloatIterator executes a reducer for every interval and buffers the result. type floatReduceFloatIterator struct { input *bufFloatIterator create func() (FloatPointAggregator, FloatPointEmitter) dims []string opt IteratorOptions points []FloatPoint keepTags bool } func newFloatReduceFloatIterator(input FloatIterator, opt IteratorOptions, createFn func() (FloatPointAggregator, FloatPointEmitter)) *floatReduceFloatIterator { return &floatReduceFloatIterator{ input: newBufFloatIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *floatReduceFloatIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatReduceFloatIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *floatReduceFloatIterator) Next() (*FloatPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // floatReduceFloatPoint stores the reduced data for a name/tag combination. type floatReduceFloatPoint struct { Name string Tags Tags Aggregator FloatPointAggregator Emitter FloatPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *floatReduceFloatIterator) reduce() ([]FloatPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*floatReduceFloatPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &floatReduceFloatPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateFloat(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]FloatPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(floatPointsByTime(a))) } return a, nil } // floatStreamFloatIterator streams inputs into the iterator and emits points gradually. type floatStreamFloatIterator struct { input *bufFloatIterator create func() (FloatPointAggregator, FloatPointEmitter) dims []string opt IteratorOptions m map[string]*floatReduceFloatPoint points []FloatPoint } // newFloatStreamFloatIterator returns a new instance of floatStreamFloatIterator. func newFloatStreamFloatIterator(input FloatIterator, createFn func() (FloatPointAggregator, FloatPointEmitter), opt IteratorOptions) *floatStreamFloatIterator { return &floatStreamFloatIterator{ input: newBufFloatIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*floatReduceFloatPoint), } } // Stats returns stats from the input iterator. func (itr *floatStreamFloatIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatStreamFloatIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *floatStreamFloatIterator) Next() (*FloatPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *floatStreamFloatIterator) reduce() ([]FloatPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []FloatPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &floatReduceFloatPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateFloat(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // floatExprIterator executes a function to modify an existing point // for every output of the input iterator. type floatExprIterator struct { left *bufFloatIterator right *bufFloatIterator fn floatExprFunc points []FloatPoint // must be size 2 storePrev bool } func newFloatExprIterator(left, right FloatIterator, opt IteratorOptions, fn func(a, b float64) float64) *floatExprIterator { var points []FloatPoint switch opt.Fill { case NullFill, PreviousFill: points = []FloatPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToFloat(opt.FillValue) points = []FloatPoint{{Value: value}, {Value: value}} } return &floatExprIterator{ left: newBufFloatIterator(left), right: newBufFloatIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *floatExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *floatExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *floatExprIterator) Next() (*FloatPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = 0 a.Nil = true } else if b == nil { p := *a b = &p b.Value = 0 b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } if a.Nil { return a, nil } else if b.Nil { return b, nil } a.Value = itr.fn(a.Value, b.Value) return a, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *floatExprIterator) next() (a, b *FloatPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // floatExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type floatExprFunc func(a, b float64) float64 // floatReduceIntegerIterator executes a reducer for every interval and buffers the result. type floatReduceIntegerIterator struct { input *bufFloatIterator create func() (FloatPointAggregator, IntegerPointEmitter) dims []string opt IteratorOptions points []IntegerPoint keepTags bool } func newFloatReduceIntegerIterator(input FloatIterator, opt IteratorOptions, createFn func() (FloatPointAggregator, IntegerPointEmitter)) *floatReduceIntegerIterator { return &floatReduceIntegerIterator{ input: newBufFloatIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *floatReduceIntegerIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatReduceIntegerIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *floatReduceIntegerIterator) Next() (*IntegerPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // floatReduceIntegerPoint stores the reduced data for a name/tag combination. type floatReduceIntegerPoint struct { Name string Tags Tags Aggregator FloatPointAggregator Emitter IntegerPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *floatReduceIntegerIterator) reduce() ([]IntegerPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*floatReduceIntegerPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &floatReduceIntegerPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateFloat(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]IntegerPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(integerPointsByTime(a))) } return a, nil } // floatStreamIntegerIterator streams inputs into the iterator and emits points gradually. type floatStreamIntegerIterator struct { input *bufFloatIterator create func() (FloatPointAggregator, IntegerPointEmitter) dims []string opt IteratorOptions m map[string]*floatReduceIntegerPoint points []IntegerPoint } // newFloatStreamIntegerIterator returns a new instance of floatStreamIntegerIterator. func newFloatStreamIntegerIterator(input FloatIterator, createFn func() (FloatPointAggregator, IntegerPointEmitter), opt IteratorOptions) *floatStreamIntegerIterator { return &floatStreamIntegerIterator{ input: newBufFloatIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*floatReduceIntegerPoint), } } // Stats returns stats from the input iterator. func (itr *floatStreamIntegerIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatStreamIntegerIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *floatStreamIntegerIterator) Next() (*IntegerPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *floatStreamIntegerIterator) reduce() ([]IntegerPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []IntegerPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &floatReduceIntegerPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateFloat(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // floatIntegerExprIterator executes a function to modify an existing point // for every output of the input iterator. type floatIntegerExprIterator struct { left *bufFloatIterator right *bufFloatIterator fn floatIntegerExprFunc points []FloatPoint // must be size 2 storePrev bool } func newFloatIntegerExprIterator(left, right FloatIterator, opt IteratorOptions, fn func(a, b float64) int64) *floatIntegerExprIterator { var points []FloatPoint switch opt.Fill { case NullFill, PreviousFill: points = []FloatPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToFloat(opt.FillValue) points = []FloatPoint{{Value: value}, {Value: value}} } return &floatIntegerExprIterator{ left: newBufFloatIterator(left), right: newBufFloatIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *floatIntegerExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *floatIntegerExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *floatIntegerExprIterator) Next() (*IntegerPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = 0 a.Nil = true } else if b == nil { p := *a b = &p b.Value = 0 b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &IntegerPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *floatIntegerExprIterator) next() (a, b *FloatPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // floatIntegerExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type floatIntegerExprFunc func(a, b float64) int64 // floatReduceStringIterator executes a reducer for every interval and buffers the result. type floatReduceStringIterator struct { input *bufFloatIterator create func() (FloatPointAggregator, StringPointEmitter) dims []string opt IteratorOptions points []StringPoint keepTags bool } func newFloatReduceStringIterator(input FloatIterator, opt IteratorOptions, createFn func() (FloatPointAggregator, StringPointEmitter)) *floatReduceStringIterator { return &floatReduceStringIterator{ input: newBufFloatIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *floatReduceStringIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatReduceStringIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *floatReduceStringIterator) Next() (*StringPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // floatReduceStringPoint stores the reduced data for a name/tag combination. type floatReduceStringPoint struct { Name string Tags Tags Aggregator FloatPointAggregator Emitter StringPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *floatReduceStringIterator) reduce() ([]StringPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*floatReduceStringPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &floatReduceStringPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateFloat(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]StringPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(stringPointsByTime(a))) } return a, nil } // floatStreamStringIterator streams inputs into the iterator and emits points gradually. type floatStreamStringIterator struct { input *bufFloatIterator create func() (FloatPointAggregator, StringPointEmitter) dims []string opt IteratorOptions m map[string]*floatReduceStringPoint points []StringPoint } // newFloatStreamStringIterator returns a new instance of floatStreamStringIterator. func newFloatStreamStringIterator(input FloatIterator, createFn func() (FloatPointAggregator, StringPointEmitter), opt IteratorOptions) *floatStreamStringIterator { return &floatStreamStringIterator{ input: newBufFloatIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*floatReduceStringPoint), } } // Stats returns stats from the input iterator. func (itr *floatStreamStringIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatStreamStringIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *floatStreamStringIterator) Next() (*StringPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *floatStreamStringIterator) reduce() ([]StringPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []StringPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &floatReduceStringPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateFloat(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // floatStringExprIterator executes a function to modify an existing point // for every output of the input iterator. type floatStringExprIterator struct { left *bufFloatIterator right *bufFloatIterator fn floatStringExprFunc points []FloatPoint // must be size 2 storePrev bool } func newFloatStringExprIterator(left, right FloatIterator, opt IteratorOptions, fn func(a, b float64) string) *floatStringExprIterator { var points []FloatPoint switch opt.Fill { case NullFill, PreviousFill: points = []FloatPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToFloat(opt.FillValue) points = []FloatPoint{{Value: value}, {Value: value}} } return &floatStringExprIterator{ left: newBufFloatIterator(left), right: newBufFloatIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *floatStringExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *floatStringExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *floatStringExprIterator) Next() (*StringPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = 0 a.Nil = true } else if b == nil { p := *a b = &p b.Value = 0 b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &StringPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *floatStringExprIterator) next() (a, b *FloatPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // floatStringExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type floatStringExprFunc func(a, b float64) string // floatReduceBooleanIterator executes a reducer for every interval and buffers the result. type floatReduceBooleanIterator struct { input *bufFloatIterator create func() (FloatPointAggregator, BooleanPointEmitter) dims []string opt IteratorOptions points []BooleanPoint keepTags bool } func newFloatReduceBooleanIterator(input FloatIterator, opt IteratorOptions, createFn func() (FloatPointAggregator, BooleanPointEmitter)) *floatReduceBooleanIterator { return &floatReduceBooleanIterator{ input: newBufFloatIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *floatReduceBooleanIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatReduceBooleanIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *floatReduceBooleanIterator) Next() (*BooleanPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // floatReduceBooleanPoint stores the reduced data for a name/tag combination. type floatReduceBooleanPoint struct { Name string Tags Tags Aggregator FloatPointAggregator Emitter BooleanPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *floatReduceBooleanIterator) reduce() ([]BooleanPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*floatReduceBooleanPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &floatReduceBooleanPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateFloat(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]BooleanPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(booleanPointsByTime(a))) } return a, nil } // floatStreamBooleanIterator streams inputs into the iterator and emits points gradually. type floatStreamBooleanIterator struct { input *bufFloatIterator create func() (FloatPointAggregator, BooleanPointEmitter) dims []string opt IteratorOptions m map[string]*floatReduceBooleanPoint points []BooleanPoint } // newFloatStreamBooleanIterator returns a new instance of floatStreamBooleanIterator. func newFloatStreamBooleanIterator(input FloatIterator, createFn func() (FloatPointAggregator, BooleanPointEmitter), opt IteratorOptions) *floatStreamBooleanIterator { return &floatStreamBooleanIterator{ input: newBufFloatIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*floatReduceBooleanPoint), } } // Stats returns stats from the input iterator. func (itr *floatStreamBooleanIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatStreamBooleanIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *floatStreamBooleanIterator) Next() (*BooleanPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *floatStreamBooleanIterator) reduce() ([]BooleanPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []BooleanPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &floatReduceBooleanPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateFloat(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // floatBooleanExprIterator executes a function to modify an existing point // for every output of the input iterator. type floatBooleanExprIterator struct { left *bufFloatIterator right *bufFloatIterator fn floatBooleanExprFunc points []FloatPoint // must be size 2 storePrev bool } func newFloatBooleanExprIterator(left, right FloatIterator, opt IteratorOptions, fn func(a, b float64) bool) *floatBooleanExprIterator { var points []FloatPoint switch opt.Fill { case NullFill, PreviousFill: points = []FloatPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToFloat(opt.FillValue) points = []FloatPoint{{Value: value}, {Value: value}} } return &floatBooleanExprIterator{ left: newBufFloatIterator(left), right: newBufFloatIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *floatBooleanExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *floatBooleanExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *floatBooleanExprIterator) Next() (*BooleanPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = 0 a.Nil = true } else if b == nil { p := *a b = &p b.Value = 0 b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &BooleanPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *floatBooleanExprIterator) next() (a, b *FloatPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // floatBooleanExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type floatBooleanExprFunc func(a, b float64) bool // floatTransformIterator executes a function to modify an existing point for every // output of the input iterator. type floatTransformIterator struct { input FloatIterator fn floatTransformFunc } // Stats returns stats from the input iterator. func (itr *floatTransformIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatTransformIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *floatTransformIterator) Next() (*FloatPoint, error) { p, err := itr.input.Next() if err != nil { return nil, err } else if p != nil { p = itr.fn(p) } return p, nil } // floatTransformFunc creates or modifies a point. // The point passed in may be modified and returned rather than allocating a // new point if possible. type floatTransformFunc func(p *FloatPoint) *FloatPoint // floatBoolTransformIterator executes a function to modify an existing point for every // output of the input iterator. type floatBoolTransformIterator struct { input FloatIterator fn floatBoolTransformFunc } // Stats returns stats from the input iterator. func (itr *floatBoolTransformIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatBoolTransformIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *floatBoolTransformIterator) Next() (*BooleanPoint, error) { p, err := itr.input.Next() if err != nil { return nil, err } else if p != nil { return itr.fn(p), nil } return nil, nil } // floatBoolTransformFunc creates or modifies a point. // The point passed in may be modified and returned rather than allocating a // new point if possible. type floatBoolTransformFunc func(p *FloatPoint) *BooleanPoint // floatDedupeIterator only outputs unique points. // This differs from the DistinctIterator in that it compares all aux fields too. // This iterator is relatively inefficient and should only be used on small // datasets such as meta query results. type floatDedupeIterator struct { input FloatIterator m map[string]struct{} // lookup of points already sent } type floatIteratorMapper struct { e *Emitter buf []interface{} driver IteratorMap // which iterator to use for the primary value, can be nil fields []IteratorMap // which iterator to use for an aux field point FloatPoint } func newFloatIteratorMapper(itrs []Iterator, driver IteratorMap, fields []IteratorMap, opt IteratorOptions) *floatIteratorMapper { e := NewEmitter(itrs, opt.Ascending, 0) e.OmitTime = true return &floatIteratorMapper{ e: e, buf: make([]interface{}, len(itrs)), driver: driver, fields: fields, point: FloatPoint{ Aux: make([]interface{}, len(fields)), }, } } func (itr *floatIteratorMapper) Next() (*FloatPoint, error) { t, name, tags, err := itr.e.loadBuf() if err != nil || t == ZeroTime { return nil, err } itr.point.Time = t itr.point.Name = name itr.point.Tags = tags itr.e.readInto(t, name, tags, itr.buf) if itr.driver != nil { if v := itr.driver.Value(tags, itr.buf); v != nil { if v, ok := v.(float64); ok { itr.point.Value = v itr.point.Nil = false } else { itr.point.Value = 0 itr.point.Nil = true } } else { itr.point.Value = 0 itr.point.Nil = true } } for i, f := range itr.fields { itr.point.Aux[i] = f.Value(tags, itr.buf) } return &itr.point, nil } func (itr *floatIteratorMapper) Stats() IteratorStats { stats := IteratorStats{} for _, itr := range itr.e.itrs { stats.Add(itr.Stats()) } return stats } func (itr *floatIteratorMapper) Close() error { return itr.e.Close() } type floatFilterIterator struct { input FloatIterator cond Expr opt IteratorOptions m map[string]interface{} } func newFloatFilterIterator(input FloatIterator, cond Expr, opt IteratorOptions) FloatIterator { // Strip out time conditions from the WHERE clause. // TODO(jsternberg): This should really be done for us when creating the IteratorOptions struct. n := RewriteFunc(CloneExpr(cond), func(n Node) Node { switch n := n.(type) { case *BinaryExpr: if n.LHS.String() == "time" { return &BooleanLiteral{Val: true} } } return n }) cond, _ = n.(Expr) if cond == nil { return input } else if n, ok := cond.(*BooleanLiteral); ok && n.Val { return input } return &floatFilterIterator{ input: input, cond: cond, opt: opt, m: make(map[string]interface{}), } } func (itr *floatFilterIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *floatFilterIterator) Close() error { return itr.input.Close() } func (itr *floatFilterIterator) Next() (*FloatPoint, error) { for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } for i, ref := range itr.opt.Aux { itr.m[ref.Val] = p.Aux[i] } for k, v := range p.Tags.KeyValues() { itr.m[k] = v } if !EvalBool(itr.cond, itr.m) { continue } return p, nil } } // newFloatDedupeIterator returns a new instance of floatDedupeIterator. func newFloatDedupeIterator(input FloatIterator) *floatDedupeIterator { return &floatDedupeIterator{ input: input, m: make(map[string]struct{}), } } // Stats returns stats from the input iterator. func (itr *floatDedupeIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *floatDedupeIterator) Close() error { return itr.input.Close() } // Next returns the next unique point from the input iterator. func (itr *floatDedupeIterator) Next() (*FloatPoint, error) { for { // Read next point. p, err := itr.input.Next() if p == nil || err != nil { return nil, err } // Serialize to bytes to store in lookup. buf, err := proto.Marshal(encodeFloatPoint(p)) if err != nil { return nil, err } // If the point has already been output then move to the next point. if _, ok := itr.m[string(buf)]; ok { continue } // Otherwise mark it as emitted and return point. itr.m[string(buf)] = struct{}{} return p, nil } } // floatReaderIterator represents an iterator that streams from a reader. type floatReaderIterator struct { r io.Reader dec *FloatPointDecoder } // newFloatReaderIterator returns a new instance of floatReaderIterator. func newFloatReaderIterator(r io.Reader, stats IteratorStats) *floatReaderIterator { dec := NewFloatPointDecoder(r) dec.stats = stats return &floatReaderIterator{ r: r, dec: dec, } } // Stats returns stats about points processed. func (itr *floatReaderIterator) Stats() IteratorStats { return itr.dec.stats } // Close closes the underlying reader, if applicable. func (itr *floatReaderIterator) Close() error { if r, ok := itr.r.(io.ReadCloser); ok { return r.Close() } return nil } // Next returns the next point from the iterator. func (itr *floatReaderIterator) Next() (*FloatPoint, error) { // OPTIMIZE(benbjohnson): Reuse point on iterator. // Unmarshal next point. p := &FloatPoint{} if err := itr.dec.DecodeFloatPoint(p); err == io.EOF { return nil, nil } else if err != nil { return nil, err } return p, nil } // IntegerIterator represents a stream of integer points. type IntegerIterator interface { Iterator Next() (*IntegerPoint, error) } // newIntegerIterators converts a slice of Iterator to a slice of IntegerIterator. // Drop and closes any iterator in itrs that is not a IntegerIterator and cannot // be cast to a IntegerIterator. func newIntegerIterators(itrs []Iterator) []IntegerIterator { a := make([]IntegerIterator, 0, len(itrs)) for _, itr := range itrs { switch itr := itr.(type) { case IntegerIterator: a = append(a, itr) default: itr.Close() } } return a } // bufIntegerIterator represents a buffered IntegerIterator. type bufIntegerIterator struct { itr IntegerIterator buf *IntegerPoint } // newBufIntegerIterator returns a buffered IntegerIterator. func newBufIntegerIterator(itr IntegerIterator) *bufIntegerIterator { return &bufIntegerIterator{itr: itr} } // Stats returns statistics from the input iterator. func (itr *bufIntegerIterator) Stats() IteratorStats { return itr.itr.Stats() } // Close closes the underlying iterator. func (itr *bufIntegerIterator) Close() error { return itr.itr.Close() } // peek returns the next point without removing it from the iterator. func (itr *bufIntegerIterator) peek() (*IntegerPoint, error) { p, err := itr.Next() if err != nil { return nil, err } itr.unread(p) return p, nil } // peekTime returns the time of the next point. // Returns zero time if no more points available. func (itr *bufIntegerIterator) peekTime() (int64, error) { p, err := itr.peek() if p == nil || err != nil { return ZeroTime, err } return p.Time, nil } // Next returns the current buffer, if exists, or calls the underlying iterator. func (itr *bufIntegerIterator) Next() (*IntegerPoint, error) { buf := itr.buf if buf != nil { itr.buf = nil return buf, nil } return itr.itr.Next() } // NextInWindow returns the next value if it is between [startTime, endTime). // If the next value is outside the range then it is moved to the buffer. func (itr *bufIntegerIterator) NextInWindow(startTime, endTime int64) (*IntegerPoint, error) { v, err := itr.Next() if v == nil || err != nil { return nil, err } else if t := v.Time; t >= endTime || t < startTime { itr.unread(v) return nil, nil } return v, nil } // unread sets v to the buffer. It is read on the next call to Next(). func (itr *bufIntegerIterator) unread(v *IntegerPoint) { itr.buf = v } // integerMergeIterator represents an iterator that combines multiple integer iterators. type integerMergeIterator struct { inputs []IntegerIterator heap *integerMergeHeap init bool // Current iterator and window. curr *integerMergeHeapItem window struct { name string tags string startTime int64 endTime int64 } } // newIntegerMergeIterator returns a new instance of integerMergeIterator. func newIntegerMergeIterator(inputs []IntegerIterator, opt IteratorOptions) *integerMergeIterator { itr := &integerMergeIterator{ inputs: inputs, heap: &integerMergeHeap{ items: make([]*integerMergeHeapItem, 0, len(inputs)), opt: opt, }, } // Initialize heap items. for _, input := range inputs { // Wrap in buffer, ignore any inputs without anymore points. bufInput := newBufIntegerIterator(input) // Append to the heap. itr.heap.items = append(itr.heap.items, &integerMergeHeapItem{itr: bufInput}) } return itr } // Stats returns an aggregation of stats from the underlying iterators. func (itr *integerMergeIterator) Stats() IteratorStats { var stats IteratorStats for _, input := range itr.inputs { stats.Add(input.Stats()) } return stats } // Close closes the underlying iterators. func (itr *integerMergeIterator) Close() error { for _, input := range itr.inputs { input.Close() } itr.curr = nil itr.inputs = nil itr.heap.items = nil return nil } // Next returns the next point from the iterator. func (itr *integerMergeIterator) Next() (*IntegerPoint, error) { // Initialize the heap. This needs to be done lazily on the first call to this iterator // so that iterator initialization done through the Select() call returns quickly. // Queries can only be interrupted after the Select() call completes so any operations // done during iterator creation cannot be interrupted, which is why we do it here // instead so an interrupt can happen while initializing the heap. if !itr.init { items := itr.heap.items itr.heap.items = make([]*integerMergeHeapItem, 0, len(items)) for _, item := range items { if p, err := item.itr.peek(); err != nil { return nil, err } else if p == nil { continue } itr.heap.items = append(itr.heap.items, item) } heap.Init(itr.heap) itr.init = true } for { // Retrieve the next iterator if we don't have one. if itr.curr == nil { if len(itr.heap.items) == 0 { return nil, nil } itr.curr = heap.Pop(itr.heap).(*integerMergeHeapItem) // Read point and set current window. p, err := itr.curr.itr.Next() if err != nil { return nil, err } tags := p.Tags.Subset(itr.heap.opt.Dimensions) itr.window.name, itr.window.tags = p.Name, tags.ID() itr.window.startTime, itr.window.endTime = itr.heap.opt.Window(p.Time) return p, nil } // Read the next point from the current iterator. p, err := itr.curr.itr.Next() if err != nil { return nil, err } // If there are no more points then remove iterator from heap and find next. if p == nil { itr.curr = nil continue } // Check if the point is inside of our current window. inWindow := true if window := itr.window; window.name != p.Name { inWindow = false } else if tags := p.Tags.Subset(itr.heap.opt.Dimensions); window.tags != tags.ID() { inWindow = false } else if opt := itr.heap.opt; opt.Ascending && p.Time >= window.endTime { inWindow = false } else if !opt.Ascending && p.Time < window.startTime { inWindow = false } // If it's outside our window then push iterator back on the heap and find new iterator. if !inWindow { itr.curr.itr.unread(p) heap.Push(itr.heap, itr.curr) itr.curr = nil continue } return p, nil } } // integerMergeHeap represents a heap of integerMergeHeapItems. // Items are sorted by their next window and then by name/tags. type integerMergeHeap struct { opt IteratorOptions items []*integerMergeHeapItem } func (h *integerMergeHeap) Len() int { return len(h.items) } func (h *integerMergeHeap) Swap(i, j int) { h.items[i], h.items[j] = h.items[j], h.items[i] } func (h *integerMergeHeap) Less(i, j int) bool { x, err := h.items[i].itr.peek() if err != nil { return true } y, err := h.items[j].itr.peek() if err != nil { return false } if h.opt.Ascending { if x.Name != y.Name { return x.Name < y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); xTags.ID() != yTags.ID() { return xTags.ID() < yTags.ID() } } else { if x.Name != y.Name { return x.Name > y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); xTags.ID() != yTags.ID() { return xTags.ID() > yTags.ID() } } xt, _ := h.opt.Window(x.Time) yt, _ := h.opt.Window(y.Time) if h.opt.Ascending { return xt < yt } return xt > yt } func (h *integerMergeHeap) Push(x interface{}) { h.items = append(h.items, x.(*integerMergeHeapItem)) } func (h *integerMergeHeap) Pop() interface{} { old := h.items n := len(old) item := old[n-1] h.items = old[0 : n-1] return item } type integerMergeHeapItem struct { itr *bufIntegerIterator } // integerSortedMergeIterator is an iterator that sorts and merges multiple iterators into one. type integerSortedMergeIterator struct { inputs []IntegerIterator heap *integerSortedMergeHeap init bool } // newIntegerSortedMergeIterator returns an instance of integerSortedMergeIterator. func newIntegerSortedMergeIterator(inputs []IntegerIterator, opt IteratorOptions) Iterator { itr := &integerSortedMergeIterator{ inputs: inputs, heap: &integerSortedMergeHeap{ items: make([]*integerSortedMergeHeapItem, 0, len(inputs)), opt: opt, }, } // Initialize heap items. for _, input := range inputs { // Append to the heap. itr.heap.items = append(itr.heap.items, &integerSortedMergeHeapItem{itr: input}) } return itr } // Stats returns an aggregation of stats from the underlying iterators. func (itr *integerSortedMergeIterator) Stats() IteratorStats { var stats IteratorStats for _, input := range itr.inputs { stats.Add(input.Stats()) } return stats } // Close closes the underlying iterators. func (itr *integerSortedMergeIterator) Close() error { for _, input := range itr.inputs { input.Close() } return nil } // Next returns the next points from the iterator. func (itr *integerSortedMergeIterator) Next() (*IntegerPoint, error) { return itr.pop() } // pop returns the next point from the heap. // Reads the next point from item's cursor and puts it back on the heap. func (itr *integerSortedMergeIterator) pop() (*IntegerPoint, error) { // Initialize the heap. See the MergeIterator to see why this has to be done lazily. if !itr.init { items := itr.heap.items itr.heap.items = make([]*integerSortedMergeHeapItem, 0, len(items)) for _, item := range items { var err error if item.point, err = item.itr.Next(); err != nil { return nil, err } else if item.point == nil { continue } itr.heap.items = append(itr.heap.items, item) } heap.Init(itr.heap) itr.init = true } if len(itr.heap.items) == 0 { return nil, nil } // Read the next item from the heap. item := heap.Pop(itr.heap).(*integerSortedMergeHeapItem) if item.err != nil { return nil, item.err } else if item.point == nil { return nil, nil } // Copy the point for return. p := item.point.Clone() // Read the next item from the cursor. Push back to heap if one exists. if item.point, item.err = item.itr.Next(); item.point != nil { heap.Push(itr.heap, item) } return p, nil } // integerSortedMergeHeap represents a heap of integerSortedMergeHeapItems. type integerSortedMergeHeap struct { opt IteratorOptions items []*integerSortedMergeHeapItem } func (h *integerSortedMergeHeap) Len() int { return len(h.items) } func (h *integerSortedMergeHeap) Swap(i, j int) { h.items[i], h.items[j] = h.items[j], h.items[i] } func (h *integerSortedMergeHeap) Less(i, j int) bool { x, y := h.items[i].point, h.items[j].point if h.opt.Ascending { if x.Name != y.Name { return x.Name < y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); !xTags.Equals(&yTags) { return xTags.ID() < yTags.ID() } return x.Time < y.Time } if x.Name != y.Name { return x.Name > y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); !xTags.Equals(&yTags) { return xTags.ID() > yTags.ID() } return x.Time > y.Time } func (h *integerSortedMergeHeap) Push(x interface{}) { h.items = append(h.items, x.(*integerSortedMergeHeapItem)) } func (h *integerSortedMergeHeap) Pop() interface{} { old := h.items n := len(old) item := old[n-1] h.items = old[0 : n-1] return item } type integerSortedMergeHeapItem struct { point *IntegerPoint err error itr IntegerIterator } // integerParallelIterator represents an iterator that pulls data in a separate goroutine. type integerParallelIterator struct { input IntegerIterator ch chan integerPointError once sync.Once closing chan struct{} wg sync.WaitGroup } // newIntegerParallelIterator returns a new instance of integerParallelIterator. func newIntegerParallelIterator(input IntegerIterator) *integerParallelIterator { itr := &integerParallelIterator{ input: input, ch: make(chan integerPointError, 256), closing: make(chan struct{}), } itr.wg.Add(1) go itr.monitor() return itr } // Stats returns stats from the underlying iterator. func (itr *integerParallelIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the underlying iterators. func (itr *integerParallelIterator) Close() error { itr.once.Do(func() { close(itr.closing) }) itr.wg.Wait() return itr.input.Close() } // Next returns the next point from the iterator. func (itr *integerParallelIterator) Next() (*IntegerPoint, error) { v, ok := <-itr.ch if !ok { return nil, io.EOF } return v.point, v.err } // monitor runs in a separate goroutine and actively pulls the next point. func (itr *integerParallelIterator) monitor() { defer close(itr.ch) defer itr.wg.Done() for { // Read next point. p, err := itr.input.Next() if p != nil { p = p.Clone() } select { case <-itr.closing: return case itr.ch <- integerPointError{point: p, err: err}: } } } type integerPointError struct { point *IntegerPoint err error } // integerLimitIterator represents an iterator that limits points per group. type integerLimitIterator struct { input IntegerIterator opt IteratorOptions n int prev struct { name string tags Tags } } // newIntegerLimitIterator returns a new instance of integerLimitIterator. func newIntegerLimitIterator(input IntegerIterator, opt IteratorOptions) *integerLimitIterator { return &integerLimitIterator{ input: input, opt: opt, } } // Stats returns stats from the underlying iterator. func (itr *integerLimitIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the underlying iterators. func (itr *integerLimitIterator) Close() error { return itr.input.Close() } // Next returns the next point from the iterator. func (itr *integerLimitIterator) Next() (*IntegerPoint, error) { for { p, err := itr.input.Next() if p == nil || err != nil { return nil, err } // Reset window and counter if a new window is encountered. if p.Name != itr.prev.name || !p.Tags.Equals(&itr.prev.tags) { itr.prev.name = p.Name itr.prev.tags = p.Tags itr.n = 0 } // Increment counter. itr.n++ // Read next point if not beyond the offset. if itr.n <= itr.opt.Offset { continue } // Read next point if we're beyond the limit. if itr.opt.Limit > 0 && (itr.n-itr.opt.Offset) > itr.opt.Limit { continue } return p, nil } } type integerFillIterator struct { input *bufIntegerIterator prev IntegerPoint startTime int64 endTime int64 auxFields []interface{} init bool opt IteratorOptions window struct { name string tags Tags time int64 offset int64 } } func newIntegerFillIterator(input IntegerIterator, expr Expr, opt IteratorOptions) *integerFillIterator { if opt.Fill == NullFill { if expr, ok := expr.(*Call); ok && expr.Name == "count" { opt.Fill = NumberFill opt.FillValue = int64(0) } } var startTime, endTime int64 if opt.Ascending { startTime, _ = opt.Window(opt.StartTime) endTime, _ = opt.Window(opt.EndTime) } else { startTime, _ = opt.Window(opt.EndTime) endTime, _ = opt.Window(opt.StartTime) } var auxFields []interface{} if len(opt.Aux) > 0 { auxFields = make([]interface{}, len(opt.Aux)) } return &integerFillIterator{ input: newBufIntegerIterator(input), prev: IntegerPoint{Nil: true}, startTime: startTime, endTime: endTime, auxFields: auxFields, opt: opt, } } func (itr *integerFillIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *integerFillIterator) Close() error { return itr.input.Close() } func (itr *integerFillIterator) Next() (*IntegerPoint, error) { if !itr.init { p, err := itr.input.peek() if p == nil || err != nil { return nil, err } itr.window.name, itr.window.tags = p.Name, p.Tags itr.window.time = itr.startTime if itr.opt.Location != nil { _, itr.window.offset = itr.opt.Zone(itr.window.time) } itr.init = true } p, err := itr.input.Next() if err != nil { return nil, err } // Check if the next point is outside of our window or is nil. for p == nil || p.Name != itr.window.name || p.Tags.ID() != itr.window.tags.ID() { // If we are inside of an interval, unread the point and continue below to // constructing a new point. if itr.opt.Ascending { if itr.window.time <= itr.endTime { itr.input.unread(p) p = nil break } } else { if itr.window.time >= itr.endTime { itr.input.unread(p) p = nil break } } // We are *not* in a current interval. If there is no next point, // we are at the end of all intervals. if p == nil { return nil, nil } // Set the new interval. itr.window.name, itr.window.tags = p.Name, p.Tags itr.window.time = itr.startTime if itr.opt.Location != nil { _, itr.window.offset = itr.opt.Zone(itr.window.time) } itr.prev = IntegerPoint{Nil: true} break } // Check if the point is our next expected point. if p == nil || (itr.opt.Ascending && p.Time > itr.window.time) || (!itr.opt.Ascending && p.Time < itr.window.time) { if p != nil { itr.input.unread(p) } p = &IntegerPoint{ Name: itr.window.name, Tags: itr.window.tags, Time: itr.window.time, Aux: itr.auxFields, } switch itr.opt.Fill { case LinearFill: if !itr.prev.Nil { next, err := itr.input.peek() if err != nil { return nil, err } else if next != nil && next.Name == itr.window.name && next.Tags.ID() == itr.window.tags.ID() { interval := int64(itr.opt.Interval.Duration) start := itr.window.time / interval p.Value = linearInteger(start, itr.prev.Time/interval, next.Time/interval, itr.prev.Value, next.Value) } else { p.Nil = true } } else { p.Nil = true } case NullFill: p.Nil = true case NumberFill: p.Value = castToInteger(itr.opt.FillValue) case PreviousFill: if !itr.prev.Nil { p.Value = itr.prev.Value p.Nil = itr.prev.Nil } else { p.Nil = true } } } else { itr.prev = *p } // Advance the expected time. Do not advance to a new window here // as there may be lingering points with the same timestamp in the previous // window. if itr.opt.Ascending { itr.window.time += int64(itr.opt.Interval.Duration) } else { itr.window.time -= int64(itr.opt.Interval.Duration) } // Check to see if we have passed over an offset change and adjust the time // to account for this new offset. if itr.opt.Location != nil { if _, offset := itr.opt.Zone(itr.window.time - 1); offset != itr.window.offset { diff := itr.window.offset - offset if abs(diff) < int64(itr.opt.Interval.Duration) { itr.window.time += diff } itr.window.offset = offset } } return p, nil } // integerIntervalIterator represents a integer implementation of IntervalIterator. type integerIntervalIterator struct { input IntegerIterator opt IteratorOptions } func newIntegerIntervalIterator(input IntegerIterator, opt IteratorOptions) *integerIntervalIterator { return &integerIntervalIterator{input: input, opt: opt} } func (itr *integerIntervalIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *integerIntervalIterator) Close() error { return itr.input.Close() } func (itr *integerIntervalIterator) Next() (*IntegerPoint, error) { p, err := itr.input.Next() if p == nil || err != nil { return nil, err } p.Time, _ = itr.opt.Window(p.Time) // If we see the minimum allowable time, set the time to zero so we don't // break the default returned time for aggregate queries without times. if p.Time == MinTime { p.Time = 0 } return p, nil } // integerInterruptIterator represents a integer implementation of InterruptIterator. type integerInterruptIterator struct { input IntegerIterator closing <-chan struct{} count int } func newIntegerInterruptIterator(input IntegerIterator, closing <-chan struct{}) *integerInterruptIterator { return &integerInterruptIterator{input: input, closing: closing} } func (itr *integerInterruptIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *integerInterruptIterator) Close() error { return itr.input.Close() } func (itr *integerInterruptIterator) Next() (*IntegerPoint, error) { // Only check if the channel is closed every N points. This // intentionally checks on both 0 and N so that if the iterator // has been interrupted before the first point is emitted it will // not emit any points. if itr.count&0xFF == 0xFF { select { case <-itr.closing: return nil, itr.Close() default: // Reset iterator count to zero and fall through to emit the next point. itr.count = 0 } } // Increment the counter for every point read. itr.count++ return itr.input.Next() } // integerCloseInterruptIterator represents a integer implementation of CloseInterruptIterator. type integerCloseInterruptIterator struct { input IntegerIterator closing <-chan struct{} done chan struct{} once sync.Once } func newIntegerCloseInterruptIterator(input IntegerIterator, closing <-chan struct{}) *integerCloseInterruptIterator { itr := &integerCloseInterruptIterator{ input: input, closing: closing, done: make(chan struct{}), } go itr.monitor() return itr } func (itr *integerCloseInterruptIterator) monitor() { select { case <-itr.closing: itr.Close() case <-itr.done: } } func (itr *integerCloseInterruptIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *integerCloseInterruptIterator) Close() error { itr.once.Do(func() { close(itr.done) itr.input.Close() }) return nil } func (itr *integerCloseInterruptIterator) Next() (*IntegerPoint, error) { p, err := itr.input.Next() if err != nil { // Check if the iterator was closed. select { case <-itr.done: return nil, nil default: return nil, err } } return p, nil } // auxIntegerPoint represents a combination of a point and an error for the AuxIterator. type auxIntegerPoint struct { point *IntegerPoint err error } // integerAuxIterator represents a integer implementation of AuxIterator. type integerAuxIterator struct { input *bufIntegerIterator output chan auxIntegerPoint fields *auxIteratorFields background bool } func newIntegerAuxIterator(input IntegerIterator, opt IteratorOptions) *integerAuxIterator { return &integerAuxIterator{ input: newBufIntegerIterator(input), output: make(chan auxIntegerPoint, 1), fields: newAuxIteratorFields(opt), } } func (itr *integerAuxIterator) Background() { itr.background = true itr.Start() go DrainIterator(itr) } func (itr *integerAuxIterator) Start() { go itr.stream() } func (itr *integerAuxIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *integerAuxIterator) Close() error { return itr.input.Close() } func (itr *integerAuxIterator) Next() (*IntegerPoint, error) { p := <-itr.output return p.point, p.err } func (itr *integerAuxIterator) Iterator(name string, typ DataType) Iterator { return itr.fields.iterator(name, typ) } func (itr *integerAuxIterator) stream() { for { // Read next point. p, err := itr.input.Next() if err != nil { itr.output <- auxIntegerPoint{err: err} itr.fields.sendError(err) break } else if p == nil { break } // Send point to output and to each field iterator. itr.output <- auxIntegerPoint{point: p} if ok := itr.fields.send(p); !ok && itr.background { break } } close(itr.output) itr.fields.close() } // integerChanIterator represents a new instance of integerChanIterator. type integerChanIterator struct { buf struct { i int filled bool points [2]IntegerPoint } err error cond *sync.Cond done bool } func (itr *integerChanIterator) Stats() IteratorStats { return IteratorStats{} } func (itr *integerChanIterator) Close() error { itr.cond.L.Lock() // Mark the channel iterator as done and signal all waiting goroutines to start again. itr.done = true itr.cond.Broadcast() // Do not defer the unlock so we don't create an unnecessary allocation. itr.cond.L.Unlock() return nil } func (itr *integerChanIterator) setBuf(name string, tags Tags, time int64, value interface{}) bool { itr.cond.L.Lock() defer itr.cond.L.Unlock() // Wait for either the iterator to be done (so we don't have to set the value) // or for the buffer to have been read and ready for another write. for !itr.done && itr.buf.filled { itr.cond.Wait() } // Do not set the value and return false to signal that the iterator is closed. // Do this after the above wait as the above for loop may have exited because // the iterator was closed. if itr.done { return false } switch v := value.(type) { case int64: itr.buf.points[itr.buf.i] = IntegerPoint{Name: name, Tags: tags, Time: time, Value: v} default: itr.buf.points[itr.buf.i] = IntegerPoint{Name: name, Tags: tags, Time: time, Nil: true} } itr.buf.filled = true // Signal to all waiting goroutines that a new value is ready to read. itr.cond.Signal() return true } func (itr *integerChanIterator) setErr(err error) { itr.cond.L.Lock() defer itr.cond.L.Unlock() itr.err = err // Signal to all waiting goroutines that a new value is ready to read. itr.cond.Signal() } func (itr *integerChanIterator) Next() (*IntegerPoint, error) { itr.cond.L.Lock() defer itr.cond.L.Unlock() // Check for an error and return one if there. if itr.err != nil { return nil, itr.err } // Wait until either a value is available in the buffer or // the iterator is closed. for !itr.done && !itr.buf.filled { itr.cond.Wait() } // Return nil once the channel is done and the buffer is empty. if itr.done && !itr.buf.filled { return nil, nil } // Always read from the buffer if it exists, even if the iterator // is closed. This prevents the last value from being truncated by // the parent iterator. p := &itr.buf.points[itr.buf.i] itr.buf.i = (itr.buf.i + 1) % len(itr.buf.points) itr.buf.filled = false itr.cond.Signal() return p, nil } // integerReduceFloatIterator executes a reducer for every interval and buffers the result. type integerReduceFloatIterator struct { input *bufIntegerIterator create func() (IntegerPointAggregator, FloatPointEmitter) dims []string opt IteratorOptions points []FloatPoint keepTags bool } func newIntegerReduceFloatIterator(input IntegerIterator, opt IteratorOptions, createFn func() (IntegerPointAggregator, FloatPointEmitter)) *integerReduceFloatIterator { return &integerReduceFloatIterator{ input: newBufIntegerIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *integerReduceFloatIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerReduceFloatIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *integerReduceFloatIterator) Next() (*FloatPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // integerReduceFloatPoint stores the reduced data for a name/tag combination. type integerReduceFloatPoint struct { Name string Tags Tags Aggregator IntegerPointAggregator Emitter FloatPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *integerReduceFloatIterator) reduce() ([]FloatPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*integerReduceFloatPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &integerReduceFloatPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateInteger(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]FloatPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(floatPointsByTime(a))) } return a, nil } // integerStreamFloatIterator streams inputs into the iterator and emits points gradually. type integerStreamFloatIterator struct { input *bufIntegerIterator create func() (IntegerPointAggregator, FloatPointEmitter) dims []string opt IteratorOptions m map[string]*integerReduceFloatPoint points []FloatPoint } // newIntegerStreamFloatIterator returns a new instance of integerStreamFloatIterator. func newIntegerStreamFloatIterator(input IntegerIterator, createFn func() (IntegerPointAggregator, FloatPointEmitter), opt IteratorOptions) *integerStreamFloatIterator { return &integerStreamFloatIterator{ input: newBufIntegerIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*integerReduceFloatPoint), } } // Stats returns stats from the input iterator. func (itr *integerStreamFloatIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerStreamFloatIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *integerStreamFloatIterator) Next() (*FloatPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *integerStreamFloatIterator) reduce() ([]FloatPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []FloatPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &integerReduceFloatPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateInteger(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // integerFloatExprIterator executes a function to modify an existing point // for every output of the input iterator. type integerFloatExprIterator struct { left *bufIntegerIterator right *bufIntegerIterator fn integerFloatExprFunc points []IntegerPoint // must be size 2 storePrev bool } func newIntegerFloatExprIterator(left, right IntegerIterator, opt IteratorOptions, fn func(a, b int64) float64) *integerFloatExprIterator { var points []IntegerPoint switch opt.Fill { case NullFill, PreviousFill: points = []IntegerPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToInteger(opt.FillValue) points = []IntegerPoint{{Value: value}, {Value: value}} } return &integerFloatExprIterator{ left: newBufIntegerIterator(left), right: newBufIntegerIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *integerFloatExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *integerFloatExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *integerFloatExprIterator) Next() (*FloatPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = 0 a.Nil = true } else if b == nil { p := *a b = &p b.Value = 0 b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &FloatPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *integerFloatExprIterator) next() (a, b *IntegerPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // integerFloatExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type integerFloatExprFunc func(a, b int64) float64 // integerReduceIntegerIterator executes a reducer for every interval and buffers the result. type integerReduceIntegerIterator struct { input *bufIntegerIterator create func() (IntegerPointAggregator, IntegerPointEmitter) dims []string opt IteratorOptions points []IntegerPoint keepTags bool } func newIntegerReduceIntegerIterator(input IntegerIterator, opt IteratorOptions, createFn func() (IntegerPointAggregator, IntegerPointEmitter)) *integerReduceIntegerIterator { return &integerReduceIntegerIterator{ input: newBufIntegerIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *integerReduceIntegerIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerReduceIntegerIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *integerReduceIntegerIterator) Next() (*IntegerPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // integerReduceIntegerPoint stores the reduced data for a name/tag combination. type integerReduceIntegerPoint struct { Name string Tags Tags Aggregator IntegerPointAggregator Emitter IntegerPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *integerReduceIntegerIterator) reduce() ([]IntegerPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*integerReduceIntegerPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &integerReduceIntegerPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateInteger(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]IntegerPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(integerPointsByTime(a))) } return a, nil } // integerStreamIntegerIterator streams inputs into the iterator and emits points gradually. type integerStreamIntegerIterator struct { input *bufIntegerIterator create func() (IntegerPointAggregator, IntegerPointEmitter) dims []string opt IteratorOptions m map[string]*integerReduceIntegerPoint points []IntegerPoint } // newIntegerStreamIntegerIterator returns a new instance of integerStreamIntegerIterator. func newIntegerStreamIntegerIterator(input IntegerIterator, createFn func() (IntegerPointAggregator, IntegerPointEmitter), opt IteratorOptions) *integerStreamIntegerIterator { return &integerStreamIntegerIterator{ input: newBufIntegerIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*integerReduceIntegerPoint), } } // Stats returns stats from the input iterator. func (itr *integerStreamIntegerIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerStreamIntegerIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *integerStreamIntegerIterator) Next() (*IntegerPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *integerStreamIntegerIterator) reduce() ([]IntegerPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []IntegerPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &integerReduceIntegerPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateInteger(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // integerExprIterator executes a function to modify an existing point // for every output of the input iterator. type integerExprIterator struct { left *bufIntegerIterator right *bufIntegerIterator fn integerExprFunc points []IntegerPoint // must be size 2 storePrev bool } func newIntegerExprIterator(left, right IntegerIterator, opt IteratorOptions, fn func(a, b int64) int64) *integerExprIterator { var points []IntegerPoint switch opt.Fill { case NullFill, PreviousFill: points = []IntegerPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToInteger(opt.FillValue) points = []IntegerPoint{{Value: value}, {Value: value}} } return &integerExprIterator{ left: newBufIntegerIterator(left), right: newBufIntegerIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *integerExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *integerExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *integerExprIterator) Next() (*IntegerPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = 0 a.Nil = true } else if b == nil { p := *a b = &p b.Value = 0 b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } if a.Nil { return a, nil } else if b.Nil { return b, nil } a.Value = itr.fn(a.Value, b.Value) return a, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *integerExprIterator) next() (a, b *IntegerPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // integerExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type integerExprFunc func(a, b int64) int64 // integerReduceStringIterator executes a reducer for every interval and buffers the result. type integerReduceStringIterator struct { input *bufIntegerIterator create func() (IntegerPointAggregator, StringPointEmitter) dims []string opt IteratorOptions points []StringPoint keepTags bool } func newIntegerReduceStringIterator(input IntegerIterator, opt IteratorOptions, createFn func() (IntegerPointAggregator, StringPointEmitter)) *integerReduceStringIterator { return &integerReduceStringIterator{ input: newBufIntegerIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *integerReduceStringIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerReduceStringIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *integerReduceStringIterator) Next() (*StringPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // integerReduceStringPoint stores the reduced data for a name/tag combination. type integerReduceStringPoint struct { Name string Tags Tags Aggregator IntegerPointAggregator Emitter StringPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *integerReduceStringIterator) reduce() ([]StringPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*integerReduceStringPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &integerReduceStringPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateInteger(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]StringPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(stringPointsByTime(a))) } return a, nil } // integerStreamStringIterator streams inputs into the iterator and emits points gradually. type integerStreamStringIterator struct { input *bufIntegerIterator create func() (IntegerPointAggregator, StringPointEmitter) dims []string opt IteratorOptions m map[string]*integerReduceStringPoint points []StringPoint } // newIntegerStreamStringIterator returns a new instance of integerStreamStringIterator. func newIntegerStreamStringIterator(input IntegerIterator, createFn func() (IntegerPointAggregator, StringPointEmitter), opt IteratorOptions) *integerStreamStringIterator { return &integerStreamStringIterator{ input: newBufIntegerIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*integerReduceStringPoint), } } // Stats returns stats from the input iterator. func (itr *integerStreamStringIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerStreamStringIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *integerStreamStringIterator) Next() (*StringPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *integerStreamStringIterator) reduce() ([]StringPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []StringPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &integerReduceStringPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateInteger(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // integerStringExprIterator executes a function to modify an existing point // for every output of the input iterator. type integerStringExprIterator struct { left *bufIntegerIterator right *bufIntegerIterator fn integerStringExprFunc points []IntegerPoint // must be size 2 storePrev bool } func newIntegerStringExprIterator(left, right IntegerIterator, opt IteratorOptions, fn func(a, b int64) string) *integerStringExprIterator { var points []IntegerPoint switch opt.Fill { case NullFill, PreviousFill: points = []IntegerPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToInteger(opt.FillValue) points = []IntegerPoint{{Value: value}, {Value: value}} } return &integerStringExprIterator{ left: newBufIntegerIterator(left), right: newBufIntegerIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *integerStringExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *integerStringExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *integerStringExprIterator) Next() (*StringPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = 0 a.Nil = true } else if b == nil { p := *a b = &p b.Value = 0 b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &StringPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *integerStringExprIterator) next() (a, b *IntegerPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // integerStringExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type integerStringExprFunc func(a, b int64) string // integerReduceBooleanIterator executes a reducer for every interval and buffers the result. type integerReduceBooleanIterator struct { input *bufIntegerIterator create func() (IntegerPointAggregator, BooleanPointEmitter) dims []string opt IteratorOptions points []BooleanPoint keepTags bool } func newIntegerReduceBooleanIterator(input IntegerIterator, opt IteratorOptions, createFn func() (IntegerPointAggregator, BooleanPointEmitter)) *integerReduceBooleanIterator { return &integerReduceBooleanIterator{ input: newBufIntegerIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *integerReduceBooleanIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerReduceBooleanIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *integerReduceBooleanIterator) Next() (*BooleanPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // integerReduceBooleanPoint stores the reduced data for a name/tag combination. type integerReduceBooleanPoint struct { Name string Tags Tags Aggregator IntegerPointAggregator Emitter BooleanPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *integerReduceBooleanIterator) reduce() ([]BooleanPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*integerReduceBooleanPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &integerReduceBooleanPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateInteger(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]BooleanPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(booleanPointsByTime(a))) } return a, nil } // integerStreamBooleanIterator streams inputs into the iterator and emits points gradually. type integerStreamBooleanIterator struct { input *bufIntegerIterator create func() (IntegerPointAggregator, BooleanPointEmitter) dims []string opt IteratorOptions m map[string]*integerReduceBooleanPoint points []BooleanPoint } // newIntegerStreamBooleanIterator returns a new instance of integerStreamBooleanIterator. func newIntegerStreamBooleanIterator(input IntegerIterator, createFn func() (IntegerPointAggregator, BooleanPointEmitter), opt IteratorOptions) *integerStreamBooleanIterator { return &integerStreamBooleanIterator{ input: newBufIntegerIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*integerReduceBooleanPoint), } } // Stats returns stats from the input iterator. func (itr *integerStreamBooleanIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerStreamBooleanIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *integerStreamBooleanIterator) Next() (*BooleanPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *integerStreamBooleanIterator) reduce() ([]BooleanPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []BooleanPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &integerReduceBooleanPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateInteger(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // integerBooleanExprIterator executes a function to modify an existing point // for every output of the input iterator. type integerBooleanExprIterator struct { left *bufIntegerIterator right *bufIntegerIterator fn integerBooleanExprFunc points []IntegerPoint // must be size 2 storePrev bool } func newIntegerBooleanExprIterator(left, right IntegerIterator, opt IteratorOptions, fn func(a, b int64) bool) *integerBooleanExprIterator { var points []IntegerPoint switch opt.Fill { case NullFill, PreviousFill: points = []IntegerPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToInteger(opt.FillValue) points = []IntegerPoint{{Value: value}, {Value: value}} } return &integerBooleanExprIterator{ left: newBufIntegerIterator(left), right: newBufIntegerIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *integerBooleanExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *integerBooleanExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *integerBooleanExprIterator) Next() (*BooleanPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = 0 a.Nil = true } else if b == nil { p := *a b = &p b.Value = 0 b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &BooleanPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *integerBooleanExprIterator) next() (a, b *IntegerPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // integerBooleanExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type integerBooleanExprFunc func(a, b int64) bool // integerTransformIterator executes a function to modify an existing point for every // output of the input iterator. type integerTransformIterator struct { input IntegerIterator fn integerTransformFunc } // Stats returns stats from the input iterator. func (itr *integerTransformIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerTransformIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *integerTransformIterator) Next() (*IntegerPoint, error) { p, err := itr.input.Next() if err != nil { return nil, err } else if p != nil { p = itr.fn(p) } return p, nil } // integerTransformFunc creates or modifies a point. // The point passed in may be modified and returned rather than allocating a // new point if possible. type integerTransformFunc func(p *IntegerPoint) *IntegerPoint // integerBoolTransformIterator executes a function to modify an existing point for every // output of the input iterator. type integerBoolTransformIterator struct { input IntegerIterator fn integerBoolTransformFunc } // Stats returns stats from the input iterator. func (itr *integerBoolTransformIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerBoolTransformIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *integerBoolTransformIterator) Next() (*BooleanPoint, error) { p, err := itr.input.Next() if err != nil { return nil, err } else if p != nil { return itr.fn(p), nil } return nil, nil } // integerBoolTransformFunc creates or modifies a point. // The point passed in may be modified and returned rather than allocating a // new point if possible. type integerBoolTransformFunc func(p *IntegerPoint) *BooleanPoint // integerDedupeIterator only outputs unique points. // This differs from the DistinctIterator in that it compares all aux fields too. // This iterator is relatively inefficient and should only be used on small // datasets such as meta query results. type integerDedupeIterator struct { input IntegerIterator m map[string]struct{} // lookup of points already sent } type integerIteratorMapper struct { e *Emitter buf []interface{} driver IteratorMap // which iterator to use for the primary value, can be nil fields []IteratorMap // which iterator to use for an aux field point IntegerPoint } func newIntegerIteratorMapper(itrs []Iterator, driver IteratorMap, fields []IteratorMap, opt IteratorOptions) *integerIteratorMapper { e := NewEmitter(itrs, opt.Ascending, 0) e.OmitTime = true return &integerIteratorMapper{ e: e, buf: make([]interface{}, len(itrs)), driver: driver, fields: fields, point: IntegerPoint{ Aux: make([]interface{}, len(fields)), }, } } func (itr *integerIteratorMapper) Next() (*IntegerPoint, error) { t, name, tags, err := itr.e.loadBuf() if err != nil || t == ZeroTime { return nil, err } itr.point.Time = t itr.point.Name = name itr.point.Tags = tags itr.e.readInto(t, name, tags, itr.buf) if itr.driver != nil { if v := itr.driver.Value(tags, itr.buf); v != nil { if v, ok := v.(int64); ok { itr.point.Value = v itr.point.Nil = false } else { itr.point.Value = 0 itr.point.Nil = true } } else { itr.point.Value = 0 itr.point.Nil = true } } for i, f := range itr.fields { itr.point.Aux[i] = f.Value(tags, itr.buf) } return &itr.point, nil } func (itr *integerIteratorMapper) Stats() IteratorStats { stats := IteratorStats{} for _, itr := range itr.e.itrs { stats.Add(itr.Stats()) } return stats } func (itr *integerIteratorMapper) Close() error { return itr.e.Close() } type integerFilterIterator struct { input IntegerIterator cond Expr opt IteratorOptions m map[string]interface{} } func newIntegerFilterIterator(input IntegerIterator, cond Expr, opt IteratorOptions) IntegerIterator { // Strip out time conditions from the WHERE clause. // TODO(jsternberg): This should really be done for us when creating the IteratorOptions struct. n := RewriteFunc(CloneExpr(cond), func(n Node) Node { switch n := n.(type) { case *BinaryExpr: if n.LHS.String() == "time" { return &BooleanLiteral{Val: true} } } return n }) cond, _ = n.(Expr) if cond == nil { return input } else if n, ok := cond.(*BooleanLiteral); ok && n.Val { return input } return &integerFilterIterator{ input: input, cond: cond, opt: opt, m: make(map[string]interface{}), } } func (itr *integerFilterIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *integerFilterIterator) Close() error { return itr.input.Close() } func (itr *integerFilterIterator) Next() (*IntegerPoint, error) { for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } for i, ref := range itr.opt.Aux { itr.m[ref.Val] = p.Aux[i] } for k, v := range p.Tags.KeyValues() { itr.m[k] = v } if !EvalBool(itr.cond, itr.m) { continue } return p, nil } } // newIntegerDedupeIterator returns a new instance of integerDedupeIterator. func newIntegerDedupeIterator(input IntegerIterator) *integerDedupeIterator { return &integerDedupeIterator{ input: input, m: make(map[string]struct{}), } } // Stats returns stats from the input iterator. func (itr *integerDedupeIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *integerDedupeIterator) Close() error { return itr.input.Close() } // Next returns the next unique point from the input iterator. func (itr *integerDedupeIterator) Next() (*IntegerPoint, error) { for { // Read next point. p, err := itr.input.Next() if p == nil || err != nil { return nil, err } // Serialize to bytes to store in lookup. buf, err := proto.Marshal(encodeIntegerPoint(p)) if err != nil { return nil, err } // If the point has already been output then move to the next point. if _, ok := itr.m[string(buf)]; ok { continue } // Otherwise mark it as emitted and return point. itr.m[string(buf)] = struct{}{} return p, nil } } // integerReaderIterator represents an iterator that streams from a reader. type integerReaderIterator struct { r io.Reader dec *IntegerPointDecoder } // newIntegerReaderIterator returns a new instance of integerReaderIterator. func newIntegerReaderIterator(r io.Reader, stats IteratorStats) *integerReaderIterator { dec := NewIntegerPointDecoder(r) dec.stats = stats return &integerReaderIterator{ r: r, dec: dec, } } // Stats returns stats about points processed. func (itr *integerReaderIterator) Stats() IteratorStats { return itr.dec.stats } // Close closes the underlying reader, if applicable. func (itr *integerReaderIterator) Close() error { if r, ok := itr.r.(io.ReadCloser); ok { return r.Close() } return nil } // Next returns the next point from the iterator. func (itr *integerReaderIterator) Next() (*IntegerPoint, error) { // OPTIMIZE(benbjohnson): Reuse point on iterator. // Unmarshal next point. p := &IntegerPoint{} if err := itr.dec.DecodeIntegerPoint(p); err == io.EOF { return nil, nil } else if err != nil { return nil, err } return p, nil } // StringIterator represents a stream of string points. type StringIterator interface { Iterator Next() (*StringPoint, error) } // newStringIterators converts a slice of Iterator to a slice of StringIterator. // Drop and closes any iterator in itrs that is not a StringIterator and cannot // be cast to a StringIterator. func newStringIterators(itrs []Iterator) []StringIterator { a := make([]StringIterator, 0, len(itrs)) for _, itr := range itrs { switch itr := itr.(type) { case StringIterator: a = append(a, itr) default: itr.Close() } } return a } // bufStringIterator represents a buffered StringIterator. type bufStringIterator struct { itr StringIterator buf *StringPoint } // newBufStringIterator returns a buffered StringIterator. func newBufStringIterator(itr StringIterator) *bufStringIterator { return &bufStringIterator{itr: itr} } // Stats returns statistics from the input iterator. func (itr *bufStringIterator) Stats() IteratorStats { return itr.itr.Stats() } // Close closes the underlying iterator. func (itr *bufStringIterator) Close() error { return itr.itr.Close() } // peek returns the next point without removing it from the iterator. func (itr *bufStringIterator) peek() (*StringPoint, error) { p, err := itr.Next() if err != nil { return nil, err } itr.unread(p) return p, nil } // peekTime returns the time of the next point. // Returns zero time if no more points available. func (itr *bufStringIterator) peekTime() (int64, error) { p, err := itr.peek() if p == nil || err != nil { return ZeroTime, err } return p.Time, nil } // Next returns the current buffer, if exists, or calls the underlying iterator. func (itr *bufStringIterator) Next() (*StringPoint, error) { buf := itr.buf if buf != nil { itr.buf = nil return buf, nil } return itr.itr.Next() } // NextInWindow returns the next value if it is between [startTime, endTime). // If the next value is outside the range then it is moved to the buffer. func (itr *bufStringIterator) NextInWindow(startTime, endTime int64) (*StringPoint, error) { v, err := itr.Next() if v == nil || err != nil { return nil, err } else if t := v.Time; t >= endTime || t < startTime { itr.unread(v) return nil, nil } return v, nil } // unread sets v to the buffer. It is read on the next call to Next(). func (itr *bufStringIterator) unread(v *StringPoint) { itr.buf = v } // stringMergeIterator represents an iterator that combines multiple string iterators. type stringMergeIterator struct { inputs []StringIterator heap *stringMergeHeap init bool // Current iterator and window. curr *stringMergeHeapItem window struct { name string tags string startTime int64 endTime int64 } } // newStringMergeIterator returns a new instance of stringMergeIterator. func newStringMergeIterator(inputs []StringIterator, opt IteratorOptions) *stringMergeIterator { itr := &stringMergeIterator{ inputs: inputs, heap: &stringMergeHeap{ items: make([]*stringMergeHeapItem, 0, len(inputs)), opt: opt, }, } // Initialize heap items. for _, input := range inputs { // Wrap in buffer, ignore any inputs without anymore points. bufInput := newBufStringIterator(input) // Append to the heap. itr.heap.items = append(itr.heap.items, &stringMergeHeapItem{itr: bufInput}) } return itr } // Stats returns an aggregation of stats from the underlying iterators. func (itr *stringMergeIterator) Stats() IteratorStats { var stats IteratorStats for _, input := range itr.inputs { stats.Add(input.Stats()) } return stats } // Close closes the underlying iterators. func (itr *stringMergeIterator) Close() error { for _, input := range itr.inputs { input.Close() } itr.curr = nil itr.inputs = nil itr.heap.items = nil return nil } // Next returns the next point from the iterator. func (itr *stringMergeIterator) Next() (*StringPoint, error) { // Initialize the heap. This needs to be done lazily on the first call to this iterator // so that iterator initialization done through the Select() call returns quickly. // Queries can only be interrupted after the Select() call completes so any operations // done during iterator creation cannot be interrupted, which is why we do it here // instead so an interrupt can happen while initializing the heap. if !itr.init { items := itr.heap.items itr.heap.items = make([]*stringMergeHeapItem, 0, len(items)) for _, item := range items { if p, err := item.itr.peek(); err != nil { return nil, err } else if p == nil { continue } itr.heap.items = append(itr.heap.items, item) } heap.Init(itr.heap) itr.init = true } for { // Retrieve the next iterator if we don't have one. if itr.curr == nil { if len(itr.heap.items) == 0 { return nil, nil } itr.curr = heap.Pop(itr.heap).(*stringMergeHeapItem) // Read point and set current window. p, err := itr.curr.itr.Next() if err != nil { return nil, err } tags := p.Tags.Subset(itr.heap.opt.Dimensions) itr.window.name, itr.window.tags = p.Name, tags.ID() itr.window.startTime, itr.window.endTime = itr.heap.opt.Window(p.Time) return p, nil } // Read the next point from the current iterator. p, err := itr.curr.itr.Next() if err != nil { return nil, err } // If there are no more points then remove iterator from heap and find next. if p == nil { itr.curr = nil continue } // Check if the point is inside of our current window. inWindow := true if window := itr.window; window.name != p.Name { inWindow = false } else if tags := p.Tags.Subset(itr.heap.opt.Dimensions); window.tags != tags.ID() { inWindow = false } else if opt := itr.heap.opt; opt.Ascending && p.Time >= window.endTime { inWindow = false } else if !opt.Ascending && p.Time < window.startTime { inWindow = false } // If it's outside our window then push iterator back on the heap and find new iterator. if !inWindow { itr.curr.itr.unread(p) heap.Push(itr.heap, itr.curr) itr.curr = nil continue } return p, nil } } // stringMergeHeap represents a heap of stringMergeHeapItems. // Items are sorted by their next window and then by name/tags. type stringMergeHeap struct { opt IteratorOptions items []*stringMergeHeapItem } func (h *stringMergeHeap) Len() int { return len(h.items) } func (h *stringMergeHeap) Swap(i, j int) { h.items[i], h.items[j] = h.items[j], h.items[i] } func (h *stringMergeHeap) Less(i, j int) bool { x, err := h.items[i].itr.peek() if err != nil { return true } y, err := h.items[j].itr.peek() if err != nil { return false } if h.opt.Ascending { if x.Name != y.Name { return x.Name < y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); xTags.ID() != yTags.ID() { return xTags.ID() < yTags.ID() } } else { if x.Name != y.Name { return x.Name > y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); xTags.ID() != yTags.ID() { return xTags.ID() > yTags.ID() } } xt, _ := h.opt.Window(x.Time) yt, _ := h.opt.Window(y.Time) if h.opt.Ascending { return xt < yt } return xt > yt } func (h *stringMergeHeap) Push(x interface{}) { h.items = append(h.items, x.(*stringMergeHeapItem)) } func (h *stringMergeHeap) Pop() interface{} { old := h.items n := len(old) item := old[n-1] h.items = old[0 : n-1] return item } type stringMergeHeapItem struct { itr *bufStringIterator } // stringSortedMergeIterator is an iterator that sorts and merges multiple iterators into one. type stringSortedMergeIterator struct { inputs []StringIterator heap *stringSortedMergeHeap init bool } // newStringSortedMergeIterator returns an instance of stringSortedMergeIterator. func newStringSortedMergeIterator(inputs []StringIterator, opt IteratorOptions) Iterator { itr := &stringSortedMergeIterator{ inputs: inputs, heap: &stringSortedMergeHeap{ items: make([]*stringSortedMergeHeapItem, 0, len(inputs)), opt: opt, }, } // Initialize heap items. for _, input := range inputs { // Append to the heap. itr.heap.items = append(itr.heap.items, &stringSortedMergeHeapItem{itr: input}) } return itr } // Stats returns an aggregation of stats from the underlying iterators. func (itr *stringSortedMergeIterator) Stats() IteratorStats { var stats IteratorStats for _, input := range itr.inputs { stats.Add(input.Stats()) } return stats } // Close closes the underlying iterators. func (itr *stringSortedMergeIterator) Close() error { for _, input := range itr.inputs { input.Close() } return nil } // Next returns the next points from the iterator. func (itr *stringSortedMergeIterator) Next() (*StringPoint, error) { return itr.pop() } // pop returns the next point from the heap. // Reads the next point from item's cursor and puts it back on the heap. func (itr *stringSortedMergeIterator) pop() (*StringPoint, error) { // Initialize the heap. See the MergeIterator to see why this has to be done lazily. if !itr.init { items := itr.heap.items itr.heap.items = make([]*stringSortedMergeHeapItem, 0, len(items)) for _, item := range items { var err error if item.point, err = item.itr.Next(); err != nil { return nil, err } else if item.point == nil { continue } itr.heap.items = append(itr.heap.items, item) } heap.Init(itr.heap) itr.init = true } if len(itr.heap.items) == 0 { return nil, nil } // Read the next item from the heap. item := heap.Pop(itr.heap).(*stringSortedMergeHeapItem) if item.err != nil { return nil, item.err } else if item.point == nil { return nil, nil } // Copy the point for return. p := item.point.Clone() // Read the next item from the cursor. Push back to heap if one exists. if item.point, item.err = item.itr.Next(); item.point != nil { heap.Push(itr.heap, item) } return p, nil } // stringSortedMergeHeap represents a heap of stringSortedMergeHeapItems. type stringSortedMergeHeap struct { opt IteratorOptions items []*stringSortedMergeHeapItem } func (h *stringSortedMergeHeap) Len() int { return len(h.items) } func (h *stringSortedMergeHeap) Swap(i, j int) { h.items[i], h.items[j] = h.items[j], h.items[i] } func (h *stringSortedMergeHeap) Less(i, j int) bool { x, y := h.items[i].point, h.items[j].point if h.opt.Ascending { if x.Name != y.Name { return x.Name < y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); !xTags.Equals(&yTags) { return xTags.ID() < yTags.ID() } return x.Time < y.Time } if x.Name != y.Name { return x.Name > y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); !xTags.Equals(&yTags) { return xTags.ID() > yTags.ID() } return x.Time > y.Time } func (h *stringSortedMergeHeap) Push(x interface{}) { h.items = append(h.items, x.(*stringSortedMergeHeapItem)) } func (h *stringSortedMergeHeap) Pop() interface{} { old := h.items n := len(old) item := old[n-1] h.items = old[0 : n-1] return item } type stringSortedMergeHeapItem struct { point *StringPoint err error itr StringIterator } // stringParallelIterator represents an iterator that pulls data in a separate goroutine. type stringParallelIterator struct { input StringIterator ch chan stringPointError once sync.Once closing chan struct{} wg sync.WaitGroup } // newStringParallelIterator returns a new instance of stringParallelIterator. func newStringParallelIterator(input StringIterator) *stringParallelIterator { itr := &stringParallelIterator{ input: input, ch: make(chan stringPointError, 256), closing: make(chan struct{}), } itr.wg.Add(1) go itr.monitor() return itr } // Stats returns stats from the underlying iterator. func (itr *stringParallelIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the underlying iterators. func (itr *stringParallelIterator) Close() error { itr.once.Do(func() { close(itr.closing) }) itr.wg.Wait() return itr.input.Close() } // Next returns the next point from the iterator. func (itr *stringParallelIterator) Next() (*StringPoint, error) { v, ok := <-itr.ch if !ok { return nil, io.EOF } return v.point, v.err } // monitor runs in a separate goroutine and actively pulls the next point. func (itr *stringParallelIterator) monitor() { defer close(itr.ch) defer itr.wg.Done() for { // Read next point. p, err := itr.input.Next() if p != nil { p = p.Clone() } select { case <-itr.closing: return case itr.ch <- stringPointError{point: p, err: err}: } } } type stringPointError struct { point *StringPoint err error } // stringLimitIterator represents an iterator that limits points per group. type stringLimitIterator struct { input StringIterator opt IteratorOptions n int prev struct { name string tags Tags } } // newStringLimitIterator returns a new instance of stringLimitIterator. func newStringLimitIterator(input StringIterator, opt IteratorOptions) *stringLimitIterator { return &stringLimitIterator{ input: input, opt: opt, } } // Stats returns stats from the underlying iterator. func (itr *stringLimitIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the underlying iterators. func (itr *stringLimitIterator) Close() error { return itr.input.Close() } // Next returns the next point from the iterator. func (itr *stringLimitIterator) Next() (*StringPoint, error) { for { p, err := itr.input.Next() if p == nil || err != nil { return nil, err } // Reset window and counter if a new window is encountered. if p.Name != itr.prev.name || !p.Tags.Equals(&itr.prev.tags) { itr.prev.name = p.Name itr.prev.tags = p.Tags itr.n = 0 } // Increment counter. itr.n++ // Read next point if not beyond the offset. if itr.n <= itr.opt.Offset { continue } // Read next point if we're beyond the limit. if itr.opt.Limit > 0 && (itr.n-itr.opt.Offset) > itr.opt.Limit { continue } return p, nil } } type stringFillIterator struct { input *bufStringIterator prev StringPoint startTime int64 endTime int64 auxFields []interface{} init bool opt IteratorOptions window struct { name string tags Tags time int64 offset int64 } } func newStringFillIterator(input StringIterator, expr Expr, opt IteratorOptions) *stringFillIterator { if opt.Fill == NullFill { if expr, ok := expr.(*Call); ok && expr.Name == "count" { opt.Fill = NumberFill opt.FillValue = "" } } var startTime, endTime int64 if opt.Ascending { startTime, _ = opt.Window(opt.StartTime) endTime, _ = opt.Window(opt.EndTime) } else { startTime, _ = opt.Window(opt.EndTime) endTime, _ = opt.Window(opt.StartTime) } var auxFields []interface{} if len(opt.Aux) > 0 { auxFields = make([]interface{}, len(opt.Aux)) } return &stringFillIterator{ input: newBufStringIterator(input), prev: StringPoint{Nil: true}, startTime: startTime, endTime: endTime, auxFields: auxFields, opt: opt, } } func (itr *stringFillIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *stringFillIterator) Close() error { return itr.input.Close() } func (itr *stringFillIterator) Next() (*StringPoint, error) { if !itr.init { p, err := itr.input.peek() if p == nil || err != nil { return nil, err } itr.window.name, itr.window.tags = p.Name, p.Tags itr.window.time = itr.startTime if itr.opt.Location != nil { _, itr.window.offset = itr.opt.Zone(itr.window.time) } itr.init = true } p, err := itr.input.Next() if err != nil { return nil, err } // Check if the next point is outside of our window or is nil. for p == nil || p.Name != itr.window.name || p.Tags.ID() != itr.window.tags.ID() { // If we are inside of an interval, unread the point and continue below to // constructing a new point. if itr.opt.Ascending { if itr.window.time <= itr.endTime { itr.input.unread(p) p = nil break } } else { if itr.window.time >= itr.endTime { itr.input.unread(p) p = nil break } } // We are *not* in a current interval. If there is no next point, // we are at the end of all intervals. if p == nil { return nil, nil } // Set the new interval. itr.window.name, itr.window.tags = p.Name, p.Tags itr.window.time = itr.startTime if itr.opt.Location != nil { _, itr.window.offset = itr.opt.Zone(itr.window.time) } itr.prev = StringPoint{Nil: true} break } // Check if the point is our next expected point. if p == nil || (itr.opt.Ascending && p.Time > itr.window.time) || (!itr.opt.Ascending && p.Time < itr.window.time) { if p != nil { itr.input.unread(p) } p = &StringPoint{ Name: itr.window.name, Tags: itr.window.tags, Time: itr.window.time, Aux: itr.auxFields, } switch itr.opt.Fill { case LinearFill: fallthrough case NullFill: p.Nil = true case NumberFill: p.Value = castToString(itr.opt.FillValue) case PreviousFill: if !itr.prev.Nil { p.Value = itr.prev.Value p.Nil = itr.prev.Nil } else { p.Nil = true } } } else { itr.prev = *p } // Advance the expected time. Do not advance to a new window here // as there may be lingering points with the same timestamp in the previous // window. if itr.opt.Ascending { itr.window.time += int64(itr.opt.Interval.Duration) } else { itr.window.time -= int64(itr.opt.Interval.Duration) } // Check to see if we have passed over an offset change and adjust the time // to account for this new offset. if itr.opt.Location != nil { if _, offset := itr.opt.Zone(itr.window.time - 1); offset != itr.window.offset { diff := itr.window.offset - offset if abs(diff) < int64(itr.opt.Interval.Duration) { itr.window.time += diff } itr.window.offset = offset } } return p, nil } // stringIntervalIterator represents a string implementation of IntervalIterator. type stringIntervalIterator struct { input StringIterator opt IteratorOptions } func newStringIntervalIterator(input StringIterator, opt IteratorOptions) *stringIntervalIterator { return &stringIntervalIterator{input: input, opt: opt} } func (itr *stringIntervalIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *stringIntervalIterator) Close() error { return itr.input.Close() } func (itr *stringIntervalIterator) Next() (*StringPoint, error) { p, err := itr.input.Next() if p == nil || err != nil { return nil, err } p.Time, _ = itr.opt.Window(p.Time) // If we see the minimum allowable time, set the time to zero so we don't // break the default returned time for aggregate queries without times. if p.Time == MinTime { p.Time = 0 } return p, nil } // stringInterruptIterator represents a string implementation of InterruptIterator. type stringInterruptIterator struct { input StringIterator closing <-chan struct{} count int } func newStringInterruptIterator(input StringIterator, closing <-chan struct{}) *stringInterruptIterator { return &stringInterruptIterator{input: input, closing: closing} } func (itr *stringInterruptIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *stringInterruptIterator) Close() error { return itr.input.Close() } func (itr *stringInterruptIterator) Next() (*StringPoint, error) { // Only check if the channel is closed every N points. This // intentionally checks on both 0 and N so that if the iterator // has been interrupted before the first point is emitted it will // not emit any points. if itr.count&0xFF == 0xFF { select { case <-itr.closing: return nil, itr.Close() default: // Reset iterator count to zero and fall through to emit the next point. itr.count = 0 } } // Increment the counter for every point read. itr.count++ return itr.input.Next() } // stringCloseInterruptIterator represents a string implementation of CloseInterruptIterator. type stringCloseInterruptIterator struct { input StringIterator closing <-chan struct{} done chan struct{} once sync.Once } func newStringCloseInterruptIterator(input StringIterator, closing <-chan struct{}) *stringCloseInterruptIterator { itr := &stringCloseInterruptIterator{ input: input, closing: closing, done: make(chan struct{}), } go itr.monitor() return itr } func (itr *stringCloseInterruptIterator) monitor() { select { case <-itr.closing: itr.Close() case <-itr.done: } } func (itr *stringCloseInterruptIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *stringCloseInterruptIterator) Close() error { itr.once.Do(func() { close(itr.done) itr.input.Close() }) return nil } func (itr *stringCloseInterruptIterator) Next() (*StringPoint, error) { p, err := itr.input.Next() if err != nil { // Check if the iterator was closed. select { case <-itr.done: return nil, nil default: return nil, err } } return p, nil } // auxStringPoint represents a combination of a point and an error for the AuxIterator. type auxStringPoint struct { point *StringPoint err error } // stringAuxIterator represents a string implementation of AuxIterator. type stringAuxIterator struct { input *bufStringIterator output chan auxStringPoint fields *auxIteratorFields background bool } func newStringAuxIterator(input StringIterator, opt IteratorOptions) *stringAuxIterator { return &stringAuxIterator{ input: newBufStringIterator(input), output: make(chan auxStringPoint, 1), fields: newAuxIteratorFields(opt), } } func (itr *stringAuxIterator) Background() { itr.background = true itr.Start() go DrainIterator(itr) } func (itr *stringAuxIterator) Start() { go itr.stream() } func (itr *stringAuxIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *stringAuxIterator) Close() error { return itr.input.Close() } func (itr *stringAuxIterator) Next() (*StringPoint, error) { p := <-itr.output return p.point, p.err } func (itr *stringAuxIterator) Iterator(name string, typ DataType) Iterator { return itr.fields.iterator(name, typ) } func (itr *stringAuxIterator) stream() { for { // Read next point. p, err := itr.input.Next() if err != nil { itr.output <- auxStringPoint{err: err} itr.fields.sendError(err) break } else if p == nil { break } // Send point to output and to each field iterator. itr.output <- auxStringPoint{point: p} if ok := itr.fields.send(p); !ok && itr.background { break } } close(itr.output) itr.fields.close() } // stringChanIterator represents a new instance of stringChanIterator. type stringChanIterator struct { buf struct { i int filled bool points [2]StringPoint } err error cond *sync.Cond done bool } func (itr *stringChanIterator) Stats() IteratorStats { return IteratorStats{} } func (itr *stringChanIterator) Close() error { itr.cond.L.Lock() // Mark the channel iterator as done and signal all waiting goroutines to start again. itr.done = true itr.cond.Broadcast() // Do not defer the unlock so we don't create an unnecessary allocation. itr.cond.L.Unlock() return nil } func (itr *stringChanIterator) setBuf(name string, tags Tags, time int64, value interface{}) bool { itr.cond.L.Lock() defer itr.cond.L.Unlock() // Wait for either the iterator to be done (so we don't have to set the value) // or for the buffer to have been read and ready for another write. for !itr.done && itr.buf.filled { itr.cond.Wait() } // Do not set the value and return false to signal that the iterator is closed. // Do this after the above wait as the above for loop may have exited because // the iterator was closed. if itr.done { return false } switch v := value.(type) { case string: itr.buf.points[itr.buf.i] = StringPoint{Name: name, Tags: tags, Time: time, Value: v} default: itr.buf.points[itr.buf.i] = StringPoint{Name: name, Tags: tags, Time: time, Nil: true} } itr.buf.filled = true // Signal to all waiting goroutines that a new value is ready to read. itr.cond.Signal() return true } func (itr *stringChanIterator) setErr(err error) { itr.cond.L.Lock() defer itr.cond.L.Unlock() itr.err = err // Signal to all waiting goroutines that a new value is ready to read. itr.cond.Signal() } func (itr *stringChanIterator) Next() (*StringPoint, error) { itr.cond.L.Lock() defer itr.cond.L.Unlock() // Check for an error and return one if there. if itr.err != nil { return nil, itr.err } // Wait until either a value is available in the buffer or // the iterator is closed. for !itr.done && !itr.buf.filled { itr.cond.Wait() } // Return nil once the channel is done and the buffer is empty. if itr.done && !itr.buf.filled { return nil, nil } // Always read from the buffer if it exists, even if the iterator // is closed. This prevents the last value from being truncated by // the parent iterator. p := &itr.buf.points[itr.buf.i] itr.buf.i = (itr.buf.i + 1) % len(itr.buf.points) itr.buf.filled = false itr.cond.Signal() return p, nil } // stringReduceFloatIterator executes a reducer for every interval and buffers the result. type stringReduceFloatIterator struct { input *bufStringIterator create func() (StringPointAggregator, FloatPointEmitter) dims []string opt IteratorOptions points []FloatPoint keepTags bool } func newStringReduceFloatIterator(input StringIterator, opt IteratorOptions, createFn func() (StringPointAggregator, FloatPointEmitter)) *stringReduceFloatIterator { return &stringReduceFloatIterator{ input: newBufStringIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *stringReduceFloatIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringReduceFloatIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *stringReduceFloatIterator) Next() (*FloatPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // stringReduceFloatPoint stores the reduced data for a name/tag combination. type stringReduceFloatPoint struct { Name string Tags Tags Aggregator StringPointAggregator Emitter FloatPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *stringReduceFloatIterator) reduce() ([]FloatPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*stringReduceFloatPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &stringReduceFloatPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateString(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]FloatPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(floatPointsByTime(a))) } return a, nil } // stringStreamFloatIterator streams inputs into the iterator and emits points gradually. type stringStreamFloatIterator struct { input *bufStringIterator create func() (StringPointAggregator, FloatPointEmitter) dims []string opt IteratorOptions m map[string]*stringReduceFloatPoint points []FloatPoint } // newStringStreamFloatIterator returns a new instance of stringStreamFloatIterator. func newStringStreamFloatIterator(input StringIterator, createFn func() (StringPointAggregator, FloatPointEmitter), opt IteratorOptions) *stringStreamFloatIterator { return &stringStreamFloatIterator{ input: newBufStringIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*stringReduceFloatPoint), } } // Stats returns stats from the input iterator. func (itr *stringStreamFloatIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringStreamFloatIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *stringStreamFloatIterator) Next() (*FloatPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *stringStreamFloatIterator) reduce() ([]FloatPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []FloatPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &stringReduceFloatPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateString(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // stringFloatExprIterator executes a function to modify an existing point // for every output of the input iterator. type stringFloatExprIterator struct { left *bufStringIterator right *bufStringIterator fn stringFloatExprFunc points []StringPoint // must be size 2 storePrev bool } func newStringFloatExprIterator(left, right StringIterator, opt IteratorOptions, fn func(a, b string) float64) *stringFloatExprIterator { var points []StringPoint switch opt.Fill { case NullFill, PreviousFill: points = []StringPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToString(opt.FillValue) points = []StringPoint{{Value: value}, {Value: value}} } return &stringFloatExprIterator{ left: newBufStringIterator(left), right: newBufStringIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *stringFloatExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *stringFloatExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *stringFloatExprIterator) Next() (*FloatPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = "" a.Nil = true } else if b == nil { p := *a b = &p b.Value = "" b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &FloatPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *stringFloatExprIterator) next() (a, b *StringPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // stringFloatExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type stringFloatExprFunc func(a, b string) float64 // stringReduceIntegerIterator executes a reducer for every interval and buffers the result. type stringReduceIntegerIterator struct { input *bufStringIterator create func() (StringPointAggregator, IntegerPointEmitter) dims []string opt IteratorOptions points []IntegerPoint keepTags bool } func newStringReduceIntegerIterator(input StringIterator, opt IteratorOptions, createFn func() (StringPointAggregator, IntegerPointEmitter)) *stringReduceIntegerIterator { return &stringReduceIntegerIterator{ input: newBufStringIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *stringReduceIntegerIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringReduceIntegerIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *stringReduceIntegerIterator) Next() (*IntegerPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // stringReduceIntegerPoint stores the reduced data for a name/tag combination. type stringReduceIntegerPoint struct { Name string Tags Tags Aggregator StringPointAggregator Emitter IntegerPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *stringReduceIntegerIterator) reduce() ([]IntegerPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*stringReduceIntegerPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &stringReduceIntegerPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateString(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]IntegerPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(integerPointsByTime(a))) } return a, nil } // stringStreamIntegerIterator streams inputs into the iterator and emits points gradually. type stringStreamIntegerIterator struct { input *bufStringIterator create func() (StringPointAggregator, IntegerPointEmitter) dims []string opt IteratorOptions m map[string]*stringReduceIntegerPoint points []IntegerPoint } // newStringStreamIntegerIterator returns a new instance of stringStreamIntegerIterator. func newStringStreamIntegerIterator(input StringIterator, createFn func() (StringPointAggregator, IntegerPointEmitter), opt IteratorOptions) *stringStreamIntegerIterator { return &stringStreamIntegerIterator{ input: newBufStringIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*stringReduceIntegerPoint), } } // Stats returns stats from the input iterator. func (itr *stringStreamIntegerIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringStreamIntegerIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *stringStreamIntegerIterator) Next() (*IntegerPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *stringStreamIntegerIterator) reduce() ([]IntegerPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []IntegerPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &stringReduceIntegerPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateString(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // stringIntegerExprIterator executes a function to modify an existing point // for every output of the input iterator. type stringIntegerExprIterator struct { left *bufStringIterator right *bufStringIterator fn stringIntegerExprFunc points []StringPoint // must be size 2 storePrev bool } func newStringIntegerExprIterator(left, right StringIterator, opt IteratorOptions, fn func(a, b string) int64) *stringIntegerExprIterator { var points []StringPoint switch opt.Fill { case NullFill, PreviousFill: points = []StringPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToString(opt.FillValue) points = []StringPoint{{Value: value}, {Value: value}} } return &stringIntegerExprIterator{ left: newBufStringIterator(left), right: newBufStringIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *stringIntegerExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *stringIntegerExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *stringIntegerExprIterator) Next() (*IntegerPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = "" a.Nil = true } else if b == nil { p := *a b = &p b.Value = "" b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &IntegerPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *stringIntegerExprIterator) next() (a, b *StringPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // stringIntegerExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type stringIntegerExprFunc func(a, b string) int64 // stringReduceStringIterator executes a reducer for every interval and buffers the result. type stringReduceStringIterator struct { input *bufStringIterator create func() (StringPointAggregator, StringPointEmitter) dims []string opt IteratorOptions points []StringPoint keepTags bool } func newStringReduceStringIterator(input StringIterator, opt IteratorOptions, createFn func() (StringPointAggregator, StringPointEmitter)) *stringReduceStringIterator { return &stringReduceStringIterator{ input: newBufStringIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *stringReduceStringIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringReduceStringIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *stringReduceStringIterator) Next() (*StringPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // stringReduceStringPoint stores the reduced data for a name/tag combination. type stringReduceStringPoint struct { Name string Tags Tags Aggregator StringPointAggregator Emitter StringPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *stringReduceStringIterator) reduce() ([]StringPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*stringReduceStringPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &stringReduceStringPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateString(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]StringPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(stringPointsByTime(a))) } return a, nil } // stringStreamStringIterator streams inputs into the iterator and emits points gradually. type stringStreamStringIterator struct { input *bufStringIterator create func() (StringPointAggregator, StringPointEmitter) dims []string opt IteratorOptions m map[string]*stringReduceStringPoint points []StringPoint } // newStringStreamStringIterator returns a new instance of stringStreamStringIterator. func newStringStreamStringIterator(input StringIterator, createFn func() (StringPointAggregator, StringPointEmitter), opt IteratorOptions) *stringStreamStringIterator { return &stringStreamStringIterator{ input: newBufStringIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*stringReduceStringPoint), } } // Stats returns stats from the input iterator. func (itr *stringStreamStringIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringStreamStringIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *stringStreamStringIterator) Next() (*StringPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *stringStreamStringIterator) reduce() ([]StringPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []StringPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &stringReduceStringPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateString(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // stringExprIterator executes a function to modify an existing point // for every output of the input iterator. type stringExprIterator struct { left *bufStringIterator right *bufStringIterator fn stringExprFunc points []StringPoint // must be size 2 storePrev bool } func newStringExprIterator(left, right StringIterator, opt IteratorOptions, fn func(a, b string) string) *stringExprIterator { var points []StringPoint switch opt.Fill { case NullFill, PreviousFill: points = []StringPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToString(opt.FillValue) points = []StringPoint{{Value: value}, {Value: value}} } return &stringExprIterator{ left: newBufStringIterator(left), right: newBufStringIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *stringExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *stringExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *stringExprIterator) Next() (*StringPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = "" a.Nil = true } else if b == nil { p := *a b = &p b.Value = "" b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } if a.Nil { return a, nil } else if b.Nil { return b, nil } a.Value = itr.fn(a.Value, b.Value) return a, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *stringExprIterator) next() (a, b *StringPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // stringExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type stringExprFunc func(a, b string) string // stringReduceBooleanIterator executes a reducer for every interval and buffers the result. type stringReduceBooleanIterator struct { input *bufStringIterator create func() (StringPointAggregator, BooleanPointEmitter) dims []string opt IteratorOptions points []BooleanPoint keepTags bool } func newStringReduceBooleanIterator(input StringIterator, opt IteratorOptions, createFn func() (StringPointAggregator, BooleanPointEmitter)) *stringReduceBooleanIterator { return &stringReduceBooleanIterator{ input: newBufStringIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *stringReduceBooleanIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringReduceBooleanIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *stringReduceBooleanIterator) Next() (*BooleanPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // stringReduceBooleanPoint stores the reduced data for a name/tag combination. type stringReduceBooleanPoint struct { Name string Tags Tags Aggregator StringPointAggregator Emitter BooleanPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *stringReduceBooleanIterator) reduce() ([]BooleanPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*stringReduceBooleanPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &stringReduceBooleanPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateString(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]BooleanPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(booleanPointsByTime(a))) } return a, nil } // stringStreamBooleanIterator streams inputs into the iterator and emits points gradually. type stringStreamBooleanIterator struct { input *bufStringIterator create func() (StringPointAggregator, BooleanPointEmitter) dims []string opt IteratorOptions m map[string]*stringReduceBooleanPoint points []BooleanPoint } // newStringStreamBooleanIterator returns a new instance of stringStreamBooleanIterator. func newStringStreamBooleanIterator(input StringIterator, createFn func() (StringPointAggregator, BooleanPointEmitter), opt IteratorOptions) *stringStreamBooleanIterator { return &stringStreamBooleanIterator{ input: newBufStringIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*stringReduceBooleanPoint), } } // Stats returns stats from the input iterator. func (itr *stringStreamBooleanIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringStreamBooleanIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *stringStreamBooleanIterator) Next() (*BooleanPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *stringStreamBooleanIterator) reduce() ([]BooleanPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []BooleanPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &stringReduceBooleanPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateString(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // stringBooleanExprIterator executes a function to modify an existing point // for every output of the input iterator. type stringBooleanExprIterator struct { left *bufStringIterator right *bufStringIterator fn stringBooleanExprFunc points []StringPoint // must be size 2 storePrev bool } func newStringBooleanExprIterator(left, right StringIterator, opt IteratorOptions, fn func(a, b string) bool) *stringBooleanExprIterator { var points []StringPoint switch opt.Fill { case NullFill, PreviousFill: points = []StringPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToString(opt.FillValue) points = []StringPoint{{Value: value}, {Value: value}} } return &stringBooleanExprIterator{ left: newBufStringIterator(left), right: newBufStringIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *stringBooleanExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *stringBooleanExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *stringBooleanExprIterator) Next() (*BooleanPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = "" a.Nil = true } else if b == nil { p := *a b = &p b.Value = "" b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &BooleanPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *stringBooleanExprIterator) next() (a, b *StringPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // stringBooleanExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type stringBooleanExprFunc func(a, b string) bool // stringTransformIterator executes a function to modify an existing point for every // output of the input iterator. type stringTransformIterator struct { input StringIterator fn stringTransformFunc } // Stats returns stats from the input iterator. func (itr *stringTransformIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringTransformIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *stringTransformIterator) Next() (*StringPoint, error) { p, err := itr.input.Next() if err != nil { return nil, err } else if p != nil { p = itr.fn(p) } return p, nil } // stringTransformFunc creates or modifies a point. // The point passed in may be modified and returned rather than allocating a // new point if possible. type stringTransformFunc func(p *StringPoint) *StringPoint // stringBoolTransformIterator executes a function to modify an existing point for every // output of the input iterator. type stringBoolTransformIterator struct { input StringIterator fn stringBoolTransformFunc } // Stats returns stats from the input iterator. func (itr *stringBoolTransformIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringBoolTransformIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *stringBoolTransformIterator) Next() (*BooleanPoint, error) { p, err := itr.input.Next() if err != nil { return nil, err } else if p != nil { return itr.fn(p), nil } return nil, nil } // stringBoolTransformFunc creates or modifies a point. // The point passed in may be modified and returned rather than allocating a // new point if possible. type stringBoolTransformFunc func(p *StringPoint) *BooleanPoint // stringDedupeIterator only outputs unique points. // This differs from the DistinctIterator in that it compares all aux fields too. // This iterator is relatively inefficient and should only be used on small // datasets such as meta query results. type stringDedupeIterator struct { input StringIterator m map[string]struct{} // lookup of points already sent } type stringIteratorMapper struct { e *Emitter buf []interface{} driver IteratorMap // which iterator to use for the primary value, can be nil fields []IteratorMap // which iterator to use for an aux field point StringPoint } func newStringIteratorMapper(itrs []Iterator, driver IteratorMap, fields []IteratorMap, opt IteratorOptions) *stringIteratorMapper { e := NewEmitter(itrs, opt.Ascending, 0) e.OmitTime = true return &stringIteratorMapper{ e: e, buf: make([]interface{}, len(itrs)), driver: driver, fields: fields, point: StringPoint{ Aux: make([]interface{}, len(fields)), }, } } func (itr *stringIteratorMapper) Next() (*StringPoint, error) { t, name, tags, err := itr.e.loadBuf() if err != nil || t == ZeroTime { return nil, err } itr.point.Time = t itr.point.Name = name itr.point.Tags = tags itr.e.readInto(t, name, tags, itr.buf) if itr.driver != nil { if v := itr.driver.Value(tags, itr.buf); v != nil { if v, ok := v.(string); ok { itr.point.Value = v itr.point.Nil = false } else { itr.point.Value = "" itr.point.Nil = true } } else { itr.point.Value = "" itr.point.Nil = true } } for i, f := range itr.fields { itr.point.Aux[i] = f.Value(tags, itr.buf) } return &itr.point, nil } func (itr *stringIteratorMapper) Stats() IteratorStats { stats := IteratorStats{} for _, itr := range itr.e.itrs { stats.Add(itr.Stats()) } return stats } func (itr *stringIteratorMapper) Close() error { return itr.e.Close() } type stringFilterIterator struct { input StringIterator cond Expr opt IteratorOptions m map[string]interface{} } func newStringFilterIterator(input StringIterator, cond Expr, opt IteratorOptions) StringIterator { // Strip out time conditions from the WHERE clause. // TODO(jsternberg): This should really be done for us when creating the IteratorOptions struct. n := RewriteFunc(CloneExpr(cond), func(n Node) Node { switch n := n.(type) { case *BinaryExpr: if n.LHS.String() == "time" { return &BooleanLiteral{Val: true} } } return n }) cond, _ = n.(Expr) if cond == nil { return input } else if n, ok := cond.(*BooleanLiteral); ok && n.Val { return input } return &stringFilterIterator{ input: input, cond: cond, opt: opt, m: make(map[string]interface{}), } } func (itr *stringFilterIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *stringFilterIterator) Close() error { return itr.input.Close() } func (itr *stringFilterIterator) Next() (*StringPoint, error) { for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } for i, ref := range itr.opt.Aux { itr.m[ref.Val] = p.Aux[i] } for k, v := range p.Tags.KeyValues() { itr.m[k] = v } if !EvalBool(itr.cond, itr.m) { continue } return p, nil } } // newStringDedupeIterator returns a new instance of stringDedupeIterator. func newStringDedupeIterator(input StringIterator) *stringDedupeIterator { return &stringDedupeIterator{ input: input, m: make(map[string]struct{}), } } // Stats returns stats from the input iterator. func (itr *stringDedupeIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *stringDedupeIterator) Close() error { return itr.input.Close() } // Next returns the next unique point from the input iterator. func (itr *stringDedupeIterator) Next() (*StringPoint, error) { for { // Read next point. p, err := itr.input.Next() if p == nil || err != nil { return nil, err } // Serialize to bytes to store in lookup. buf, err := proto.Marshal(encodeStringPoint(p)) if err != nil { return nil, err } // If the point has already been output then move to the next point. if _, ok := itr.m[string(buf)]; ok { continue } // Otherwise mark it as emitted and return point. itr.m[string(buf)] = struct{}{} return p, nil } } // stringReaderIterator represents an iterator that streams from a reader. type stringReaderIterator struct { r io.Reader dec *StringPointDecoder } // newStringReaderIterator returns a new instance of stringReaderIterator. func newStringReaderIterator(r io.Reader, stats IteratorStats) *stringReaderIterator { dec := NewStringPointDecoder(r) dec.stats = stats return &stringReaderIterator{ r: r, dec: dec, } } // Stats returns stats about points processed. func (itr *stringReaderIterator) Stats() IteratorStats { return itr.dec.stats } // Close closes the underlying reader, if applicable. func (itr *stringReaderIterator) Close() error { if r, ok := itr.r.(io.ReadCloser); ok { return r.Close() } return nil } // Next returns the next point from the iterator. func (itr *stringReaderIterator) Next() (*StringPoint, error) { // OPTIMIZE(benbjohnson): Reuse point on iterator. // Unmarshal next point. p := &StringPoint{} if err := itr.dec.DecodeStringPoint(p); err == io.EOF { return nil, nil } else if err != nil { return nil, err } return p, nil } // BooleanIterator represents a stream of boolean points. type BooleanIterator interface { Iterator Next() (*BooleanPoint, error) } // newBooleanIterators converts a slice of Iterator to a slice of BooleanIterator. // Drop and closes any iterator in itrs that is not a BooleanIterator and cannot // be cast to a BooleanIterator. func newBooleanIterators(itrs []Iterator) []BooleanIterator { a := make([]BooleanIterator, 0, len(itrs)) for _, itr := range itrs { switch itr := itr.(type) { case BooleanIterator: a = append(a, itr) default: itr.Close() } } return a } // bufBooleanIterator represents a buffered BooleanIterator. type bufBooleanIterator struct { itr BooleanIterator buf *BooleanPoint } // newBufBooleanIterator returns a buffered BooleanIterator. func newBufBooleanIterator(itr BooleanIterator) *bufBooleanIterator { return &bufBooleanIterator{itr: itr} } // Stats returns statistics from the input iterator. func (itr *bufBooleanIterator) Stats() IteratorStats { return itr.itr.Stats() } // Close closes the underlying iterator. func (itr *bufBooleanIterator) Close() error { return itr.itr.Close() } // peek returns the next point without removing it from the iterator. func (itr *bufBooleanIterator) peek() (*BooleanPoint, error) { p, err := itr.Next() if err != nil { return nil, err } itr.unread(p) return p, nil } // peekTime returns the time of the next point. // Returns zero time if no more points available. func (itr *bufBooleanIterator) peekTime() (int64, error) { p, err := itr.peek() if p == nil || err != nil { return ZeroTime, err } return p.Time, nil } // Next returns the current buffer, if exists, or calls the underlying iterator. func (itr *bufBooleanIterator) Next() (*BooleanPoint, error) { buf := itr.buf if buf != nil { itr.buf = nil return buf, nil } return itr.itr.Next() } // NextInWindow returns the next value if it is between [startTime, endTime). // If the next value is outside the range then it is moved to the buffer. func (itr *bufBooleanIterator) NextInWindow(startTime, endTime int64) (*BooleanPoint, error) { v, err := itr.Next() if v == nil || err != nil { return nil, err } else if t := v.Time; t >= endTime || t < startTime { itr.unread(v) return nil, nil } return v, nil } // unread sets v to the buffer. It is read on the next call to Next(). func (itr *bufBooleanIterator) unread(v *BooleanPoint) { itr.buf = v } // booleanMergeIterator represents an iterator that combines multiple boolean iterators. type booleanMergeIterator struct { inputs []BooleanIterator heap *booleanMergeHeap init bool // Current iterator and window. curr *booleanMergeHeapItem window struct { name string tags string startTime int64 endTime int64 } } // newBooleanMergeIterator returns a new instance of booleanMergeIterator. func newBooleanMergeIterator(inputs []BooleanIterator, opt IteratorOptions) *booleanMergeIterator { itr := &booleanMergeIterator{ inputs: inputs, heap: &booleanMergeHeap{ items: make([]*booleanMergeHeapItem, 0, len(inputs)), opt: opt, }, } // Initialize heap items. for _, input := range inputs { // Wrap in buffer, ignore any inputs without anymore points. bufInput := newBufBooleanIterator(input) // Append to the heap. itr.heap.items = append(itr.heap.items, &booleanMergeHeapItem{itr: bufInput}) } return itr } // Stats returns an aggregation of stats from the underlying iterators. func (itr *booleanMergeIterator) Stats() IteratorStats { var stats IteratorStats for _, input := range itr.inputs { stats.Add(input.Stats()) } return stats } // Close closes the underlying iterators. func (itr *booleanMergeIterator) Close() error { for _, input := range itr.inputs { input.Close() } itr.curr = nil itr.inputs = nil itr.heap.items = nil return nil } // Next returns the next point from the iterator. func (itr *booleanMergeIterator) Next() (*BooleanPoint, error) { // Initialize the heap. This needs to be done lazily on the first call to this iterator // so that iterator initialization done through the Select() call returns quickly. // Queries can only be interrupted after the Select() call completes so any operations // done during iterator creation cannot be interrupted, which is why we do it here // instead so an interrupt can happen while initializing the heap. if !itr.init { items := itr.heap.items itr.heap.items = make([]*booleanMergeHeapItem, 0, len(items)) for _, item := range items { if p, err := item.itr.peek(); err != nil { return nil, err } else if p == nil { continue } itr.heap.items = append(itr.heap.items, item) } heap.Init(itr.heap) itr.init = true } for { // Retrieve the next iterator if we don't have one. if itr.curr == nil { if len(itr.heap.items) == 0 { return nil, nil } itr.curr = heap.Pop(itr.heap).(*booleanMergeHeapItem) // Read point and set current window. p, err := itr.curr.itr.Next() if err != nil { return nil, err } tags := p.Tags.Subset(itr.heap.opt.Dimensions) itr.window.name, itr.window.tags = p.Name, tags.ID() itr.window.startTime, itr.window.endTime = itr.heap.opt.Window(p.Time) return p, nil } // Read the next point from the current iterator. p, err := itr.curr.itr.Next() if err != nil { return nil, err } // If there are no more points then remove iterator from heap and find next. if p == nil { itr.curr = nil continue } // Check if the point is inside of our current window. inWindow := true if window := itr.window; window.name != p.Name { inWindow = false } else if tags := p.Tags.Subset(itr.heap.opt.Dimensions); window.tags != tags.ID() { inWindow = false } else if opt := itr.heap.opt; opt.Ascending && p.Time >= window.endTime { inWindow = false } else if !opt.Ascending && p.Time < window.startTime { inWindow = false } // If it's outside our window then push iterator back on the heap and find new iterator. if !inWindow { itr.curr.itr.unread(p) heap.Push(itr.heap, itr.curr) itr.curr = nil continue } return p, nil } } // booleanMergeHeap represents a heap of booleanMergeHeapItems. // Items are sorted by their next window and then by name/tags. type booleanMergeHeap struct { opt IteratorOptions items []*booleanMergeHeapItem } func (h *booleanMergeHeap) Len() int { return len(h.items) } func (h *booleanMergeHeap) Swap(i, j int) { h.items[i], h.items[j] = h.items[j], h.items[i] } func (h *booleanMergeHeap) Less(i, j int) bool { x, err := h.items[i].itr.peek() if err != nil { return true } y, err := h.items[j].itr.peek() if err != nil { return false } if h.opt.Ascending { if x.Name != y.Name { return x.Name < y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); xTags.ID() != yTags.ID() { return xTags.ID() < yTags.ID() } } else { if x.Name != y.Name { return x.Name > y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); xTags.ID() != yTags.ID() { return xTags.ID() > yTags.ID() } } xt, _ := h.opt.Window(x.Time) yt, _ := h.opt.Window(y.Time) if h.opt.Ascending { return xt < yt } return xt > yt } func (h *booleanMergeHeap) Push(x interface{}) { h.items = append(h.items, x.(*booleanMergeHeapItem)) } func (h *booleanMergeHeap) Pop() interface{} { old := h.items n := len(old) item := old[n-1] h.items = old[0 : n-1] return item } type booleanMergeHeapItem struct { itr *bufBooleanIterator } // booleanSortedMergeIterator is an iterator that sorts and merges multiple iterators into one. type booleanSortedMergeIterator struct { inputs []BooleanIterator heap *booleanSortedMergeHeap init bool } // newBooleanSortedMergeIterator returns an instance of booleanSortedMergeIterator. func newBooleanSortedMergeIterator(inputs []BooleanIterator, opt IteratorOptions) Iterator { itr := &booleanSortedMergeIterator{ inputs: inputs, heap: &booleanSortedMergeHeap{ items: make([]*booleanSortedMergeHeapItem, 0, len(inputs)), opt: opt, }, } // Initialize heap items. for _, input := range inputs { // Append to the heap. itr.heap.items = append(itr.heap.items, &booleanSortedMergeHeapItem{itr: input}) } return itr } // Stats returns an aggregation of stats from the underlying iterators. func (itr *booleanSortedMergeIterator) Stats() IteratorStats { var stats IteratorStats for _, input := range itr.inputs { stats.Add(input.Stats()) } return stats } // Close closes the underlying iterators. func (itr *booleanSortedMergeIterator) Close() error { for _, input := range itr.inputs { input.Close() } return nil } // Next returns the next points from the iterator. func (itr *booleanSortedMergeIterator) Next() (*BooleanPoint, error) { return itr.pop() } // pop returns the next point from the heap. // Reads the next point from item's cursor and puts it back on the heap. func (itr *booleanSortedMergeIterator) pop() (*BooleanPoint, error) { // Initialize the heap. See the MergeIterator to see why this has to be done lazily. if !itr.init { items := itr.heap.items itr.heap.items = make([]*booleanSortedMergeHeapItem, 0, len(items)) for _, item := range items { var err error if item.point, err = item.itr.Next(); err != nil { return nil, err } else if item.point == nil { continue } itr.heap.items = append(itr.heap.items, item) } heap.Init(itr.heap) itr.init = true } if len(itr.heap.items) == 0 { return nil, nil } // Read the next item from the heap. item := heap.Pop(itr.heap).(*booleanSortedMergeHeapItem) if item.err != nil { return nil, item.err } else if item.point == nil { return nil, nil } // Copy the point for return. p := item.point.Clone() // Read the next item from the cursor. Push back to heap if one exists. if item.point, item.err = item.itr.Next(); item.point != nil { heap.Push(itr.heap, item) } return p, nil } // booleanSortedMergeHeap represents a heap of booleanSortedMergeHeapItems. type booleanSortedMergeHeap struct { opt IteratorOptions items []*booleanSortedMergeHeapItem } func (h *booleanSortedMergeHeap) Len() int { return len(h.items) } func (h *booleanSortedMergeHeap) Swap(i, j int) { h.items[i], h.items[j] = h.items[j], h.items[i] } func (h *booleanSortedMergeHeap) Less(i, j int) bool { x, y := h.items[i].point, h.items[j].point if h.opt.Ascending { if x.Name != y.Name { return x.Name < y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); !xTags.Equals(&yTags) { return xTags.ID() < yTags.ID() } return x.Time < y.Time } if x.Name != y.Name { return x.Name > y.Name } else if xTags, yTags := x.Tags.Subset(h.opt.Dimensions), y.Tags.Subset(h.opt.Dimensions); !xTags.Equals(&yTags) { return xTags.ID() > yTags.ID() } return x.Time > y.Time } func (h *booleanSortedMergeHeap) Push(x interface{}) { h.items = append(h.items, x.(*booleanSortedMergeHeapItem)) } func (h *booleanSortedMergeHeap) Pop() interface{} { old := h.items n := len(old) item := old[n-1] h.items = old[0 : n-1] return item } type booleanSortedMergeHeapItem struct { point *BooleanPoint err error itr BooleanIterator } // booleanParallelIterator represents an iterator that pulls data in a separate goroutine. type booleanParallelIterator struct { input BooleanIterator ch chan booleanPointError once sync.Once closing chan struct{} wg sync.WaitGroup } // newBooleanParallelIterator returns a new instance of booleanParallelIterator. func newBooleanParallelIterator(input BooleanIterator) *booleanParallelIterator { itr := &booleanParallelIterator{ input: input, ch: make(chan booleanPointError, 256), closing: make(chan struct{}), } itr.wg.Add(1) go itr.monitor() return itr } // Stats returns stats from the underlying iterator. func (itr *booleanParallelIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the underlying iterators. func (itr *booleanParallelIterator) Close() error { itr.once.Do(func() { close(itr.closing) }) itr.wg.Wait() return itr.input.Close() } // Next returns the next point from the iterator. func (itr *booleanParallelIterator) Next() (*BooleanPoint, error) { v, ok := <-itr.ch if !ok { return nil, io.EOF } return v.point, v.err } // monitor runs in a separate goroutine and actively pulls the next point. func (itr *booleanParallelIterator) monitor() { defer close(itr.ch) defer itr.wg.Done() for { // Read next point. p, err := itr.input.Next() if p != nil { p = p.Clone() } select { case <-itr.closing: return case itr.ch <- booleanPointError{point: p, err: err}: } } } type booleanPointError struct { point *BooleanPoint err error } // booleanLimitIterator represents an iterator that limits points per group. type booleanLimitIterator struct { input BooleanIterator opt IteratorOptions n int prev struct { name string tags Tags } } // newBooleanLimitIterator returns a new instance of booleanLimitIterator. func newBooleanLimitIterator(input BooleanIterator, opt IteratorOptions) *booleanLimitIterator { return &booleanLimitIterator{ input: input, opt: opt, } } // Stats returns stats from the underlying iterator. func (itr *booleanLimitIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the underlying iterators. func (itr *booleanLimitIterator) Close() error { return itr.input.Close() } // Next returns the next point from the iterator. func (itr *booleanLimitIterator) Next() (*BooleanPoint, error) { for { p, err := itr.input.Next() if p == nil || err != nil { return nil, err } // Reset window and counter if a new window is encountered. if p.Name != itr.prev.name || !p.Tags.Equals(&itr.prev.tags) { itr.prev.name = p.Name itr.prev.tags = p.Tags itr.n = 0 } // Increment counter. itr.n++ // Read next point if not beyond the offset. if itr.n <= itr.opt.Offset { continue } // Read next point if we're beyond the limit. if itr.opt.Limit > 0 && (itr.n-itr.opt.Offset) > itr.opt.Limit { continue } return p, nil } } type booleanFillIterator struct { input *bufBooleanIterator prev BooleanPoint startTime int64 endTime int64 auxFields []interface{} init bool opt IteratorOptions window struct { name string tags Tags time int64 offset int64 } } func newBooleanFillIterator(input BooleanIterator, expr Expr, opt IteratorOptions) *booleanFillIterator { if opt.Fill == NullFill { if expr, ok := expr.(*Call); ok && expr.Name == "count" { opt.Fill = NumberFill opt.FillValue = false } } var startTime, endTime int64 if opt.Ascending { startTime, _ = opt.Window(opt.StartTime) endTime, _ = opt.Window(opt.EndTime) } else { startTime, _ = opt.Window(opt.EndTime) endTime, _ = opt.Window(opt.StartTime) } var auxFields []interface{} if len(opt.Aux) > 0 { auxFields = make([]interface{}, len(opt.Aux)) } return &booleanFillIterator{ input: newBufBooleanIterator(input), prev: BooleanPoint{Nil: true}, startTime: startTime, endTime: endTime, auxFields: auxFields, opt: opt, } } func (itr *booleanFillIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *booleanFillIterator) Close() error { return itr.input.Close() } func (itr *booleanFillIterator) Next() (*BooleanPoint, error) { if !itr.init { p, err := itr.input.peek() if p == nil || err != nil { return nil, err } itr.window.name, itr.window.tags = p.Name, p.Tags itr.window.time = itr.startTime if itr.opt.Location != nil { _, itr.window.offset = itr.opt.Zone(itr.window.time) } itr.init = true } p, err := itr.input.Next() if err != nil { return nil, err } // Check if the next point is outside of our window or is nil. for p == nil || p.Name != itr.window.name || p.Tags.ID() != itr.window.tags.ID() { // If we are inside of an interval, unread the point and continue below to // constructing a new point. if itr.opt.Ascending { if itr.window.time <= itr.endTime { itr.input.unread(p) p = nil break } } else { if itr.window.time >= itr.endTime { itr.input.unread(p) p = nil break } } // We are *not* in a current interval. If there is no next point, // we are at the end of all intervals. if p == nil { return nil, nil } // Set the new interval. itr.window.name, itr.window.tags = p.Name, p.Tags itr.window.time = itr.startTime if itr.opt.Location != nil { _, itr.window.offset = itr.opt.Zone(itr.window.time) } itr.prev = BooleanPoint{Nil: true} break } // Check if the point is our next expected point. if p == nil || (itr.opt.Ascending && p.Time > itr.window.time) || (!itr.opt.Ascending && p.Time < itr.window.time) { if p != nil { itr.input.unread(p) } p = &BooleanPoint{ Name: itr.window.name, Tags: itr.window.tags, Time: itr.window.time, Aux: itr.auxFields, } switch itr.opt.Fill { case LinearFill: fallthrough case NullFill: p.Nil = true case NumberFill: p.Value = castToBoolean(itr.opt.FillValue) case PreviousFill: if !itr.prev.Nil { p.Value = itr.prev.Value p.Nil = itr.prev.Nil } else { p.Nil = true } } } else { itr.prev = *p } // Advance the expected time. Do not advance to a new window here // as there may be lingering points with the same timestamp in the previous // window. if itr.opt.Ascending { itr.window.time += int64(itr.opt.Interval.Duration) } else { itr.window.time -= int64(itr.opt.Interval.Duration) } // Check to see if we have passed over an offset change and adjust the time // to account for this new offset. if itr.opt.Location != nil { if _, offset := itr.opt.Zone(itr.window.time - 1); offset != itr.window.offset { diff := itr.window.offset - offset if abs(diff) < int64(itr.opt.Interval.Duration) { itr.window.time += diff } itr.window.offset = offset } } return p, nil } // booleanIntervalIterator represents a boolean implementation of IntervalIterator. type booleanIntervalIterator struct { input BooleanIterator opt IteratorOptions } func newBooleanIntervalIterator(input BooleanIterator, opt IteratorOptions) *booleanIntervalIterator { return &booleanIntervalIterator{input: input, opt: opt} } func (itr *booleanIntervalIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *booleanIntervalIterator) Close() error { return itr.input.Close() } func (itr *booleanIntervalIterator) Next() (*BooleanPoint, error) { p, err := itr.input.Next() if p == nil || err != nil { return nil, err } p.Time, _ = itr.opt.Window(p.Time) // If we see the minimum allowable time, set the time to zero so we don't // break the default returned time for aggregate queries without times. if p.Time == MinTime { p.Time = 0 } return p, nil } // booleanInterruptIterator represents a boolean implementation of InterruptIterator. type booleanInterruptIterator struct { input BooleanIterator closing <-chan struct{} count int } func newBooleanInterruptIterator(input BooleanIterator, closing <-chan struct{}) *booleanInterruptIterator { return &booleanInterruptIterator{input: input, closing: closing} } func (itr *booleanInterruptIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *booleanInterruptIterator) Close() error { return itr.input.Close() } func (itr *booleanInterruptIterator) Next() (*BooleanPoint, error) { // Only check if the channel is closed every N points. This // intentionally checks on both 0 and N so that if the iterator // has been interrupted before the first point is emitted it will // not emit any points. if itr.count&0xFF == 0xFF { select { case <-itr.closing: return nil, itr.Close() default: // Reset iterator count to zero and fall through to emit the next point. itr.count = 0 } } // Increment the counter for every point read. itr.count++ return itr.input.Next() } // booleanCloseInterruptIterator represents a boolean implementation of CloseInterruptIterator. type booleanCloseInterruptIterator struct { input BooleanIterator closing <-chan struct{} done chan struct{} once sync.Once } func newBooleanCloseInterruptIterator(input BooleanIterator, closing <-chan struct{}) *booleanCloseInterruptIterator { itr := &booleanCloseInterruptIterator{ input: input, closing: closing, done: make(chan struct{}), } go itr.monitor() return itr } func (itr *booleanCloseInterruptIterator) monitor() { select { case <-itr.closing: itr.Close() case <-itr.done: } } func (itr *booleanCloseInterruptIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *booleanCloseInterruptIterator) Close() error { itr.once.Do(func() { close(itr.done) itr.input.Close() }) return nil } func (itr *booleanCloseInterruptIterator) Next() (*BooleanPoint, error) { p, err := itr.input.Next() if err != nil { // Check if the iterator was closed. select { case <-itr.done: return nil, nil default: return nil, err } } return p, nil } // auxBooleanPoint represents a combination of a point and an error for the AuxIterator. type auxBooleanPoint struct { point *BooleanPoint err error } // booleanAuxIterator represents a boolean implementation of AuxIterator. type booleanAuxIterator struct { input *bufBooleanIterator output chan auxBooleanPoint fields *auxIteratorFields background bool } func newBooleanAuxIterator(input BooleanIterator, opt IteratorOptions) *booleanAuxIterator { return &booleanAuxIterator{ input: newBufBooleanIterator(input), output: make(chan auxBooleanPoint, 1), fields: newAuxIteratorFields(opt), } } func (itr *booleanAuxIterator) Background() { itr.background = true itr.Start() go DrainIterator(itr) } func (itr *booleanAuxIterator) Start() { go itr.stream() } func (itr *booleanAuxIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *booleanAuxIterator) Close() error { return itr.input.Close() } func (itr *booleanAuxIterator) Next() (*BooleanPoint, error) { p := <-itr.output return p.point, p.err } func (itr *booleanAuxIterator) Iterator(name string, typ DataType) Iterator { return itr.fields.iterator(name, typ) } func (itr *booleanAuxIterator) stream() { for { // Read next point. p, err := itr.input.Next() if err != nil { itr.output <- auxBooleanPoint{err: err} itr.fields.sendError(err) break } else if p == nil { break } // Send point to output and to each field iterator. itr.output <- auxBooleanPoint{point: p} if ok := itr.fields.send(p); !ok && itr.background { break } } close(itr.output) itr.fields.close() } // booleanChanIterator represents a new instance of booleanChanIterator. type booleanChanIterator struct { buf struct { i int filled bool points [2]BooleanPoint } err error cond *sync.Cond done bool } func (itr *booleanChanIterator) Stats() IteratorStats { return IteratorStats{} } func (itr *booleanChanIterator) Close() error { itr.cond.L.Lock() // Mark the channel iterator as done and signal all waiting goroutines to start again. itr.done = true itr.cond.Broadcast() // Do not defer the unlock so we don't create an unnecessary allocation. itr.cond.L.Unlock() return nil } func (itr *booleanChanIterator) setBuf(name string, tags Tags, time int64, value interface{}) bool { itr.cond.L.Lock() defer itr.cond.L.Unlock() // Wait for either the iterator to be done (so we don't have to set the value) // or for the buffer to have been read and ready for another write. for !itr.done && itr.buf.filled { itr.cond.Wait() } // Do not set the value and return false to signal that the iterator is closed. // Do this after the above wait as the above for loop may have exited because // the iterator was closed. if itr.done { return false } switch v := value.(type) { case bool: itr.buf.points[itr.buf.i] = BooleanPoint{Name: name, Tags: tags, Time: time, Value: v} default: itr.buf.points[itr.buf.i] = BooleanPoint{Name: name, Tags: tags, Time: time, Nil: true} } itr.buf.filled = true // Signal to all waiting goroutines that a new value is ready to read. itr.cond.Signal() return true } func (itr *booleanChanIterator) setErr(err error) { itr.cond.L.Lock() defer itr.cond.L.Unlock() itr.err = err // Signal to all waiting goroutines that a new value is ready to read. itr.cond.Signal() } func (itr *booleanChanIterator) Next() (*BooleanPoint, error) { itr.cond.L.Lock() defer itr.cond.L.Unlock() // Check for an error and return one if there. if itr.err != nil { return nil, itr.err } // Wait until either a value is available in the buffer or // the iterator is closed. for !itr.done && !itr.buf.filled { itr.cond.Wait() } // Return nil once the channel is done and the buffer is empty. if itr.done && !itr.buf.filled { return nil, nil } // Always read from the buffer if it exists, even if the iterator // is closed. This prevents the last value from being truncated by // the parent iterator. p := &itr.buf.points[itr.buf.i] itr.buf.i = (itr.buf.i + 1) % len(itr.buf.points) itr.buf.filled = false itr.cond.Signal() return p, nil } // booleanReduceFloatIterator executes a reducer for every interval and buffers the result. type booleanReduceFloatIterator struct { input *bufBooleanIterator create func() (BooleanPointAggregator, FloatPointEmitter) dims []string opt IteratorOptions points []FloatPoint keepTags bool } func newBooleanReduceFloatIterator(input BooleanIterator, opt IteratorOptions, createFn func() (BooleanPointAggregator, FloatPointEmitter)) *booleanReduceFloatIterator { return &booleanReduceFloatIterator{ input: newBufBooleanIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *booleanReduceFloatIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanReduceFloatIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *booleanReduceFloatIterator) Next() (*FloatPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // booleanReduceFloatPoint stores the reduced data for a name/tag combination. type booleanReduceFloatPoint struct { Name string Tags Tags Aggregator BooleanPointAggregator Emitter FloatPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *booleanReduceFloatIterator) reduce() ([]FloatPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*booleanReduceFloatPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &booleanReduceFloatPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateBoolean(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]FloatPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(floatPointsByTime(a))) } return a, nil } // booleanStreamFloatIterator streams inputs into the iterator and emits points gradually. type booleanStreamFloatIterator struct { input *bufBooleanIterator create func() (BooleanPointAggregator, FloatPointEmitter) dims []string opt IteratorOptions m map[string]*booleanReduceFloatPoint points []FloatPoint } // newBooleanStreamFloatIterator returns a new instance of booleanStreamFloatIterator. func newBooleanStreamFloatIterator(input BooleanIterator, createFn func() (BooleanPointAggregator, FloatPointEmitter), opt IteratorOptions) *booleanStreamFloatIterator { return &booleanStreamFloatIterator{ input: newBufBooleanIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*booleanReduceFloatPoint), } } // Stats returns stats from the input iterator. func (itr *booleanStreamFloatIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanStreamFloatIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *booleanStreamFloatIterator) Next() (*FloatPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *booleanStreamFloatIterator) reduce() ([]FloatPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []FloatPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &booleanReduceFloatPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateBoolean(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // booleanFloatExprIterator executes a function to modify an existing point // for every output of the input iterator. type booleanFloatExprIterator struct { left *bufBooleanIterator right *bufBooleanIterator fn booleanFloatExprFunc points []BooleanPoint // must be size 2 storePrev bool } func newBooleanFloatExprIterator(left, right BooleanIterator, opt IteratorOptions, fn func(a, b bool) float64) *booleanFloatExprIterator { var points []BooleanPoint switch opt.Fill { case NullFill, PreviousFill: points = []BooleanPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToBoolean(opt.FillValue) points = []BooleanPoint{{Value: value}, {Value: value}} } return &booleanFloatExprIterator{ left: newBufBooleanIterator(left), right: newBufBooleanIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *booleanFloatExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *booleanFloatExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *booleanFloatExprIterator) Next() (*FloatPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = false a.Nil = true } else if b == nil { p := *a b = &p b.Value = false b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &FloatPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *booleanFloatExprIterator) next() (a, b *BooleanPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // booleanFloatExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type booleanFloatExprFunc func(a, b bool) float64 // booleanReduceIntegerIterator executes a reducer for every interval and buffers the result. type booleanReduceIntegerIterator struct { input *bufBooleanIterator create func() (BooleanPointAggregator, IntegerPointEmitter) dims []string opt IteratorOptions points []IntegerPoint keepTags bool } func newBooleanReduceIntegerIterator(input BooleanIterator, opt IteratorOptions, createFn func() (BooleanPointAggregator, IntegerPointEmitter)) *booleanReduceIntegerIterator { return &booleanReduceIntegerIterator{ input: newBufBooleanIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *booleanReduceIntegerIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanReduceIntegerIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *booleanReduceIntegerIterator) Next() (*IntegerPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // booleanReduceIntegerPoint stores the reduced data for a name/tag combination. type booleanReduceIntegerPoint struct { Name string Tags Tags Aggregator BooleanPointAggregator Emitter IntegerPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *booleanReduceIntegerIterator) reduce() ([]IntegerPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*booleanReduceIntegerPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &booleanReduceIntegerPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateBoolean(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]IntegerPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(integerPointsByTime(a))) } return a, nil } // booleanStreamIntegerIterator streams inputs into the iterator and emits points gradually. type booleanStreamIntegerIterator struct { input *bufBooleanIterator create func() (BooleanPointAggregator, IntegerPointEmitter) dims []string opt IteratorOptions m map[string]*booleanReduceIntegerPoint points []IntegerPoint } // newBooleanStreamIntegerIterator returns a new instance of booleanStreamIntegerIterator. func newBooleanStreamIntegerIterator(input BooleanIterator, createFn func() (BooleanPointAggregator, IntegerPointEmitter), opt IteratorOptions) *booleanStreamIntegerIterator { return &booleanStreamIntegerIterator{ input: newBufBooleanIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*booleanReduceIntegerPoint), } } // Stats returns stats from the input iterator. func (itr *booleanStreamIntegerIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanStreamIntegerIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *booleanStreamIntegerIterator) Next() (*IntegerPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *booleanStreamIntegerIterator) reduce() ([]IntegerPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []IntegerPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &booleanReduceIntegerPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateBoolean(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // booleanIntegerExprIterator executes a function to modify an existing point // for every output of the input iterator. type booleanIntegerExprIterator struct { left *bufBooleanIterator right *bufBooleanIterator fn booleanIntegerExprFunc points []BooleanPoint // must be size 2 storePrev bool } func newBooleanIntegerExprIterator(left, right BooleanIterator, opt IteratorOptions, fn func(a, b bool) int64) *booleanIntegerExprIterator { var points []BooleanPoint switch opt.Fill { case NullFill, PreviousFill: points = []BooleanPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToBoolean(opt.FillValue) points = []BooleanPoint{{Value: value}, {Value: value}} } return &booleanIntegerExprIterator{ left: newBufBooleanIterator(left), right: newBufBooleanIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *booleanIntegerExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *booleanIntegerExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *booleanIntegerExprIterator) Next() (*IntegerPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = false a.Nil = true } else if b == nil { p := *a b = &p b.Value = false b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &IntegerPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *booleanIntegerExprIterator) next() (a, b *BooleanPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // booleanIntegerExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type booleanIntegerExprFunc func(a, b bool) int64 // booleanReduceStringIterator executes a reducer for every interval and buffers the result. type booleanReduceStringIterator struct { input *bufBooleanIterator create func() (BooleanPointAggregator, StringPointEmitter) dims []string opt IteratorOptions points []StringPoint keepTags bool } func newBooleanReduceStringIterator(input BooleanIterator, opt IteratorOptions, createFn func() (BooleanPointAggregator, StringPointEmitter)) *booleanReduceStringIterator { return &booleanReduceStringIterator{ input: newBufBooleanIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *booleanReduceStringIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanReduceStringIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *booleanReduceStringIterator) Next() (*StringPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // booleanReduceStringPoint stores the reduced data for a name/tag combination. type booleanReduceStringPoint struct { Name string Tags Tags Aggregator BooleanPointAggregator Emitter StringPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *booleanReduceStringIterator) reduce() ([]StringPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*booleanReduceStringPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &booleanReduceStringPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateBoolean(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]StringPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(stringPointsByTime(a))) } return a, nil } // booleanStreamStringIterator streams inputs into the iterator and emits points gradually. type booleanStreamStringIterator struct { input *bufBooleanIterator create func() (BooleanPointAggregator, StringPointEmitter) dims []string opt IteratorOptions m map[string]*booleanReduceStringPoint points []StringPoint } // newBooleanStreamStringIterator returns a new instance of booleanStreamStringIterator. func newBooleanStreamStringIterator(input BooleanIterator, createFn func() (BooleanPointAggregator, StringPointEmitter), opt IteratorOptions) *booleanStreamStringIterator { return &booleanStreamStringIterator{ input: newBufBooleanIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*booleanReduceStringPoint), } } // Stats returns stats from the input iterator. func (itr *booleanStreamStringIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanStreamStringIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *booleanStreamStringIterator) Next() (*StringPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *booleanStreamStringIterator) reduce() ([]StringPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []StringPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &booleanReduceStringPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateBoolean(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // booleanStringExprIterator executes a function to modify an existing point // for every output of the input iterator. type booleanStringExprIterator struct { left *bufBooleanIterator right *bufBooleanIterator fn booleanStringExprFunc points []BooleanPoint // must be size 2 storePrev bool } func newBooleanStringExprIterator(left, right BooleanIterator, opt IteratorOptions, fn func(a, b bool) string) *booleanStringExprIterator { var points []BooleanPoint switch opt.Fill { case NullFill, PreviousFill: points = []BooleanPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToBoolean(opt.FillValue) points = []BooleanPoint{{Value: value}, {Value: value}} } return &booleanStringExprIterator{ left: newBufBooleanIterator(left), right: newBufBooleanIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *booleanStringExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *booleanStringExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *booleanStringExprIterator) Next() (*StringPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = false a.Nil = true } else if b == nil { p := *a b = &p b.Value = false b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } p := &StringPoint{ Name: a.Name, Tags: a.Tags, Time: a.Time, Nil: a.Nil || b.Nil, Aggregated: a.Aggregated, } if !p.Nil { p.Value = itr.fn(a.Value, b.Value) } return p, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *booleanStringExprIterator) next() (a, b *BooleanPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // booleanStringExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type booleanStringExprFunc func(a, b bool) string // booleanReduceBooleanIterator executes a reducer for every interval and buffers the result. type booleanReduceBooleanIterator struct { input *bufBooleanIterator create func() (BooleanPointAggregator, BooleanPointEmitter) dims []string opt IteratorOptions points []BooleanPoint keepTags bool } func newBooleanReduceBooleanIterator(input BooleanIterator, opt IteratorOptions, createFn func() (BooleanPointAggregator, BooleanPointEmitter)) *booleanReduceBooleanIterator { return &booleanReduceBooleanIterator{ input: newBufBooleanIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, } } // Stats returns stats from the input iterator. func (itr *booleanReduceBooleanIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanReduceBooleanIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *booleanReduceBooleanIterator) Next() (*BooleanPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // booleanReduceBooleanPoint stores the reduced data for a name/tag combination. type booleanReduceBooleanPoint struct { Name string Tags Tags Aggregator BooleanPointAggregator Emitter BooleanPointEmitter } // reduce executes fn once for every point in the next window. // The previous value for the dimension is passed to fn. func (itr *booleanReduceBooleanIterator) reduce() ([]BooleanPoint, error) { // Calculate next window. var ( startTime, endTime int64 window struct { name string tags string } ) for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } else if p.Nil { continue } // Unread the point so it can be processed. itr.input.unread(p) startTime, endTime = itr.opt.Window(p.Time) window.name, window.tags = p.Name, p.Tags.Subset(itr.opt.Dimensions).ID() break } // Create points by tags. m := make(map[string]*booleanReduceBooleanPoint) for { // Read next point. curr, err := itr.input.NextInWindow(startTime, endTime) if err != nil { return nil, err } else if curr == nil { break } else if curr.Nil { continue } else if curr.Name != window.name { itr.input.unread(curr) break } // Ensure this point is within the same final window. if curr.Name != window.name { itr.input.unread(curr) break } else if tags := curr.Tags.Subset(itr.opt.Dimensions); tags.ID() != window.tags { itr.input.unread(curr) break } // Retrieve the tags on this point for this level of the query. // This may be different than the bucket dimensions. tags := curr.Tags.Subset(itr.dims) id := tags.ID() // Retrieve the aggregator for this name/tag combination or create one. rp := m[id] if rp == nil { aggregator, emitter := itr.create() rp = &booleanReduceBooleanPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } m[id] = rp } rp.Aggregator.AggregateBoolean(curr) } // Reverse sort points by name & tag if our output is supposed to be ordered. keys := make([]string, 0, len(m)) for k := range m { keys = append(keys, k) } if len(keys) > 1 && itr.opt.Ordered { sort.Sort(reverseStringSlice(keys)) } // Assume the points are already sorted until proven otherwise. sortedByTime := true // Emit the points for each name & tag combination. a := make([]BooleanPoint, 0, len(m)) for _, k := range keys { rp := m[k] points := rp.Emitter.Emit() for i := len(points) - 1; i >= 0; i-- { points[i].Name = rp.Name if !itr.keepTags { points[i].Tags = rp.Tags } // Set the points time to the interval time if the reducer didn't provide one. if points[i].Time == ZeroTime { points[i].Time = startTime } else { sortedByTime = false } a = append(a, points[i]) } } // Points may be out of order. Perform a stable sort by time if requested. if !sortedByTime && itr.opt.Ordered { sort.Stable(sort.Reverse(booleanPointsByTime(a))) } return a, nil } // booleanStreamBooleanIterator streams inputs into the iterator and emits points gradually. type booleanStreamBooleanIterator struct { input *bufBooleanIterator create func() (BooleanPointAggregator, BooleanPointEmitter) dims []string opt IteratorOptions m map[string]*booleanReduceBooleanPoint points []BooleanPoint } // newBooleanStreamBooleanIterator returns a new instance of booleanStreamBooleanIterator. func newBooleanStreamBooleanIterator(input BooleanIterator, createFn func() (BooleanPointAggregator, BooleanPointEmitter), opt IteratorOptions) *booleanStreamBooleanIterator { return &booleanStreamBooleanIterator{ input: newBufBooleanIterator(input), create: createFn, dims: opt.GetDimensions(), opt: opt, m: make(map[string]*booleanReduceBooleanPoint), } } // Stats returns stats from the input iterator. func (itr *booleanStreamBooleanIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanStreamBooleanIterator) Close() error { return itr.input.Close() } // Next returns the next value for the stream iterator. func (itr *booleanStreamBooleanIterator) Next() (*BooleanPoint, error) { // Calculate next window if we have no more points. if len(itr.points) == 0 { var err error itr.points, err = itr.reduce() if len(itr.points) == 0 { return nil, err } } // Pop next point off the stack. p := &itr.points[len(itr.points)-1] itr.points = itr.points[:len(itr.points)-1] return p, nil } // reduce creates and manages aggregators for every point from the input. // After aggregating a point, it always tries to emit a value using the emitter. func (itr *booleanStreamBooleanIterator) reduce() ([]BooleanPoint, error) { for { // Read next point. curr, err := itr.input.Next() if curr == nil { // Close all of the aggregators to flush any remaining points to emit. var points []BooleanPoint for _, rp := range itr.m { if aggregator, ok := rp.Aggregator.(io.Closer); ok { if err := aggregator.Close(); err != nil { return nil, err } pts := rp.Emitter.Emit() if len(pts) == 0 { continue } for i := range pts { pts[i].Name = rp.Name pts[i].Tags = rp.Tags } points = append(points, pts...) } } // Eliminate the aggregators and emitters. itr.m = nil return points, nil } else if err != nil { return nil, err } else if curr.Nil { continue } tags := curr.Tags.Subset(itr.dims) id := curr.Name if len(tags.m) > 0 { id += "\x00" + tags.ID() } // Retrieve the aggregator for this name/tag combination or create one. rp := itr.m[id] if rp == nil { aggregator, emitter := itr.create() rp = &booleanReduceBooleanPoint{ Name: curr.Name, Tags: tags, Aggregator: aggregator, Emitter: emitter, } itr.m[id] = rp } rp.Aggregator.AggregateBoolean(curr) // Attempt to emit points from the aggregator. points := rp.Emitter.Emit() if len(points) == 0 { continue } for i := range points { points[i].Name = rp.Name points[i].Tags = rp.Tags } return points, nil } } // booleanExprIterator executes a function to modify an existing point // for every output of the input iterator. type booleanExprIterator struct { left *bufBooleanIterator right *bufBooleanIterator fn booleanExprFunc points []BooleanPoint // must be size 2 storePrev bool } func newBooleanExprIterator(left, right BooleanIterator, opt IteratorOptions, fn func(a, b bool) bool) *booleanExprIterator { var points []BooleanPoint switch opt.Fill { case NullFill, PreviousFill: points = []BooleanPoint{{Nil: true}, {Nil: true}} case NumberFill: value := castToBoolean(opt.FillValue) points = []BooleanPoint{{Value: value}, {Value: value}} } return &booleanExprIterator{ left: newBufBooleanIterator(left), right: newBufBooleanIterator(right), points: points, fn: fn, storePrev: opt.Fill == PreviousFill, } } func (itr *booleanExprIterator) Stats() IteratorStats { stats := itr.left.Stats() stats.Add(itr.right.Stats()) return stats } func (itr *booleanExprIterator) Close() error { itr.left.Close() itr.right.Close() return nil } func (itr *booleanExprIterator) Next() (*BooleanPoint, error) { for { a, b, err := itr.next() if err != nil || (a == nil && b == nil) { return nil, err } // If any of these are nil and we are using fill(none), skip these points. if (a == nil || a.Nil || b == nil || b.Nil) && itr.points == nil { continue } // If one of the two points is nil, we need to fill it with a fake nil // point that has the same name, tags, and time as the other point. // There should never be a time when both of these are nil. if a == nil { p := *b a = &p a.Value = false a.Nil = true } else if b == nil { p := *a b = &p b.Value = false b.Nil = true } // If a value is nil, use the fill values if the fill value is non-nil. if a.Nil && !itr.points[0].Nil { a.Value = itr.points[0].Value a.Nil = false } if b.Nil && !itr.points[1].Nil { b.Value = itr.points[1].Value b.Nil = false } if itr.storePrev { itr.points[0], itr.points[1] = *a, *b } if a.Nil { return a, nil } else if b.Nil { return b, nil } a.Value = itr.fn(a.Value, b.Value) return a, nil } } // next returns the next points within each iterator. If the iterators are // uneven, it organizes them so only matching points are returned. func (itr *booleanExprIterator) next() (a, b *BooleanPoint, err error) { // Retrieve the next value for both the left and right. a, err = itr.left.Next() if err != nil { return nil, nil, err } b, err = itr.right.Next() if err != nil { return nil, nil, err } // If we have a point from both, make sure that they match each other. if a != nil && b != nil { if a.Name > b.Name { itr.left.unread(a) return nil, b, nil } else if a.Name < b.Name { itr.right.unread(b) return a, nil, nil } if ltags, rtags := a.Tags.ID(), b.Tags.ID(); ltags > rtags { itr.left.unread(a) return nil, b, nil } else if ltags < rtags { itr.right.unread(b) return a, nil, nil } if a.Time > b.Time { itr.left.unread(a) return nil, b, nil } else if a.Time < b.Time { itr.right.unread(b) return a, nil, nil } } return a, b, nil } // booleanExprFunc creates or modifies a point by combining two // points. The point passed in may be modified and returned rather than // allocating a new point if possible. One of the points may be nil, but at // least one of the points will be non-nil. type booleanExprFunc func(a, b bool) bool // booleanTransformIterator executes a function to modify an existing point for every // output of the input iterator. type booleanTransformIterator struct { input BooleanIterator fn booleanTransformFunc } // Stats returns stats from the input iterator. func (itr *booleanTransformIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanTransformIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *booleanTransformIterator) Next() (*BooleanPoint, error) { p, err := itr.input.Next() if err != nil { return nil, err } else if p != nil { p = itr.fn(p) } return p, nil } // booleanTransformFunc creates or modifies a point. // The point passed in may be modified and returned rather than allocating a // new point if possible. type booleanTransformFunc func(p *BooleanPoint) *BooleanPoint // booleanBoolTransformIterator executes a function to modify an existing point for every // output of the input iterator. type booleanBoolTransformIterator struct { input BooleanIterator fn booleanBoolTransformFunc } // Stats returns stats from the input iterator. func (itr *booleanBoolTransformIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanBoolTransformIterator) Close() error { return itr.input.Close() } // Next returns the minimum value for the next available interval. func (itr *booleanBoolTransformIterator) Next() (*BooleanPoint, error) { p, err := itr.input.Next() if err != nil { return nil, err } else if p != nil { return itr.fn(p), nil } return nil, nil } // booleanBoolTransformFunc creates or modifies a point. // The point passed in may be modified and returned rather than allocating a // new point if possible. type booleanBoolTransformFunc func(p *BooleanPoint) *BooleanPoint // booleanDedupeIterator only outputs unique points. // This differs from the DistinctIterator in that it compares all aux fields too. // This iterator is relatively inefficient and should only be used on small // datasets such as meta query results. type booleanDedupeIterator struct { input BooleanIterator m map[string]struct{} // lookup of points already sent } type booleanIteratorMapper struct { e *Emitter buf []interface{} driver IteratorMap // which iterator to use for the primary value, can be nil fields []IteratorMap // which iterator to use for an aux field point BooleanPoint } func newBooleanIteratorMapper(itrs []Iterator, driver IteratorMap, fields []IteratorMap, opt IteratorOptions) *booleanIteratorMapper { e := NewEmitter(itrs, opt.Ascending, 0) e.OmitTime = true return &booleanIteratorMapper{ e: e, buf: make([]interface{}, len(itrs)), driver: driver, fields: fields, point: BooleanPoint{ Aux: make([]interface{}, len(fields)), }, } } func (itr *booleanIteratorMapper) Next() (*BooleanPoint, error) { t, name, tags, err := itr.e.loadBuf() if err != nil || t == ZeroTime { return nil, err } itr.point.Time = t itr.point.Name = name itr.point.Tags = tags itr.e.readInto(t, name, tags, itr.buf) if itr.driver != nil { if v := itr.driver.Value(tags, itr.buf); v != nil { if v, ok := v.(bool); ok { itr.point.Value = v itr.point.Nil = false } else { itr.point.Value = false itr.point.Nil = true } } else { itr.point.Value = false itr.point.Nil = true } } for i, f := range itr.fields { itr.point.Aux[i] = f.Value(tags, itr.buf) } return &itr.point, nil } func (itr *booleanIteratorMapper) Stats() IteratorStats { stats := IteratorStats{} for _, itr := range itr.e.itrs { stats.Add(itr.Stats()) } return stats } func (itr *booleanIteratorMapper) Close() error { return itr.e.Close() } type booleanFilterIterator struct { input BooleanIterator cond Expr opt IteratorOptions m map[string]interface{} } func newBooleanFilterIterator(input BooleanIterator, cond Expr, opt IteratorOptions) BooleanIterator { // Strip out time conditions from the WHERE clause. // TODO(jsternberg): This should really be done for us when creating the IteratorOptions struct. n := RewriteFunc(CloneExpr(cond), func(n Node) Node { switch n := n.(type) { case *BinaryExpr: if n.LHS.String() == "time" { return &BooleanLiteral{Val: true} } } return n }) cond, _ = n.(Expr) if cond == nil { return input } else if n, ok := cond.(*BooleanLiteral); ok && n.Val { return input } return &booleanFilterIterator{ input: input, cond: cond, opt: opt, m: make(map[string]interface{}), } } func (itr *booleanFilterIterator) Stats() IteratorStats { return itr.input.Stats() } func (itr *booleanFilterIterator) Close() error { return itr.input.Close() } func (itr *booleanFilterIterator) Next() (*BooleanPoint, error) { for { p, err := itr.input.Next() if err != nil || p == nil { return nil, err } for i, ref := range itr.opt.Aux { itr.m[ref.Val] = p.Aux[i] } for k, v := range p.Tags.KeyValues() { itr.m[k] = v } if !EvalBool(itr.cond, itr.m) { continue } return p, nil } } // newBooleanDedupeIterator returns a new instance of booleanDedupeIterator. func newBooleanDedupeIterator(input BooleanIterator) *booleanDedupeIterator { return &booleanDedupeIterator{ input: input, m: make(map[string]struct{}), } } // Stats returns stats from the input iterator. func (itr *booleanDedupeIterator) Stats() IteratorStats { return itr.input.Stats() } // Close closes the iterator and all child iterators. func (itr *booleanDedupeIterator) Close() error { return itr.input.Close() } // Next returns the next unique point from the input iterator. func (itr *booleanDedupeIterator) Next() (*BooleanPoint, error) { for { // Read next point. p, err := itr.input.Next() if p == nil || err != nil { return nil, err } // Serialize to bytes to store in lookup. buf, err := proto.Marshal(encodeBooleanPoint(p)) if err != nil { return nil, err } // If the point has already been output then move to the next point. if _, ok := itr.m[string(buf)]; ok { continue } // Otherwise mark it as emitted and return point. itr.m[string(buf)] = struct{}{} return p, nil } } // booleanReaderIterator represents an iterator that streams from a reader. type booleanReaderIterator struct { r io.Reader dec *BooleanPointDecoder } // newBooleanReaderIterator returns a new instance of booleanReaderIterator. func newBooleanReaderIterator(r io.Reader, stats IteratorStats) *booleanReaderIterator { dec := NewBooleanPointDecoder(r) dec.stats = stats return &booleanReaderIterator{ r: r, dec: dec, } } // Stats returns stats about points processed. func (itr *booleanReaderIterator) Stats() IteratorStats { return itr.dec.stats } // Close closes the underlying reader, if applicable. func (itr *booleanReaderIterator) Close() error { if r, ok := itr.r.(io.ReadCloser); ok { return r.Close() } return nil } // Next returns the next point from the iterator. func (itr *booleanReaderIterator) Next() (*BooleanPoint, error) { // OPTIMIZE(benbjohnson): Reuse point on iterator. // Unmarshal next point. p := &BooleanPoint{} if err := itr.dec.DecodeBooleanPoint(p); err == io.EOF { return nil, nil } else if err != nil { return nil, err } return p, nil } // IteratorEncoder is an encoder for encoding an iterator's points to w. type IteratorEncoder struct { w io.Writer // Frequency with which stats are emitted. StatsInterval time.Duration } // NewIteratorEncoder encodes an iterator's points to w. func NewIteratorEncoder(w io.Writer) *IteratorEncoder { return &IteratorEncoder{ w: w, StatsInterval: DefaultStatsInterval, } } // EncodeIterator encodes and writes all of itr's points to the underlying writer. func (enc *IteratorEncoder) EncodeIterator(itr Iterator) error { switch itr := itr.(type) { case FloatIterator: return enc.encodeFloatIterator(itr) case IntegerIterator: return enc.encodeIntegerIterator(itr) case StringIterator: return enc.encodeStringIterator(itr) case BooleanIterator: return enc.encodeBooleanIterator(itr) default: panic(fmt.Sprintf("unsupported iterator for encoder: %T", itr)) } } // encodeFloatIterator encodes all points from itr to the underlying writer. func (enc *IteratorEncoder) encodeFloatIterator(itr FloatIterator) error { ticker := time.NewTicker(enc.StatsInterval) defer ticker.Stop() // Emit initial stats. if err := enc.encodeStats(itr.Stats()); err != nil { return err } // Continually stream points from the iterator into the encoder. penc := NewFloatPointEncoder(enc.w) for { // Emit stats periodically. select { case <-ticker.C: if err := enc.encodeStats(itr.Stats()); err != nil { return err } default: } // Retrieve the next point from the iterator. p, err := itr.Next() if err != nil { return err } else if p == nil { break } // Write the point to the point encoder. if err := penc.EncodeFloatPoint(p); err != nil { return err } } // Emit final stats. if err := enc.encodeStats(itr.Stats()); err != nil { return err } return nil } // encodeIntegerIterator encodes all points from itr to the underlying writer. func (enc *IteratorEncoder) encodeIntegerIterator(itr IntegerIterator) error { ticker := time.NewTicker(enc.StatsInterval) defer ticker.Stop() // Emit initial stats. if err := enc.encodeStats(itr.Stats()); err != nil { return err } // Continually stream points from the iterator into the encoder. penc := NewIntegerPointEncoder(enc.w) for { // Emit stats periodically. select { case <-ticker.C: if err := enc.encodeStats(itr.Stats()); err != nil { return err } default: } // Retrieve the next point from the iterator. p, err := itr.Next() if err != nil { return err } else if p == nil { break } // Write the point to the point encoder. if err := penc.EncodeIntegerPoint(p); err != nil { return err } } // Emit final stats. if err := enc.encodeStats(itr.Stats()); err != nil { return err } return nil } // encodeStringIterator encodes all points from itr to the underlying writer. func (enc *IteratorEncoder) encodeStringIterator(itr StringIterator) error { ticker := time.NewTicker(enc.StatsInterval) defer ticker.Stop() // Emit initial stats. if err := enc.encodeStats(itr.Stats()); err != nil { return err } // Continually stream points from the iterator into the encoder. penc := NewStringPointEncoder(enc.w) for { // Emit stats periodically. select { case <-ticker.C: if err := enc.encodeStats(itr.Stats()); err != nil { return err } default: } // Retrieve the next point from the iterator. p, err := itr.Next() if err != nil { return err } else if p == nil { break } // Write the point to the point encoder. if err := penc.EncodeStringPoint(p); err != nil { return err } } // Emit final stats. if err := enc.encodeStats(itr.Stats()); err != nil { return err } return nil } // encodeBooleanIterator encodes all points from itr to the underlying writer. func (enc *IteratorEncoder) encodeBooleanIterator(itr BooleanIterator) error { ticker := time.NewTicker(enc.StatsInterval) defer ticker.Stop() // Emit initial stats. if err := enc.encodeStats(itr.Stats()); err != nil { return err } // Continually stream points from the iterator into the encoder. penc := NewBooleanPointEncoder(enc.w) for { // Emit stats periodically. select { case <-ticker.C: if err := enc.encodeStats(itr.Stats()); err != nil { return err } default: } // Retrieve the next point from the iterator. p, err := itr.Next() if err != nil { return err } else if p == nil { break } // Write the point to the point encoder. if err := penc.EncodeBooleanPoint(p); err != nil { return err } } // Emit final stats. if err := enc.encodeStats(itr.Stats()); err != nil { return err } return nil } // encode a stats object in the point stream. func (enc *IteratorEncoder) encodeStats(stats IteratorStats) error { buf, err := proto.Marshal(&internal.Point{ Name: proto.String(""), Tags: proto.String(""), Time: proto.Int64(0), Nil: proto.Bool(false), Stats: encodeIteratorStats(&stats), }) if err != nil { return err } if err := binary.Write(enc.w, binary.BigEndian, uint32(len(buf))); err != nil { return err } if _, err := enc.w.Write(buf); err != nil { return err } return nil }