package inmem import ( "bytes" "fmt" "regexp" "sort" "sync" "github.com/influxdata/influxdb/influxql" "github.com/influxdata/influxdb/models" "github.com/influxdata/influxdb/tsdb" ) // Measurement represents a collection of time series in a database. It also // contains in memory structures for indexing tags. Exported functions are // goroutine safe while un-exported functions assume the caller will use the // appropriate locks. type Measurement struct { database string Name string `json:"name,omitempty"` name []byte // cached version as []byte mu sync.RWMutex fieldNames map[string]struct{} // in-memory index fields seriesByID map[uint64]*Series // lookup table for series by their id seriesByTagKeyValue map[string]map[string]SeriesIDs // map from tag key to value to sorted set of series ids // lazyily created sorted series IDs sortedSeriesIDs SeriesIDs // sorted list of series IDs in this measurement } // NewMeasurement allocates and initializes a new Measurement. func NewMeasurement(database, name string) *Measurement { return &Measurement{ database: database, Name: name, name: []byte(name), fieldNames: make(map[string]struct{}), seriesByID: make(map[uint64]*Series), seriesByTagKeyValue: make(map[string]map[string]SeriesIDs), } } func (m *Measurement) HasField(name string) bool { m.mu.RLock() _, hasField := m.fieldNames[name] m.mu.RUnlock() return hasField } // SeriesByID returns a series by identifier. func (m *Measurement) SeriesByID(id uint64) *Series { m.mu.RLock() defer m.mu.RUnlock() return m.seriesByID[id] } // SeriesByIDMap returns the internal seriesByID map. func (m *Measurement) SeriesByIDMap() map[uint64]*Series { m.mu.RLock() defer m.mu.RUnlock() return m.seriesByID } // SeriesByIDSlice returns a list of series by identifiers. func (m *Measurement) SeriesByIDSlice(ids []uint64) []*Series { m.mu.RLock() defer m.mu.RUnlock() a := make([]*Series, len(ids)) for i, id := range ids { a[i] = m.seriesByID[id] } return a } // AppendSeriesKeysByID appends keys for a list of series ids to a buffer. func (m *Measurement) AppendSeriesKeysByID(dst []string, ids []uint64) []string { m.mu.RLock() defer m.mu.RUnlock() for _, id := range ids { if s := m.seriesByID[id]; s != nil { dst = append(dst, s.Key) } } return dst } // SeriesKeysByID returns the a list of keys for a set of ids. func (m *Measurement) SeriesKeysByID(ids SeriesIDs) [][]byte { m.mu.RLock() defer m.mu.RUnlock() keys := make([][]byte, 0, len(ids)) for _, id := range ids { s := m.seriesByID[id] if s == nil { continue } keys = append(keys, []byte(s.Key)) } return keys } // SeriesKeys returns the keys of every series in this measurement func (m *Measurement) SeriesKeys() [][]byte { m.mu.RLock() defer m.mu.RUnlock() keys := make([][]byte, 0, len(m.seriesByID)) for _, s := range m.seriesByID { keys = append(keys, []byte(s.Key)) } return keys } func (m *Measurement) SeriesIDs() SeriesIDs { m.mu.RLock() if len(m.sortedSeriesIDs) == len(m.seriesByID) { s := m.sortedSeriesIDs m.mu.RUnlock() return s } m.mu.RUnlock() m.mu.Lock() if len(m.sortedSeriesIDs) == len(m.seriesByID) { s := m.sortedSeriesIDs m.mu.Unlock() return s } m.sortedSeriesIDs = m.sortedSeriesIDs[:0] if cap(m.sortedSeriesIDs) < len(m.seriesByID) { m.sortedSeriesIDs = make(SeriesIDs, 0, len(m.seriesByID)) } for k := range m.seriesByID { m.sortedSeriesIDs = append(m.sortedSeriesIDs, k) } sort.Sort(m.sortedSeriesIDs) s := m.sortedSeriesIDs m.mu.Unlock() return s } // HasTagKey returns true if at least one series in this measurement has written a value for the passed in tag key func (m *Measurement) HasTagKey(k string) bool { m.mu.RLock() defer m.mu.RUnlock() _, hasTag := m.seriesByTagKeyValue[k] return hasTag } func (m *Measurement) HasTagKeyValue(k, v []byte) bool { m.mu.RLock() if vals, ok := m.seriesByTagKeyValue[string(k)]; ok { _, ok := vals[string(v)] m.mu.RUnlock() return ok } m.mu.RUnlock() return false } // HasSeries returns true if there is at least 1 series under this measurement. func (m *Measurement) HasSeries() bool { m.mu.RLock() defer m.mu.RUnlock() return len(m.seriesByID) > 0 } // Cardinality returns the number of values associated with the given tag key. func (m *Measurement) Cardinality(key string) int { var n int m.mu.RLock() n = m.cardinality(key) m.mu.RUnlock() return n } func (m *Measurement) cardinality(key string) int { return len(m.seriesByTagKeyValue[key]) } // CardinalityBytes returns the number of values associated with the given tag key. func (m *Measurement) CardinalityBytes(key []byte) int { var n int m.mu.RLock() n = len(m.seriesByTagKeyValue[string(key)]) m.mu.RUnlock() return n } // AddSeries adds a series to the measurement's index. // It returns true if the series was added successfully or false if the series was already present. func (m *Measurement) AddSeries(s *Series) bool { m.mu.RLock() if _, ok := m.seriesByID[s.ID]; ok { m.mu.RUnlock() return false } m.mu.RUnlock() m.mu.Lock() defer m.mu.Unlock() if _, ok := m.seriesByID[s.ID]; ok { return false } m.seriesByID[s.ID] = s if len(m.seriesByID) == 1 || (len(m.sortedSeriesIDs) == len(m.seriesByID)-1 && s.ID > m.sortedSeriesIDs[len(m.sortedSeriesIDs)-1]) { m.sortedSeriesIDs = append(m.sortedSeriesIDs, s.ID) } // add this series id to the tag index on the measurement s.ForEachTag(func(t models.Tag) { valueMap := m.seriesByTagKeyValue[string(t.Key)] if valueMap == nil { valueMap = make(map[string]SeriesIDs) m.seriesByTagKeyValue[string(t.Key)] = valueMap } ids := valueMap[string(t.Value)] ids = append(ids, s.ID) // most of the time the series ID will be higher than all others because it's a new // series. So don't do the sort if we don't have to. if len(ids) > 1 && ids[len(ids)-1] < ids[len(ids)-2] { sort.Sort(ids) } valueMap[string(t.Value)] = ids }) return true } // DropSeries removes a series from the measurement's index. func (m *Measurement) DropSeries(series *Series) { seriesID := series.ID m.mu.Lock() defer m.mu.Unlock() if _, ok := m.seriesByID[seriesID]; !ok { return } delete(m.seriesByID, seriesID) // clear our lazily sorted set of ids m.sortedSeriesIDs = m.sortedSeriesIDs[:0] // remove this series id from the tag index on the measurement // s.seriesByTagKeyValue is defined as map[string]map[string]SeriesIDs series.ForEachTag(func(t models.Tag) { values := m.seriesByTagKeyValue[string(t.Key)][string(t.Value)] ids := filter(values, seriesID) // Check to see if we have any ids, if not, remove the key if len(ids) == 0 { delete(m.seriesByTagKeyValue[string(t.Key)], string(t.Value)) } else { m.seriesByTagKeyValue[string(t.Key)][string(t.Value)] = ids } // If we have no values, then we delete the key if len(m.seriesByTagKeyValue[string(t.Key)]) == 0 { delete(m.seriesByTagKeyValue, string(t.Key)) } }) return } // filters walks the where clause of a select statement and returns a map with all series ids // matching the where clause and any filter expression that should be applied to each func (m *Measurement) filters(condition influxql.Expr) ([]uint64, map[uint64]influxql.Expr, error) { if condition == nil || influxql.OnlyTimeExpr(condition) { return m.SeriesIDs(), nil, nil } return m.WalkWhereForSeriesIds(condition) } // ForEachSeriesByExpr iterates over all series filtered by condition. func (m *Measurement) ForEachSeriesByExpr(condition influxql.Expr, fn func(tags models.Tags) error) error { // Retrieve matching series ids. ids, _, err := m.filters(condition) if err != nil { return err } // Iterate over each series. for _, id := range ids { s := m.SeriesByID(id) if err := fn(s.Tags()); err != nil { return err } } return nil } // TagSets returns the unique tag sets that exist for the given tag keys. This is used to determine // what composite series will be created by a group by. i.e. "group by region" should return: // {"region":"uswest"}, {"region":"useast"} // or region, service returns // {"region": "uswest", "service": "redis"}, {"region": "uswest", "service": "mysql"}, etc... // This will also populate the TagSet objects with the series IDs that match each tagset and any // influx filter expression that goes with the series // TODO: this shouldn't be exported. However, until tx.go and the engine get refactored into tsdb, we need it. func (m *Measurement) TagSets(shardID uint64, opt influxql.IteratorOptions) ([]*influxql.TagSet, error) { // get the unique set of series ids and the filters that should be applied to each ids, filters, err := m.filters(opt.Condition) if err != nil { return nil, err } var dims []string if len(opt.Dimensions) > 0 { dims = make([]string, len(opt.Dimensions)) copy(dims, opt.Dimensions) sort.Strings(dims) } m.mu.RLock() // For every series, get the tag values for the requested tag keys i.e. dimensions. This is the // TagSet for that series. Series with the same TagSet are then grouped together, because for the // purpose of GROUP BY they are part of the same composite series. tagSets := make(map[string]*influxql.TagSet, 64) var seriesN int for _, id := range ids { // Abort if the query was killed select { case <-opt.InterruptCh: m.mu.RUnlock() return nil, influxql.ErrQueryInterrupted default: } if opt.MaxSeriesN > 0 && seriesN > opt.MaxSeriesN { m.mu.RUnlock() return nil, fmt.Errorf("max-select-series limit exceeded: (%d/%d)", seriesN, opt.MaxSeriesN) } s := m.seriesByID[id] if !s.Assigned(shardID) { continue } if opt.Authorizer != nil && !opt.Authorizer.AuthorizeSeriesRead(m.database, m.name, s.Tags()) { continue } var tagsAsKey []byte if len(dims) > 0 { tagsAsKey = tsdb.MakeTagsKey(dims, s.Tags()) } tagSet, ok := tagSets[string(tagsAsKey)] if !ok { // This TagSet is new, create a new entry for it. tagSet = &influxql.TagSet{ Tags: nil, Key: tagsAsKey, } tagSets[string(tagsAsKey)] = tagSet } // Associate the series and filter with the Tagset. tagSet.AddFilter(s.Key, filters[id]) seriesN++ } // Release the lock while we sort all the tags m.mu.RUnlock() // Sort the series in each tag set. for _, t := range tagSets { // Abort if the query was killed select { case <-opt.InterruptCh: return nil, influxql.ErrQueryInterrupted default: } sort.Sort(t) } // The TagSets have been created, as a map of TagSets. Just send // the values back as a slice, sorting for consistency. sortedTagsSets := make([]*influxql.TagSet, 0, len(tagSets)) for _, v := range tagSets { sortedTagsSets = append(sortedTagsSets, v) } sort.Sort(byTagKey(sortedTagsSets)) return sortedTagsSets, nil } // intersectSeriesFilters performs an intersection for two sets of ids and filter expressions. func intersectSeriesFilters(lids, rids SeriesIDs, lfilters, rfilters FilterExprs) (SeriesIDs, FilterExprs) { // We only want to allocate a slice and map of the smaller size. var ids []uint64 if len(lids) > len(rids) { ids = make([]uint64, 0, len(rids)) } else { ids = make([]uint64, 0, len(lids)) } var filters FilterExprs if len(lfilters) > len(rfilters) { filters = make(FilterExprs, len(rfilters)) } else { filters = make(FilterExprs, len(lfilters)) } // They're in sorted order so advance the counter as needed. // This is, don't run comparisons against lower values that we've already passed. for len(lids) > 0 && len(rids) > 0 { lid, rid := lids[0], rids[0] if lid == rid { ids = append(ids, lid) var expr influxql.Expr lfilter := lfilters[lid] rfilter := rfilters[rid] if lfilter != nil && rfilter != nil { be := &influxql.BinaryExpr{ Op: influxql.AND, LHS: lfilter, RHS: rfilter, } expr = influxql.Reduce(be, nil) } else if lfilter != nil { expr = lfilter } else if rfilter != nil { expr = rfilter } if expr != nil { filters[lid] = expr } lids, rids = lids[1:], rids[1:] } else if lid < rid { lids = lids[1:] } else { rids = rids[1:] } } return ids, filters } // unionSeriesFilters performs a union for two sets of ids and filter expressions. func unionSeriesFilters(lids, rids SeriesIDs, lfilters, rfilters FilterExprs) (SeriesIDs, FilterExprs) { ids := make([]uint64, 0, len(lids)+len(rids)) // Setup the filters with the smallest size since we will discard filters // that do not have a match on the other side. var filters FilterExprs if len(lfilters) < len(rfilters) { filters = make(FilterExprs, len(lfilters)) } else { filters = make(FilterExprs, len(rfilters)) } for len(lids) > 0 && len(rids) > 0 { lid, rid := lids[0], rids[0] if lid == rid { ids = append(ids, lid) // If one side does not have a filter, then the series has been // included on one side of the OR with no condition. Eliminate the // filter in this case. var expr influxql.Expr lfilter := lfilters[lid] rfilter := rfilters[rid] if lfilter != nil && rfilter != nil { be := &influxql.BinaryExpr{ Op: influxql.OR, LHS: lfilter, RHS: rfilter, } expr = influxql.Reduce(be, nil) } if expr != nil { filters[lid] = expr } lids, rids = lids[1:], rids[1:] } else if lid < rid { ids = append(ids, lid) filter := lfilters[lid] if filter != nil { filters[lid] = filter } lids = lids[1:] } else { ids = append(ids, rid) filter := rfilters[rid] if filter != nil { filters[rid] = filter } rids = rids[1:] } } // Now append the remainder. if len(lids) > 0 { for i := 0; i < len(lids); i++ { ids = append(ids, lids[i]) filter := lfilters[lids[i]] if filter != nil { filters[lids[i]] = filter } } } else if len(rids) > 0 { for i := 0; i < len(rids); i++ { ids = append(ids, rids[i]) filter := rfilters[rids[i]] if filter != nil { filters[rids[i]] = filter } } } return ids, filters } // IDsForExpr returns the series IDs that are candidates to match the given expression. func (m *Measurement) IDsForExpr(n *influxql.BinaryExpr) SeriesIDs { ids, _, _ := m.idsForExpr(n) return ids } // idsForExpr returns a collection of series ids and a filter expression that should // be used to filter points from those series. func (m *Measurement) idsForExpr(n *influxql.BinaryExpr) (SeriesIDs, influxql.Expr, error) { // If this binary expression has another binary expression, then this // is some expression math and we should just pass it to the underlying query. if _, ok := n.LHS.(*influxql.BinaryExpr); ok { return m.SeriesIDs(), n, nil } else if _, ok := n.RHS.(*influxql.BinaryExpr); ok { return m.SeriesIDs(), n, nil } // Retrieve the variable reference from the correct side of the expression. name, ok := n.LHS.(*influxql.VarRef) value := n.RHS if !ok { name, ok = n.RHS.(*influxql.VarRef) if !ok { return nil, nil, fmt.Errorf("invalid expression: %s", n.String()) } value = n.LHS } // For time literals, return all series IDs and "true" as the filter. if _, ok := value.(*influxql.TimeLiteral); ok || name.Val == "time" { return m.SeriesIDs(), &influxql.BooleanLiteral{Val: true}, nil } // For fields, return all series IDs from this measurement and return // the expression passed in, as the filter. if name.Val != "_name" && ((name.Type == influxql.Unknown && m.HasField(name.Val)) || name.Type == influxql.AnyField || (name.Type != influxql.Tag && name.Type != influxql.Unknown)) { return m.SeriesIDs(), n, nil } else if value, ok := value.(*influxql.VarRef); ok { // Check if the RHS is a variable and if it is a field. if value.Val != "_name" && ((value.Type == influxql.Unknown && m.HasField(value.Val)) || name.Type == influxql.AnyField || (value.Type != influxql.Tag && value.Type != influxql.Unknown)) { return m.SeriesIDs(), n, nil } } // Retrieve list of series with this tag key. tagVals := m.seriesByTagKeyValue[name.Val] // if we're looking for series with a specific tag value if str, ok := value.(*influxql.StringLiteral); ok { var ids SeriesIDs // Special handling for "_name" to match measurement name. if name.Val == "_name" { if (n.Op == influxql.EQ && str.Val == m.Name) || (n.Op == influxql.NEQ && str.Val != m.Name) { return m.SeriesIDs(), nil, nil } return nil, nil, nil } if n.Op == influxql.EQ { if str.Val != "" { // return series that have a tag of specific value. ids = tagVals[str.Val] } else { // Make a copy of all series ids and mark the ones we need to evict. seriesIDs := newEvictSeriesIDs(m.SeriesIDs()) // Go through each slice and mark the values we find as zero so // they can be removed later. for _, a := range tagVals { seriesIDs.mark(a) } // Make a new slice with only the remaining ids. ids = seriesIDs.evict() } } else if n.Op == influxql.NEQ { if str.Val != "" { ids = m.SeriesIDs().Reject(tagVals[str.Val]) } else { for k := range tagVals { ids = append(ids, tagVals[k]...) } sort.Sort(ids) } } return ids, nil, nil } // if we're looking for series with a tag value that matches a regex if re, ok := value.(*influxql.RegexLiteral); ok { var ids SeriesIDs // Special handling for "_name" to match measurement name. if name.Val == "_name" { match := re.Val.MatchString(m.Name) if (n.Op == influxql.EQREGEX && match) || (n.Op == influxql.NEQREGEX && !match) { return m.SeriesIDs(), &influxql.BooleanLiteral{Val: true}, nil } return nil, nil, nil } // Check if we match the empty string to see if we should include series // that are missing the tag. empty := re.Val.MatchString("") // Gather the series that match the regex. If we should include the empty string, // start with the list of all series and reject series that don't match our condition. // If we should not include the empty string, include series that match our condition. if empty && n.Op == influxql.EQREGEX { // See comments above for EQ with a StringLiteral. seriesIDs := newEvictSeriesIDs(m.SeriesIDs()) for k := range tagVals { if !re.Val.MatchString(k) { seriesIDs.mark(tagVals[k]) } } ids = seriesIDs.evict() } else if empty && n.Op == influxql.NEQREGEX { ids = make(SeriesIDs, 0, len(m.SeriesIDs())) for k := range tagVals { if !re.Val.MatchString(k) { ids = append(ids, tagVals[k]...) } } sort.Sort(ids) } else if !empty && n.Op == influxql.EQREGEX { ids = make(SeriesIDs, 0, len(m.SeriesIDs())) for k := range tagVals { if re.Val.MatchString(k) { ids = append(ids, tagVals[k]...) } } sort.Sort(ids) } else if !empty && n.Op == influxql.NEQREGEX { // See comments above for EQ with a StringLiteral. seriesIDs := newEvictSeriesIDs(m.SeriesIDs()) for k := range tagVals { if re.Val.MatchString(k) { seriesIDs.mark(tagVals[k]) } } ids = seriesIDs.evict() } return ids, nil, nil } // compare tag values if ref, ok := value.(*influxql.VarRef); ok { var ids SeriesIDs if n.Op == influxql.NEQ { ids = m.SeriesIDs() } rhsTagVals := m.seriesByTagKeyValue[ref.Val] for k := range tagVals { tags := tagVals[k].Intersect(rhsTagVals[k]) if n.Op == influxql.EQ { ids = ids.Union(tags) } else if n.Op == influxql.NEQ { ids = ids.Reject(tags) } } return ids, nil, nil } if n.Op == influxql.NEQ || n.Op == influxql.NEQREGEX { return m.SeriesIDs(), nil, nil } return nil, nil, nil } // FilterExprs represents a map of series IDs to filter expressions. type FilterExprs map[uint64]influxql.Expr // DeleteBoolLiteralTrues deletes all elements whose filter expression is a boolean literal true. func (fe FilterExprs) DeleteBoolLiteralTrues() { for id, expr := range fe { if e, ok := expr.(*influxql.BooleanLiteral); ok && e.Val { delete(fe, id) } } } // Len returns the number of elements. func (fe FilterExprs) Len() int { if fe == nil { return 0 } return len(fe) } // WalkWhereForSeriesIds recursively walks the WHERE clause and returns an ordered set of series IDs and // a map from those series IDs to filter expressions that should be used to limit points returned in // the final query result. func (m *Measurement) WalkWhereForSeriesIds(expr influxql.Expr) (SeriesIDs, FilterExprs, error) { switch n := expr.(type) { case *influxql.BinaryExpr: switch n.Op { case influxql.EQ, influxql.NEQ, influxql.LT, influxql.LTE, influxql.GT, influxql.GTE, influxql.EQREGEX, influxql.NEQREGEX: // Get the series IDs and filter expression for the tag or field comparison. ids, expr, err := m.idsForExpr(n) if err != nil { return nil, nil, err } if len(ids) == 0 { return ids, nil, nil } // If the expression is a boolean literal that is true, ignore it. if b, ok := expr.(*influxql.BooleanLiteral); ok && b.Val { expr = nil } var filters FilterExprs if expr != nil { filters = make(FilterExprs, len(ids)) for _, id := range ids { filters[id] = expr } } return ids, filters, nil case influxql.AND, influxql.OR: // Get the series IDs and filter expressions for the LHS. lids, lfilters, err := m.WalkWhereForSeriesIds(n.LHS) if err != nil { return nil, nil, err } // Get the series IDs and filter expressions for the RHS. rids, rfilters, err := m.WalkWhereForSeriesIds(n.RHS) if err != nil { return nil, nil, err } // Combine the series IDs from the LHS and RHS. if n.Op == influxql.AND { ids, filters := intersectSeriesFilters(lids, rids, lfilters, rfilters) return ids, filters, nil } else { ids, filters := unionSeriesFilters(lids, rids, lfilters, rfilters) return ids, filters, nil } } ids, _, err := m.idsForExpr(n) return ids, nil, err case *influxql.ParenExpr: // walk down the tree return m.WalkWhereForSeriesIds(n.Expr) default: return nil, nil, nil } } // expandExpr returns a list of expressions expanded by all possible tag // combinations. func (m *Measurement) expandExpr(expr influxql.Expr) []tagSetExpr { // Retrieve list of unique values for each tag. valuesByTagKey := m.uniqueTagValues(expr) // Convert keys to slices. keys := make([]string, 0, len(valuesByTagKey)) for key := range valuesByTagKey { keys = append(keys, key) } sort.Strings(keys) // Order uniques by key. uniques := make([][]string, len(keys)) for i, key := range keys { uniques[i] = valuesByTagKey[key] } // Reduce a condition for each combination of tag values. return expandExprWithValues(expr, keys, []tagExpr{}, uniques, 0) } func expandExprWithValues(expr influxql.Expr, keys []string, tagExprs []tagExpr, uniques [][]string, index int) []tagSetExpr { // If we have no more keys left then execute the reduction and return. if index == len(keys) { // Create a map of tag key/values. m := make(map[string]*string, len(keys)) for i, key := range keys { if tagExprs[i].op == influxql.EQ { m[key] = &tagExprs[i].values[0] } else { m[key] = nil } } // TODO: Rewrite full expressions instead of VarRef replacement. // Reduce using the current tag key/value set. // Ignore it if reduces down to "false". e := influxql.Reduce(expr, &tagValuer{tags: m}) if e, ok := e.(*influxql.BooleanLiteral); ok && !e.Val { return nil } return []tagSetExpr{{values: copyTagExprs(tagExprs), expr: e}} } // Otherwise expand for each possible equality value of the key. var exprs []tagSetExpr for _, v := range uniques[index] { exprs = append(exprs, expandExprWithValues(expr, keys, append(tagExprs, tagExpr{keys[index], []string{v}, influxql.EQ}), uniques, index+1)...) } exprs = append(exprs, expandExprWithValues(expr, keys, append(tagExprs, tagExpr{keys[index], uniques[index], influxql.NEQ}), uniques, index+1)...) return exprs } // SeriesIDsAllOrByExpr walks an expressions for matching series IDs // or, if no expressions is given, returns all series IDs for the measurement. func (m *Measurement) SeriesIDsAllOrByExpr(expr influxql.Expr) (SeriesIDs, error) { // If no expression given or the measurement has no series, // we can take just return the ids or nil accordingly. if expr == nil { return m.SeriesIDs(), nil } m.mu.RLock() l := len(m.seriesByID) m.mu.RUnlock() if l == 0 { return nil, nil } // Get series IDs that match the WHERE clause. ids, _, err := m.WalkWhereForSeriesIds(expr) if err != nil { return nil, err } return ids, nil } // tagKeysByExpr extracts the tag keys wanted by the expression. func (m *Measurement) TagKeysByExpr(expr influxql.Expr) (map[string]struct{}, error) { switch e := expr.(type) { case *influxql.BinaryExpr: switch e.Op { case influxql.EQ, influxql.NEQ, influxql.EQREGEX, influxql.NEQREGEX: tag, ok := e.LHS.(*influxql.VarRef) if !ok { return nil, fmt.Errorf("left side of '%s' must be a tag key", e.Op.String()) } else if tag.Val != "_tagKey" { return nil, nil } if influxql.IsRegexOp(e.Op) { re, ok := e.RHS.(*influxql.RegexLiteral) if !ok { return nil, fmt.Errorf("right side of '%s' must be a regular expression", e.Op.String()) } return m.tagKeysByFilter(e.Op, "", re.Val), nil } s, ok := e.RHS.(*influxql.StringLiteral) if !ok { return nil, fmt.Errorf("right side of '%s' must be a tag value string", e.Op.String()) } return m.tagKeysByFilter(e.Op, s.Val, nil), nil case influxql.AND, influxql.OR: lhs, err := m.TagKeysByExpr(e.LHS) if err != nil { return nil, err } rhs, err := m.TagKeysByExpr(e.RHS) if err != nil { return nil, err } if lhs != nil && rhs != nil { if e.Op == influxql.OR { return stringSet(lhs).union(rhs), nil } return stringSet(lhs).intersect(rhs), nil } else if lhs != nil { return lhs, nil } else if rhs != nil { return rhs, nil } return nil, nil default: return nil, fmt.Errorf("invalid operator") } case *influxql.ParenExpr: return m.TagKeysByExpr(e.Expr) } return nil, fmt.Errorf("%#v", expr) } // tagKeysByFilter will filter the tag keys for the measurement. func (m *Measurement) tagKeysByFilter(op influxql.Token, val string, regex *regexp.Regexp) stringSet { ss := newStringSet() for _, key := range m.TagKeys() { var matched bool switch op { case influxql.EQ: matched = key == val case influxql.NEQ: matched = key != val case influxql.EQREGEX: matched = regex.MatchString(key) case influxql.NEQREGEX: matched = !regex.MatchString(key) } if !matched { continue } ss.add(key) } return ss } // tagValuer is used during expression expansion to evaluate all sets of tag values. type tagValuer struct { tags map[string]*string } // Value returns the string value of a tag and true if it's listed in the tagset. func (v *tagValuer) Value(name string) (interface{}, bool) { if value, ok := v.tags[name]; ok { if value == nil { return nil, true } return *value, true } return nil, false } // tagSetExpr represents a set of tag keys/values and associated expression. type tagSetExpr struct { values []tagExpr expr influxql.Expr } // tagExpr represents one or more values assigned to a given tag. type tagExpr struct { key string values []string op influxql.Token // EQ or NEQ } func copyTagExprs(a []tagExpr) []tagExpr { other := make([]tagExpr, len(a)) copy(other, a) return other } // uniqueTagValues returns a list of unique tag values used in an expression. func (m *Measurement) uniqueTagValues(expr influxql.Expr) map[string][]string { // Track unique value per tag. tags := make(map[string]map[string]struct{}) // Find all tag values referenced in the expression. influxql.WalkFunc(expr, func(n influxql.Node) { switch n := n.(type) { case *influxql.BinaryExpr: // Ignore operators that are not equality. if n.Op != influxql.EQ { return } // Extract ref and string literal. var key, value string switch lhs := n.LHS.(type) { case *influxql.VarRef: if rhs, ok := n.RHS.(*influxql.StringLiteral); ok { key, value = lhs.Val, rhs.Val } case *influxql.StringLiteral: if rhs, ok := n.RHS.(*influxql.VarRef); ok { key, value = rhs.Val, lhs.Val } } if key == "" { return } // Add value to set. if tags[key] == nil { tags[key] = make(map[string]struct{}) } tags[key][value] = struct{}{} } }) // Convert to map of slices. out := make(map[string][]string) for k, values := range tags { out[k] = make([]string, 0, len(values)) for v := range values { out[k] = append(out[k], v) } sort.Strings(out[k]) } return out } // Measurements represents a list of *Measurement. type Measurements []*Measurement // Len implements sort.Interface. func (a Measurements) Len() int { return len(a) } // Less implements sort.Interface. func (a Measurements) Less(i, j int) bool { return a[i].Name < a[j].Name } // Swap implements sort.Interface. func (a Measurements) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a Measurements) Intersect(other Measurements) Measurements { l := a r := other // we want to iterate through the shortest one and stop if len(other) < len(a) { l = other r = a } // they're in sorted order so advance the counter as needed. // That is, don't run comparisons against lower values that we've already passed var i, j int result := make(Measurements, 0, len(l)) for i < len(l) && j < len(r) { if l[i].Name == r[j].Name { result = append(result, l[i]) i++ j++ } else if l[i].Name < r[j].Name { i++ } else { j++ } } return result } func (a Measurements) Union(other Measurements) Measurements { result := make(Measurements, 0, len(a)+len(other)) var i, j int for i < len(a) && j < len(other) { if a[i].Name == other[j].Name { result = append(result, a[i]) i++ j++ } else if a[i].Name < other[j].Name { result = append(result, a[i]) i++ } else { result = append(result, other[j]) j++ } } // now append the remainder if i < len(a) { result = append(result, a[i:]...) } else if j < len(other) { result = append(result, other[j:]...) } return result } // Series belong to a Measurement and represent unique time series in a database. type Series struct { mu sync.RWMutex Key string tags models.Tags ID uint64 measurement *Measurement shardIDs map[uint64]struct{} // shards that have this series defined } // NewSeries returns an initialized series struct func NewSeries(key []byte, tags models.Tags) *Series { return &Series{ Key: string(key), tags: tags, shardIDs: make(map[uint64]struct{}), } } func (s *Series) AssignShard(shardID uint64) { s.mu.RLock() _, ok := s.shardIDs[shardID] s.mu.RUnlock() if ok { return } s.mu.Lock() // Skip the existence check under the write lock because we're just storing // and empty struct. s.shardIDs[shardID] = struct{}{} s.mu.Unlock() } func (s *Series) UnassignShard(shardID uint64) { s.mu.Lock() delete(s.shardIDs, shardID) s.mu.Unlock() } func (s *Series) Assigned(shardID uint64) bool { s.mu.RLock() _, ok := s.shardIDs[shardID] s.mu.RUnlock() return ok } func (s *Series) ShardN() int { s.mu.RLock() n := len(s.shardIDs) s.mu.RUnlock() return n } // Measurement returns the measurement on the series. func (s *Series) Measurement() *Measurement { return s.measurement } // SetMeasurement sets the measurement on the series. func (s *Series) SetMeasurement(m *Measurement) { s.measurement = m } // ForEachTag executes fn for every tag. Iteration occurs under lock. func (s *Series) ForEachTag(fn func(models.Tag)) { s.mu.RLock() defer s.mu.RUnlock() for _, t := range s.tags { fn(t) } } // Tags returns a copy of the tags under lock. func (s *Series) Tags() models.Tags { s.mu.RLock() defer s.mu.RUnlock() return s.tags } // CopyTags clones the tags on the series in-place, func (s *Series) CopyTags() { s.mu.Lock() defer s.mu.Unlock() s.tags = s.tags.Clone() } // GetTagString returns a tag value under lock. func (s *Series) GetTagString(key string) string { s.mu.RLock() defer s.mu.RUnlock() return s.tags.GetString(key) } // SeriesIDs is a convenience type for sorting, checking equality, and doing // union and intersection of collections of series ids. type SeriesIDs []uint64 // Len implements sort.Interface. func (a SeriesIDs) Len() int { return len(a) } // Less implements sort.Interface. func (a SeriesIDs) Less(i, j int) bool { return a[i] < a[j] } // Swap implements sort.Interface. func (a SeriesIDs) Swap(i, j int) { a[i], a[j] = a[j], a[i] } // Equals assumes that both are sorted. func (a SeriesIDs) Equals(other SeriesIDs) bool { if len(a) != len(other) { return false } for i, s := range other { if a[i] != s { return false } } return true } // Intersect returns a new collection of series ids in sorted order that is the intersection of the two. // The two collections must already be sorted. func (a SeriesIDs) Intersect(other SeriesIDs) SeriesIDs { l := a r := other // we want to iterate through the shortest one and stop if len(other) < len(a) { l = other r = a } // they're in sorted order so advance the counter as needed. // That is, don't run comparisons against lower values that we've already passed var i, j int ids := make([]uint64, 0, len(l)) for i < len(l) && j < len(r) { if l[i] == r[j] { ids = append(ids, l[i]) i++ j++ } else if l[i] < r[j] { i++ } else { j++ } } return SeriesIDs(ids) } // Union returns a new collection of series ids in sorted order that is the union of the two. // The two collections must already be sorted. func (a SeriesIDs) Union(other SeriesIDs) SeriesIDs { l := a r := other ids := make([]uint64, 0, len(l)+len(r)) var i, j int for i < len(l) && j < len(r) { if l[i] == r[j] { ids = append(ids, l[i]) i++ j++ } else if l[i] < r[j] { ids = append(ids, l[i]) i++ } else { ids = append(ids, r[j]) j++ } } // now append the remainder if i < len(l) { ids = append(ids, l[i:]...) } else if j < len(r) { ids = append(ids, r[j:]...) } return ids } // Reject returns a new collection of series ids in sorted order with the passed in set removed from the original. // This is useful for the NOT operator. The two collections must already be sorted. func (a SeriesIDs) Reject(other SeriesIDs) SeriesIDs { l := a r := other var i, j int ids := make([]uint64, 0, len(l)) for i < len(l) && j < len(r) { if l[i] == r[j] { i++ j++ } else if l[i] < r[j] { ids = append(ids, l[i]) i++ } else { j++ } } // Append the remainder if i < len(l) { ids = append(ids, l[i:]...) } return SeriesIDs(ids) } // seriesID is a series id that may or may not have been evicted from the // current id list. type seriesID struct { val uint64 evict bool } // evictSeriesIDs is a slice of SeriesIDs with an extra field to mark if the // field should be evicted or not. type evictSeriesIDs struct { ids []seriesID sz int } // newEvictSeriesIDs copies the ids into a new slice that can be used for // evicting series from the slice. func newEvictSeriesIDs(ids []uint64) evictSeriesIDs { a := make([]seriesID, len(ids)) for i, id := range ids { a[i].val = id } return evictSeriesIDs{ ids: a, sz: len(a), } } // mark marks all of the ids in the sorted slice to be evicted from the list of // series ids. If an id to be evicted does not exist, it just gets ignored. func (a *evictSeriesIDs) mark(ids []uint64) { seriesIDs := a.ids for _, id := range ids { if len(seriesIDs) == 0 { break } // Perform a binary search of the remaining slice if // the first element does not match the value we're // looking for. i := 0 if seriesIDs[0].val < id { i = sort.Search(len(seriesIDs), func(i int) bool { return seriesIDs[i].val >= id }) } if i >= len(seriesIDs) { break } else if seriesIDs[i].val == id { if !seriesIDs[i].evict { seriesIDs[i].evict = true a.sz-- } // Skip over this series since it has been evicted and won't be // encountered again. i++ } seriesIDs = seriesIDs[i:] } } // evict creates a new slice with only the series that have not been evicted. func (a *evictSeriesIDs) evict() (ids SeriesIDs) { if a.sz == 0 { return ids } // Make a new slice with only the remaining ids. ids = make([]uint64, 0, a.sz) for _, id := range a.ids { if id.evict { continue } ids = append(ids, id.val) } return ids } // TagFilter represents a tag filter when looking up other tags or measurements. type TagFilter struct { Op influxql.Token Key string Value string Regex *regexp.Regexp } // WalkTagKeys calls fn for each tag key associated with m. The order of the // keys is undefined. func (m *Measurement) WalkTagKeys(fn func(k string)) { m.mu.RLock() defer m.mu.RUnlock() for k := range m.seriesByTagKeyValue { fn(k) } } // TagKeys returns a list of the measurement's tag names, in sorted order. func (m *Measurement) TagKeys() []string { m.mu.RLock() keys := make([]string, 0, len(m.seriesByTagKeyValue)) for k := range m.seriesByTagKeyValue { keys = append(keys, k) } m.mu.RUnlock() sort.Strings(keys) return keys } // TagValues returns all the values for the given tag key, in an arbitrary order. func (m *Measurement) TagValues(key string) []string { m.mu.RLock() defer m.mu.RUnlock() values := make([]string, 0, len(m.seriesByTagKeyValue[key])) for v := range m.seriesByTagKeyValue[key] { values = append(values, v) } return values } // SetFieldName adds the field name to the measurement. func (m *Measurement) SetFieldName(name string) { m.mu.RLock() if _, ok := m.fieldNames[name]; ok { m.mu.RUnlock() return } m.mu.RUnlock() m.mu.Lock() m.fieldNames[name] = struct{}{} m.mu.Unlock() } // FieldNames returns a list of the measurement's field names, in an arbitrary order. func (m *Measurement) FieldNames() []string { m.mu.RLock() defer m.mu.RUnlock() a := make([]string, 0, len(m.fieldNames)) for n := range m.fieldNames { a = append(a, n) } return a } func (m *Measurement) SeriesByTagKeyValue(key string) map[string]SeriesIDs { m.mu.RLock() ret := m.seriesByTagKeyValue[key] m.mu.RUnlock() return ret } // stringSet represents a set of strings. type stringSet map[string]struct{} // newStringSet returns an empty stringSet. func newStringSet() stringSet { return make(map[string]struct{}) } // add adds strings to the set. func (s stringSet) add(ss ...string) { for _, n := range ss { s[n] = struct{}{} } } // list returns the current elements in the set, in sorted order. func (s stringSet) list() []string { l := make([]string, 0, len(s)) for k := range s { l = append(l, k) } sort.Strings(l) return l } // union returns the union of this set and another. func (s stringSet) union(o stringSet) stringSet { ns := newStringSet() for k := range s { ns[k] = struct{}{} } for k := range o { ns[k] = struct{}{} } return ns } // intersect returns the intersection of this set and another. func (s stringSet) intersect(o stringSet) stringSet { shorter, longer := s, o if len(longer) < len(shorter) { shorter, longer = longer, shorter } ns := newStringSet() for k := range shorter { if _, ok := longer[k]; ok { ns[k] = struct{}{} } } return ns } // filter removes v from a if it exists. a must be sorted in ascending // order. func filter(a []uint64, v uint64) []uint64 { // binary search for v i := sort.Search(len(a), func(i int) bool { return a[i] >= v }) if i >= len(a) || a[i] != v { return a } // we found it, so shift the right half down one, overwriting v's position. copy(a[i:], a[i+1:]) return a[:len(a)-1] } type byTagKey []*influxql.TagSet func (t byTagKey) Len() int { return len(t) } func (t byTagKey) Less(i, j int) bool { return bytes.Compare(t[i].Key, t[j].Key) < 0 } func (t byTagKey) Swap(i, j int) { t[i], t[j] = t[j], t[i] }