1
0
mirror of https://github.com/Oxalide/vsphere-influxdb-go.git synced 2023-10-10 13:36:51 +02:00
vsphere-influxdb-go/vendor/github.com/influxdata/influxdb/tsdb/index/tsi1/index.go
2017-10-25 20:52:40 +00:00

1331 lines
33 KiB
Go

package tsi1
import (
"crypto/rand"
"encoding/json"
"errors"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"regexp"
"sort"
"strconv"
"strings"
"sync"
"time"
"github.com/influxdata/influxdb/influxql"
"github.com/influxdata/influxdb/models"
"github.com/influxdata/influxdb/pkg/estimator"
"github.com/influxdata/influxdb/tsdb"
"github.com/uber-go/zap"
)
// IndexName is the name of the index.
const IndexName = "tsi1"
// Default compaction thresholds.
const (
DefaultMaxLogFileSize = 5 * 1024 * 1024
)
func init() {
tsdb.RegisterIndex(IndexName, func(id uint64, database, path string, opt tsdb.EngineOptions) tsdb.Index {
idx := NewIndex()
idx.ShardID = id
idx.Database = database
idx.Path = path
idx.options = opt
return idx
})
}
// File extensions.
const (
LogFileExt = ".tsl"
IndexFileExt = ".tsi"
CompactingExt = ".compacting"
)
// ManifestFileName is the name of the index manifest file.
const ManifestFileName = "MANIFEST"
// Ensure index implements the interface.
var _ tsdb.Index = &Index{}
// Index represents a collection of layered index files and WAL.
type Index struct {
mu sync.RWMutex
opened bool
options tsdb.EngineOptions
activeLogFile *LogFile // current log file
fileSet *FileSet // current file set
seq int // file id sequence
// Compaction management
levels []CompactionLevel // compaction levels
levelCompacting []bool // level compaction status
// Close management.
once sync.Once
closing chan struct{}
wg sync.WaitGroup
// Fieldset shared with engine.
fieldset *tsdb.MeasurementFieldSet
// Associated shard info.
ShardID uint64
// Name of database.
Database string
// Root directory of the index files.
Path string
// Log file compaction thresholds.
MaxLogFileSize int64
// Frequency of compaction checks.
CompactionEnabled bool
CompactionMonitorInterval time.Duration
logger zap.Logger
}
// NewIndex returns a new instance of Index.
func NewIndex() *Index {
return &Index{
closing: make(chan struct{}),
// Default compaction thresholds.
MaxLogFileSize: DefaultMaxLogFileSize,
CompactionEnabled: true,
logger: zap.New(zap.NullEncoder()),
}
}
func (i *Index) Type() string { return IndexName }
// Open opens the index.
func (i *Index) Open() error {
i.mu.Lock()
defer i.mu.Unlock()
if i.opened {
return errors.New("index already open")
}
// Create directory if it doesn't exist.
if err := os.MkdirAll(i.Path, 0777); err != nil {
return err
}
// Read manifest file.
m, err := ReadManifestFile(filepath.Join(i.Path, ManifestFileName))
if os.IsNotExist(err) {
m = NewManifest()
} else if err != nil {
return err
}
// Copy compaction levels to the index.
i.levels = make([]CompactionLevel, len(m.Levels))
copy(i.levels, m.Levels)
// Set up flags to track whether a level is compacting.
i.levelCompacting = make([]bool, len(i.levels))
// Open each file in the manifest.
var files []File
for _, filename := range m.Files {
switch filepath.Ext(filename) {
case LogFileExt:
f, err := i.openLogFile(filepath.Join(i.Path, filename))
if err != nil {
return err
}
files = append(files, f)
// Make first log file active, if within threshold.
sz, _ := f.Stat()
if i.activeLogFile == nil && sz < i.MaxLogFileSize {
i.activeLogFile = f
}
case IndexFileExt:
f, err := i.openIndexFile(filepath.Join(i.Path, filename))
if err != nil {
return err
}
files = append(files, f)
}
}
fs, err := NewFileSet(i.levels, files)
if err != nil {
return err
}
i.fileSet = fs
// Set initial sequnce number.
i.seq = i.fileSet.MaxID()
// Delete any files not in the manifest.
if err := i.deleteNonManifestFiles(m); err != nil {
return err
}
// Ensure a log file exists.
if i.activeLogFile == nil {
if err := i.prependActiveLogFile(); err != nil {
return err
}
}
// Mark opened.
i.opened = true
// Send a compaction request on start up.
i.compact()
return nil
}
// openLogFile opens a log file and appends it to the index.
func (i *Index) openLogFile(path string) (*LogFile, error) {
f := NewLogFile(path)
if err := f.Open(); err != nil {
return nil, err
}
return f, nil
}
// openIndexFile opens a log file and appends it to the index.
func (i *Index) openIndexFile(path string) (*IndexFile, error) {
f := NewIndexFile()
f.SetPath(path)
if err := f.Open(); err != nil {
return nil, err
}
return f, nil
}
// deleteNonManifestFiles removes all files not in the manifest.
func (i *Index) deleteNonManifestFiles(m *Manifest) error {
dir, err := os.Open(i.Path)
if err != nil {
return err
}
defer dir.Close()
fis, err := dir.Readdir(-1)
if err != nil {
return err
}
// Loop over all files and remove any not in the manifest.
for _, fi := range fis {
filename := filepath.Base(fi.Name())
if filename == ManifestFileName || m.HasFile(filename) {
continue
}
if err := os.RemoveAll(filename); err != nil {
return err
}
}
return nil
}
// Close closes the index.
func (i *Index) Close() error {
// Wait for goroutines to finish.
i.once.Do(func() { close(i.closing) })
i.wg.Wait()
// Lock index and close remaining
i.mu.Lock()
defer i.mu.Unlock()
// Close log files.
for _, f := range i.fileSet.files {
f.Close()
}
i.fileSet.files = nil
return nil
}
// NextSequence returns the next file identifier.
func (i *Index) NextSequence() int {
i.mu.Lock()
defer i.mu.Unlock()
return i.nextSequence()
}
func (i *Index) nextSequence() int {
i.seq++
return i.seq
}
// ManifestPath returns the path to the index's manifest file.
func (i *Index) ManifestPath() string {
return filepath.Join(i.Path, ManifestFileName)
}
// Manifest returns a manifest for the index.
func (i *Index) Manifest() *Manifest {
m := &Manifest{
Levels: i.levels,
Files: make([]string, len(i.fileSet.files)),
}
for j, f := range i.fileSet.files {
m.Files[j] = filepath.Base(f.Path())
}
return m
}
// writeManifestFile writes the manifest to the appropriate file path.
func (i *Index) writeManifestFile() error {
return WriteManifestFile(i.ManifestPath(), i.Manifest())
}
// WithLogger sets the logger for the index.
func (i *Index) WithLogger(logger zap.Logger) {
i.logger = logger.With(zap.String("index", "tsi"))
}
// SetFieldSet sets a shared field set from the engine.
func (i *Index) SetFieldSet(fs *tsdb.MeasurementFieldSet) {
i.mu.Lock()
i.fieldset = fs
i.mu.Unlock()
}
// RetainFileSet returns the current fileset and adds a reference count.
func (i *Index) RetainFileSet() *FileSet {
i.mu.RLock()
fs := i.retainFileSet()
i.mu.RUnlock()
return fs
}
func (i *Index) retainFileSet() *FileSet {
fs := i.fileSet
fs.Retain()
return fs
}
// FileN returns the active files in the file set.
func (i *Index) FileN() int { return len(i.fileSet.files) }
// prependActiveLogFile adds a new log file so that the current log file can be compacted.
func (i *Index) prependActiveLogFile() error {
// Open file and insert it into the first position.
f, err := i.openLogFile(filepath.Join(i.Path, FormatLogFileName(i.nextSequence())))
if err != nil {
return err
}
i.activeLogFile = f
// Prepend and generate new fileset.
fs, err := i.fileSet.Prepend(f)
if err != nil {
return err
}
i.fileSet = fs
// Write new manifest.
if err := i.writeManifestFile(); err != nil {
// TODO: Close index if write fails.
return err
}
return nil
}
// ForEachMeasurementName iterates over all measurement names in the index.
func (i *Index) ForEachMeasurementName(fn func(name []byte) error) error {
fs := i.RetainFileSet()
defer fs.Release()
itr := fs.MeasurementIterator()
if itr == nil {
return nil
}
for e := itr.Next(); e != nil; e = itr.Next() {
if err := fn(e.Name()); err != nil {
return err
}
}
return nil
}
// MeasurementExists returns true if a measurement exists.
func (i *Index) MeasurementExists(name []byte) (bool, error) {
fs := i.RetainFileSet()
defer fs.Release()
m := fs.Measurement(name)
return m != nil && !m.Deleted(), nil
}
func (i *Index) MeasurementNamesByExpr(expr influxql.Expr) ([][]byte, error) {
fs := i.RetainFileSet()
defer fs.Release()
return fs.MeasurementNamesByExpr(expr)
}
func (i *Index) MeasurementNamesByRegex(re *regexp.Regexp) ([][]byte, error) {
fs := i.RetainFileSet()
defer fs.Release()
itr := fs.MeasurementIterator()
var a [][]byte
for e := itr.Next(); e != nil; e = itr.Next() {
if re.Match(e.Name()) {
a = append(a, e.Name())
}
}
return a, nil
}
// DropMeasurement deletes a measurement from the index.
func (i *Index) DropMeasurement(name []byte) error {
fs := i.RetainFileSet()
defer fs.Release()
// Delete all keys and values.
if kitr := fs.TagKeyIterator(name); kitr != nil {
for k := kitr.Next(); k != nil; k = kitr.Next() {
// Delete key if not already deleted.
if !k.Deleted() {
if err := func() error {
i.mu.RLock()
defer i.mu.RUnlock()
return i.activeLogFile.DeleteTagKey(name, k.Key())
}(); err != nil {
return err
}
}
// Delete each value in key.
if vitr := k.TagValueIterator(); vitr != nil {
for v := vitr.Next(); v != nil; v = vitr.Next() {
if !v.Deleted() {
if err := func() error {
i.mu.RLock()
defer i.mu.RUnlock()
return i.activeLogFile.DeleteTagValue(name, k.Key(), v.Value())
}(); err != nil {
return err
}
}
}
}
}
}
// Delete all series in measurement.
if sitr := fs.MeasurementSeriesIterator(name); sitr != nil {
for s := sitr.Next(); s != nil; s = sitr.Next() {
if !s.Deleted() {
if err := func() error {
i.mu.RLock()
defer i.mu.RUnlock()
return i.activeLogFile.DeleteSeries(s.Name(), s.Tags())
}(); err != nil {
return err
}
}
}
}
// Mark measurement as deleted.
if err := func() error {
i.mu.RLock()
defer i.mu.RUnlock()
return i.activeLogFile.DeleteMeasurement(name)
}(); err != nil {
return err
}
// Check if the log file needs to be swapped.
if err := i.CheckLogFile(); err != nil {
return err
}
return nil
}
// CreateSeriesListIfNotExists creates a list of series if they doesn't exist in bulk.
func (i *Index) CreateSeriesListIfNotExists(_, names [][]byte, tagsSlice []models.Tags) error {
// All slices must be of equal length.
if len(names) != len(tagsSlice) {
return errors.New("names/tags length mismatch")
}
// Maintain reference count on files in file set.
fs := i.RetainFileSet()
defer fs.Release()
// Filter out existing series. Exit if no new series exist.
names, tagsSlice = fs.FilterNamesTags(names, tagsSlice)
if len(names) == 0 {
return nil
}
// Ensure fileset cannot change during insert.
i.mu.RLock()
// Insert series into log file.
if err := i.activeLogFile.AddSeriesList(names, tagsSlice); err != nil {
i.mu.RUnlock()
return err
}
i.mu.RUnlock()
return i.CheckLogFile()
}
// InitializeSeries is a no-op. This only applies to the in-memory index.
func (i *Index) InitializeSeries(key, name []byte, tags models.Tags) error {
return nil
}
// CreateSeriesIfNotExists creates a series if it doesn't exist or is deleted.
func (i *Index) CreateSeriesIfNotExists(key, name []byte, tags models.Tags) error {
if err := func() error {
i.mu.RLock()
defer i.mu.RUnlock()
fs := i.retainFileSet()
defer fs.Release()
if fs.HasSeries(name, tags, nil) {
return nil
}
if err := i.activeLogFile.AddSeries(name, tags); err != nil {
return err
}
return nil
}(); err != nil {
return err
}
// Swap log file, if necesssary.
if err := i.CheckLogFile(); err != nil {
return err
}
return nil
}
func (i *Index) DropSeries(key []byte) error {
if err := func() error {
i.mu.RLock()
defer i.mu.RUnlock()
name, tags := models.ParseKey(key)
mname := []byte(name)
if err := i.activeLogFile.DeleteSeries(mname, tags); err != nil {
return err
}
// Obtain file set after deletion because that may add a new log file.
fs := i.retainFileSet()
defer fs.Release()
// Check if that was the last series for the measurement in the entire index.
itr := fs.MeasurementSeriesIterator(mname)
if itr == nil {
return nil
} else if e := itr.Next(); e != nil {
return nil
}
// If no more series exist in the measurement then delete the measurement.
if err := i.activeLogFile.DeleteMeasurement(mname); err != nil {
return err
}
return nil
}(); err != nil {
return err
}
// Swap log file, if necesssary.
if err := i.CheckLogFile(); err != nil {
return err
}
return nil
}
// SeriesSketches returns the two sketches for the index by merging all
// instances sketches from TSI files and the WAL.
func (i *Index) SeriesSketches() (estimator.Sketch, estimator.Sketch, error) {
fs := i.RetainFileSet()
defer fs.Release()
return fs.SeriesSketches()
}
// MeasurementsSketches returns the two sketches for the index by merging all
// instances of the type sketch types in all the index files.
func (i *Index) MeasurementsSketches() (estimator.Sketch, estimator.Sketch, error) {
fs := i.RetainFileSet()
defer fs.Release()
return fs.MeasurementsSketches()
}
// SeriesN returns the number of unique non-tombstoned series in the index.
// Since indexes are not shared across shards, the count returned by SeriesN
// cannot be combined with other shard's results. If you need to count series
// across indexes then use SeriesSketches and merge the results from other
// indexes.
func (i *Index) SeriesN() int64 {
fs := i.RetainFileSet()
defer fs.Release()
var total int64
for _, f := range fs.files {
total += int64(f.SeriesN())
}
return total
}
// HasTagKey returns true if tag key exists.
func (i *Index) HasTagKey(name, key []byte) (bool, error) {
fs := i.RetainFileSet()
defer fs.Release()
return fs.HasTagKey(name, key), nil
}
// MeasurementTagKeysByExpr extracts the tag keys wanted by the expression.
func (i *Index) MeasurementTagKeysByExpr(name []byte, expr influxql.Expr) (map[string]struct{}, error) {
fs := i.RetainFileSet()
defer fs.Release()
return fs.MeasurementTagKeysByExpr(name, expr)
}
// MeasurementTagKeyValuesByExpr returns a set of tag values filtered by an expression.
//
// See tsm1.Engine.MeasurementTagKeyValuesByExpr for a fuller description of this
// method.
func (i *Index) MeasurementTagKeyValuesByExpr(name []byte, keys []string, expr influxql.Expr, keysSorted bool) ([][]string, error) {
fs := i.RetainFileSet()
defer fs.Release()
if len(keys) == 0 {
return nil, nil
}
results := make([][]string, len(keys))
// If we haven't been provided sorted keys, then we need to sort them.
if !keysSorted {
sort.Sort(sort.StringSlice(keys))
}
// No expression means that the values shouldn't be filtered, so we can
// fetch them all.
if expr == nil {
for ki, key := range keys {
itr := fs.TagValueIterator(name, []byte(key))
for val := itr.Next(); val != nil; val = itr.Next() {
results[ki] = append(results[ki], string(val.Value()))
}
}
return results, nil
}
// This is the case where we have filtered series by some WHERE condition.
// We only care about the tag values for the keys given the
// filtered set of series ids.
resultSet, err := fs.tagValuesByKeyAndExpr(name, keys, expr, i.fieldset)
if err != nil {
return nil, err
}
// Convert result sets into []string
for i, s := range resultSet {
values := make([]string, 0, len(s))
for v := range s {
values = append(values, v)
}
sort.Sort(sort.StringSlice(values))
results[i] = values
}
return results, nil
}
// ForEachMeasurementSeriesByExpr iterates over all series in a measurement filtered by an expression.
func (i *Index) ForEachMeasurementSeriesByExpr(name []byte, condition influxql.Expr, fn func(tags models.Tags) error) error {
fs := i.RetainFileSet()
defer fs.Release()
itr, err := fs.MeasurementSeriesByExprIterator(name, condition, i.fieldset)
if err != nil {
return err
} else if itr == nil {
return nil
}
for e := itr.Next(); e != nil; e = itr.Next() {
if err := fn(e.Tags()); err != nil {
return err
}
}
return nil
}
// ForEachMeasurementTagKey iterates over all tag keys in a measurement.
func (i *Index) ForEachMeasurementTagKey(name []byte, fn func(key []byte) error) error {
fs := i.RetainFileSet()
defer fs.Release()
itr := fs.TagKeyIterator(name)
if itr == nil {
return nil
}
for e := itr.Next(); e != nil; e = itr.Next() {
if err := fn(e.Key()); err != nil {
return err
}
}
return nil
}
// TagKeyCardinality always returns zero.
// It is not possible to determine cardinality of tags across index files.
func (i *Index) TagKeyCardinality(name, key []byte) int {
return 0
}
// MeasurementSeriesKeysByExpr returns a list of series keys matching expr.
func (i *Index) MeasurementSeriesKeysByExpr(name []byte, expr influxql.Expr) ([][]byte, error) {
fs := i.RetainFileSet()
defer fs.Release()
return fs.MeasurementSeriesKeysByExpr(name, expr, i.fieldset)
}
// TagSets returns an ordered list of tag sets for a measurement by dimension
// and filtered by an optional conditional expression.
func (i *Index) TagSets(name []byte, opt influxql.IteratorOptions) ([]*influxql.TagSet, error) {
fs := i.RetainFileSet()
defer fs.Release()
itr, err := fs.MeasurementSeriesByExprIterator(name, opt.Condition, i.fieldset)
if err != nil {
return nil, err
} else if itr == nil {
return nil, nil
}
// For every series, get the tag values for the requested tag keys i.e.
// dimensions. This is the TagSet for that series. Series with the same
// TagSet are then grouped together, because for the purpose of GROUP BY
// they are part of the same composite series.
tagSets := make(map[string]*influxql.TagSet, 64)
if itr != nil {
for e := itr.Next(); e != nil; e = itr.Next() {
tags := make(map[string]string, len(opt.Dimensions))
// Build the TagSet for this series.
for _, dim := range opt.Dimensions {
tags[dim] = e.Tags().GetString(dim)
}
// Convert the TagSet to a string, so it can be added to a map
// allowing TagSets to be handled as a set.
tagsAsKey := tsdb.MarshalTags(tags)
tagSet, ok := tagSets[string(tagsAsKey)]
if !ok {
// This TagSet is new, create a new entry for it.
tagSet = &influxql.TagSet{
Tags: tags,
Key: tagsAsKey,
}
}
// Associate the series and filter with the Tagset.
tagSet.AddFilter(string(models.MakeKey(e.Name(), e.Tags())), e.Expr())
// Ensure it's back in the map.
tagSets[string(tagsAsKey)] = tagSet
}
}
// Sort the series in each tag set.
for _, t := range tagSets {
sort.Sort(t)
}
// The TagSets have been created, as a map of TagSets. Just send
// the values back as a slice, sorting for consistency.
sortedTagsSets := make([]*influxql.TagSet, 0, len(tagSets))
for _, v := range tagSets {
sortedTagsSets = append(sortedTagsSets, v)
}
sort.Sort(byTagKey(sortedTagsSets))
return sortedTagsSets, nil
}
// SnapshotTo creates hard links to the file set into path.
func (i *Index) SnapshotTo(path string) error {
i.mu.Lock()
defer i.mu.Unlock()
fs := i.retainFileSet()
defer fs.Release()
// Flush active log file, if any.
if err := i.activeLogFile.Flush(); err != nil {
return err
}
if err := os.Mkdir(filepath.Join(path, "index"), 0777); err != nil {
return err
}
// Link manifest.
if err := os.Link(i.ManifestPath(), filepath.Join(path, "index", filepath.Base(i.ManifestPath()))); err != nil {
return fmt.Errorf("error creating tsi manifest hard link: %q", err)
}
// Link files in directory.
for _, f := range fs.files {
if err := os.Link(f.Path(), filepath.Join(path, "index", filepath.Base(f.Path()))); err != nil {
return fmt.Errorf("error creating tsi hard link: %q", err)
}
}
return nil
}
func (i *Index) SetFieldName(measurement []byte, name string) {}
func (i *Index) RemoveShard(shardID uint64) {}
func (i *Index) AssignShard(k string, shardID uint64) {}
func (i *Index) UnassignShard(k string, shardID uint64) error {
// This can be called directly once inmem is gone.
return i.DropSeries([]byte(k))
}
// SeriesPointIterator returns an influxql iterator over all series.
func (i *Index) SeriesPointIterator(opt influxql.IteratorOptions) (influxql.Iterator, error) {
// NOTE: The iterator handles releasing the file set.
fs := i.RetainFileSet()
return newSeriesPointIterator(fs, i.fieldset, opt), nil
}
// Compact requests a compaction of log files.
func (i *Index) Compact() {
i.mu.Lock()
defer i.mu.Unlock()
i.compact()
}
// compact compacts continguous groups of files that are not currently compacting.
func (i *Index) compact() {
if !i.CompactionEnabled {
return
}
fs := i.retainFileSet()
defer fs.Release()
// Iterate over each level we are going to compact.
// We skip the first level (0) because it is log files and they are compacted separately.
// We skip the last level because the files have no higher level to compact into.
minLevel, maxLevel := 1, len(i.levels)-2
for level := minLevel; level <= maxLevel; level++ {
// Skip level if it is currently compacting.
if i.levelCompacting[level] {
continue
}
// Collect contiguous files from the end of the level.
files := fs.LastContiguousIndexFilesByLevel(level)
if len(files) < 2 {
continue
} else if len(files) > MaxIndexMergeCount {
files = files[len(files)-MaxIndexMergeCount:]
}
// Retain files during compaction.
IndexFiles(files).Retain()
// Mark the level as compacting.
i.levelCompacting[level] = true
// Execute in closure to save reference to the group within the loop.
func(files []*IndexFile, level int) {
// Start compacting in a separate goroutine.
i.wg.Add(1)
go func() {
defer i.wg.Done()
// Compact to a new level.
i.compactToLevel(files, level+1)
// Ensure compaction lock for the level is released.
i.mu.Lock()
i.levelCompacting[level] = false
i.mu.Unlock()
// Check for new compactions
i.Compact()
}()
}(files, level)
}
}
// compactToLevel compacts a set of files into a new file. Replaces old files with
// compacted file on successful completion. This runs in a separate goroutine.
func (i *Index) compactToLevel(files []*IndexFile, level int) {
assert(len(files) >= 2, "at least two index files are required for compaction")
assert(level > 0, "cannot compact level zero")
// Build a logger for this compaction.
logger := i.logger.With(zap.String("token", generateCompactionToken()))
// Files have already been retained by caller.
// Ensure files are released only once.
var once sync.Once
defer once.Do(func() { IndexFiles(files).Release() })
// Track time to compact.
start := time.Now()
// Create new index file.
path := filepath.Join(i.Path, FormatIndexFileName(i.NextSequence(), level))
f, err := os.Create(path)
if err != nil {
logger.Error("cannot create compation files", zap.Error(err))
return
}
defer f.Close()
logger.Info("performing full compaction",
zap.String("src", joinIntSlice(IndexFiles(files).IDs(), ",")),
zap.String("dst", path),
)
// Compact all index files to new index file.
lvl := i.levels[level]
n, err := IndexFiles(files).CompactTo(f, lvl.M, lvl.K)
if err != nil {
logger.Error("cannot compact index files", zap.Error(err))
return
}
// Close file.
if err := f.Close(); err != nil {
logger.Error("error closing index file", zap.Error(err))
return
}
// Reopen as an index file.
file := NewIndexFile()
file.SetPath(path)
if err := file.Open(); err != nil {
logger.Error("cannot open new index file", zap.Error(err))
return
}
// Obtain lock to swap in index file and write manifest.
if err := func() error {
i.mu.Lock()
defer i.mu.Unlock()
// Replace previous files with new index file.
i.fileSet = i.fileSet.MustReplace(IndexFiles(files).Files(), file)
// Write new manifest.
if err := i.writeManifestFile(); err != nil {
// TODO: Close index if write fails.
return err
}
return nil
}(); err != nil {
logger.Error("cannot write manifest", zap.Error(err))
return
}
elapsed := time.Since(start)
logger.Info("full compaction complete",
zap.String("path", path),
zap.String("elapsed", elapsed.String()),
zap.Int64("bytes", n),
zap.Int("kb_per_sec", int(float64(n)/elapsed.Seconds())/1024),
)
// Release old files.
once.Do(func() { IndexFiles(files).Release() })
// Close and delete all old index files.
for _, f := range files {
logger.Info("removing index file", zap.String("path", f.Path()))
if err := f.Close(); err != nil {
logger.Error("cannot close index file", zap.Error(err))
return
} else if err := os.Remove(f.Path()); err != nil {
logger.Error("cannot remove index file", zap.Error(err))
return
}
}
}
func (i *Index) CheckLogFile() error {
// Check log file size under read lock.
if size := func() int64 {
i.mu.RLock()
defer i.mu.RUnlock()
return i.activeLogFile.Size()
}(); size < i.MaxLogFileSize {
return nil
}
// If file size exceeded then recheck under write lock and swap files.
i.mu.Lock()
defer i.mu.Unlock()
return i.checkLogFile()
}
func (i *Index) checkLogFile() error {
if i.activeLogFile.Size() < i.MaxLogFileSize {
return nil
}
// Swap current log file.
logFile := i.activeLogFile
// Open new log file and insert it into the first position.
if err := i.prependActiveLogFile(); err != nil {
return err
}
// Begin compacting in a background goroutine.
i.wg.Add(1)
go func() {
defer i.wg.Done()
i.compactLogFile(logFile)
i.Compact() // check for new compactions
}()
return nil
}
// compactLogFile compacts f into a tsi file. The new file will share the
// same identifier but will have a ".tsi" extension. Once the log file is
// compacted then the manifest is updated and the log file is discarded.
func (i *Index) compactLogFile(logFile *LogFile) {
start := time.Now()
// Retrieve identifier from current path.
id := logFile.ID()
assert(id != 0, "cannot parse log file id: %s", logFile.Path())
// Build a logger for this compaction.
logger := i.logger.With(
zap.String("token", generateCompactionToken()),
zap.Int("id", id),
)
// Create new index file.
path := filepath.Join(i.Path, FormatIndexFileName(id, 1))
f, err := os.Create(path)
if err != nil {
logger.Error("cannot create index file", zap.Error(err))
return
}
defer f.Close()
// Compact log file to new index file.
lvl := i.levels[1]
n, err := logFile.CompactTo(f, lvl.M, lvl.K)
if err != nil {
logger.Error("cannot compact log file", zap.Error(err), zap.String("path", logFile.Path()))
return
}
// Close file.
if err := f.Close(); err != nil {
logger.Error("cannot close log file", zap.Error(err))
return
}
// Reopen as an index file.
file := NewIndexFile()
file.SetPath(path)
if err := file.Open(); err != nil {
logger.Error("cannot open compacted index file", zap.Error(err), zap.String("path", file.Path()))
return
}
// Obtain lock to swap in index file and write manifest.
if err := func() error {
i.mu.Lock()
defer i.mu.Unlock()
// Replace previous log file with index file.
i.fileSet = i.fileSet.MustReplace([]File{logFile}, file)
// Write new manifest.
if err := i.writeManifestFile(); err != nil {
// TODO: Close index if write fails.
return err
}
return nil
}(); err != nil {
logger.Error("cannot update manifest", zap.Error(err))
return
}
elapsed := time.Since(start)
logger.Error("log file compacted",
zap.String("elapsed", elapsed.String()),
zap.Int64("bytes", n),
zap.Int("kb_per_sec", int(float64(n)/elapsed.Seconds())/1024),
)
// Closing the log file will automatically wait until the ref count is zero.
if err := logFile.Close(); err != nil {
logger.Error("cannot close log file", zap.Error(err))
return
} else if err := os.Remove(logFile.Path()); err != nil {
logger.Error("cannot remove log file", zap.Error(err))
return
}
return
}
// seriesPointIterator adapts SeriesIterator to an influxql.Iterator.
type seriesPointIterator struct {
once sync.Once
fs *FileSet
fieldset *tsdb.MeasurementFieldSet
mitr MeasurementIterator
sitr SeriesIterator
opt influxql.IteratorOptions
point influxql.FloatPoint // reusable point
}
// newSeriesPointIterator returns a new instance of seriesPointIterator.
func newSeriesPointIterator(fs *FileSet, fieldset *tsdb.MeasurementFieldSet, opt influxql.IteratorOptions) *seriesPointIterator {
return &seriesPointIterator{
fs: fs,
fieldset: fieldset,
mitr: fs.MeasurementIterator(),
point: influxql.FloatPoint{
Aux: make([]interface{}, len(opt.Aux)),
},
opt: opt,
}
}
// Stats returns stats about the points processed.
func (itr *seriesPointIterator) Stats() influxql.IteratorStats { return influxql.IteratorStats{} }
// Close closes the iterator.
func (itr *seriesPointIterator) Close() error {
itr.once.Do(func() { itr.fs.Release() })
return nil
}
// Next emits the next point in the iterator.
func (itr *seriesPointIterator) Next() (*influxql.FloatPoint, error) {
for {
// Create new series iterator, if necessary.
// Exit if there are no measurements remaining.
if itr.sitr == nil {
m := itr.mitr.Next()
if m == nil {
return nil, nil
}
sitr, err := itr.fs.MeasurementSeriesByExprIterator(m.Name(), itr.opt.Condition, itr.fieldset)
if err != nil {
return nil, err
} else if sitr == nil {
continue
}
itr.sitr = sitr
}
// Read next series element.
e := itr.sitr.Next()
if e == nil {
itr.sitr = nil
continue
}
// Convert to a key.
key := string(models.MakeKey(e.Name(), e.Tags()))
// Write auxiliary fields.
for i, f := range itr.opt.Aux {
switch f.Val {
case "key":
itr.point.Aux[i] = key
}
}
return &itr.point, nil
}
}
// unionStringSets returns the union of two sets
func unionStringSets(a, b map[string]struct{}) map[string]struct{} {
other := make(map[string]struct{})
for k := range a {
other[k] = struct{}{}
}
for k := range b {
other[k] = struct{}{}
}
return other
}
// intersectStringSets returns the intersection of two sets.
func intersectStringSets(a, b map[string]struct{}) map[string]struct{} {
if len(a) < len(b) {
a, b = b, a
}
other := make(map[string]struct{})
for k := range a {
if _, ok := b[k]; ok {
other[k] = struct{}{}
}
}
return other
}
var fileIDRegex = regexp.MustCompile(`^L(\d+)-(\d+)\..+$`)
// ParseFilename extracts the numeric id from a log or index file path.
// Returns 0 if it cannot be parsed.
func ParseFilename(name string) (level, id int) {
a := fileIDRegex.FindStringSubmatch(filepath.Base(name))
if a == nil {
return 0, 0
}
level, _ = strconv.Atoi(a[1])
id, _ = strconv.Atoi(a[2])
return id, level
}
// Manifest represents the list of log & index files that make up the index.
// The files are listed in time order, not necessarily ID order.
type Manifest struct {
Levels []CompactionLevel `json:"levels,omitempty"`
Files []string `json:"files,omitempty"`
}
// NewManifest returns a new instance of Manifest with default compaction levels.
func NewManifest() *Manifest {
m := &Manifest{
Levels: make([]CompactionLevel, len(DefaultCompactionLevels)),
}
copy(m.Levels, DefaultCompactionLevels[:])
return m
}
// HasFile returns true if name is listed in the log files or index files.
func (m *Manifest) HasFile(name string) bool {
for _, filename := range m.Files {
if filename == name {
return true
}
}
return false
}
// ReadManifestFile reads a manifest from a file path.
func ReadManifestFile(path string) (*Manifest, error) {
buf, err := ioutil.ReadFile(path)
if err != nil {
return nil, err
}
// Decode manifest.
var m Manifest
if err := json.Unmarshal(buf, &m); err != nil {
return nil, err
}
return &m, nil
}
// WriteManifestFile writes a manifest to a file path.
func WriteManifestFile(path string, m *Manifest) error {
buf, err := json.MarshalIndent(m, "", " ")
if err != nil {
return err
}
buf = append(buf, '\n')
if err := ioutil.WriteFile(path, buf, 0666); err != nil {
return err
}
return nil
}
func joinIntSlice(a []int, sep string) string {
other := make([]string, len(a))
for i := range a {
other[i] = strconv.Itoa(a[i])
}
return strings.Join(other, sep)
}
// CompactionLevel represents a grouping of index files based on bloom filter
// settings. By having the same bloom filter settings, the filters
// can be merged and evaluated at a higher level.
type CompactionLevel struct {
// Bloom filter bit size & hash count
M uint64 `json:"m,omitempty"`
K uint64 `json:"k,omitempty"`
}
// DefaultCompactionLevels is the default settings used by the index.
var DefaultCompactionLevels = []CompactionLevel{
{M: 0, K: 0}, // L0: Log files, no filter.
{M: 1 << 25, K: 6}, // L1: Initial compaction
{M: 1 << 25, K: 6}, // L2
{M: 1 << 26, K: 6}, // L3
{M: 1 << 27, K: 6}, // L4
{M: 1 << 28, K: 6}, // L5
{M: 1 << 29, K: 6}, // L6
{M: 1 << 30, K: 6}, // L7
}
// MaxIndexMergeCount is the maximum number of files that can be merged together at once.
const MaxIndexMergeCount = 2
// MaxIndexFileSize is the maximum expected size of an index file.
const MaxIndexFileSize = 4 * (1 << 30)
// generateCompactionToken returns a short token to track an individual compaction.
// It is only used for logging so it doesn't need strong uniqueness guarantees.
func generateCompactionToken() string {
token := make([]byte, 3)
rand.Read(token)
return fmt.Sprintf("%x", token)
}