vsphere-influxdb-go/vendor/github.com/influxdata/influxdb/tsdb/shard.go

1652 lines
42 KiB
Go

package tsdb
import (
"bytes"
"errors"
"fmt"
"io"
"math"
"path/filepath"
"regexp"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/gogo/protobuf/proto"
"github.com/influxdata/influxdb/influxql"
"github.com/influxdata/influxdb/models"
"github.com/influxdata/influxdb/pkg/estimator"
internal "github.com/influxdata/influxdb/tsdb/internal"
"github.com/uber-go/zap"
)
// monitorStatInterval is the interval at which the shard is inspected
// for the purpose of determining certain monitoring statistics.
const monitorStatInterval = 30 * time.Second
const (
statWriteReq = "writeReq"
statWriteReqOK = "writeReqOk"
statWriteReqErr = "writeReqErr"
statSeriesCreate = "seriesCreate"
statFieldsCreate = "fieldsCreate"
statWritePointsErr = "writePointsErr"
statWritePointsDropped = "writePointsDropped"
statWritePointsOK = "writePointsOk"
statWriteBytes = "writeBytes"
statDiskBytes = "diskBytes"
)
var (
// ErrFieldOverflow is returned when too many fields are created on a measurement.
ErrFieldOverflow = errors.New("field overflow")
// ErrFieldTypeConflict is returned when a new field already exists with a different type.
ErrFieldTypeConflict = errors.New("field type conflict")
// ErrFieldNotFound is returned when a field cannot be found.
ErrFieldNotFound = errors.New("field not found")
// ErrFieldUnmappedID is returned when the system is presented, during decode, with a field ID
// there is no mapping for.
ErrFieldUnmappedID = errors.New("field ID not mapped")
// ErrEngineClosed is returned when a caller attempts indirectly to
// access the shard's underlying engine.
ErrEngineClosed = errors.New("engine is closed")
// ErrShardDisabled is returned when a the shard is not available for
// queries or writes.
ErrShardDisabled = errors.New("shard is disabled")
)
var (
// Static objects to prevent small allocs.
timeBytes = []byte("time")
)
// A ShardError implements the error interface, and contains extra
// context about the shard that generated the error.
type ShardError struct {
id uint64
Err error
}
// NewShardError returns a new ShardError.
func NewShardError(id uint64, err error) error {
if err == nil {
return nil
}
return ShardError{id: id, Err: err}
}
// Error returns the string representation of the error, to satisfy the error interface.
func (e ShardError) Error() string {
return fmt.Sprintf("[shard %d] %s", e.id, e.Err)
}
// PartialWriteError indicates a write request could only write a portion of the
// requested values.
type PartialWriteError struct {
Reason string
Dropped int
// The set of series keys that were dropped. Can be nil.
DroppedKeys map[string]struct{}
}
func (e PartialWriteError) Error() string {
return fmt.Sprintf("partial write: %s dropped=%d", e.Reason, e.Dropped)
}
// Shard represents a self-contained time series database. An inverted index of
// the measurement and tag data is kept along with the raw time series data.
// Data can be split across many shards. The query engine in TSDB is responsible
// for combining the output of many shards into a single query result.
type Shard struct {
path string
walPath string
id uint64
database string
retentionPolicy string
options EngineOptions
mu sync.RWMutex
_engine Engine
index Index
closing chan struct{}
enabled bool
// expvar-based stats.
stats *ShardStatistics
defaultTags models.StatisticTags
baseLogger zap.Logger
logger zap.Logger
EnableOnOpen bool
}
// NewShard returns a new initialized Shard. walPath doesn't apply to the b1 type index
func NewShard(id uint64, path string, walPath string, opt EngineOptions) *Shard {
db, rp := decodeStorePath(path)
logger := zap.New(zap.NullEncoder())
s := &Shard{
id: id,
path: path,
walPath: walPath,
options: opt,
closing: make(chan struct{}),
stats: &ShardStatistics{},
defaultTags: models.StatisticTags{
"path": path,
"walPath": walPath,
"id": fmt.Sprintf("%d", id),
"database": db,
"retentionPolicy": rp,
"engine": opt.EngineVersion,
},
database: db,
retentionPolicy: rp,
logger: logger,
baseLogger: logger,
EnableOnOpen: true,
}
return s
}
// WithLogger sets the logger on the shard.
func (s *Shard) WithLogger(log zap.Logger) {
s.baseLogger = log
engine, err := s.engine()
if err == nil {
engine.WithLogger(s.baseLogger)
s.index.WithLogger(s.baseLogger)
}
s.logger = s.baseLogger.With(zap.String("service", "shard"))
}
// SetEnabled enables the shard for queries and write. When disabled, all
// writes and queries return an error and compactions are stopped for the shard.
func (s *Shard) SetEnabled(enabled bool) {
s.mu.Lock()
// Prevent writes and queries
s.enabled = enabled
if s._engine != nil {
// Disable background compactions and snapshotting
s._engine.SetEnabled(enabled)
}
s.mu.Unlock()
}
// ID returns the shards ID.
func (s *Shard) ID() uint64 {
return s.id
}
// Database returns the database of the shard.
func (s *Shard) Database() string {
return s.database
}
// RetentionPolicy returns the retention policy of the shard.
func (s *Shard) RetentionPolicy() string {
return s.retentionPolicy
}
// ShardStatistics maintains statistics for a shard.
type ShardStatistics struct {
WriteReq int64
WriteReqOK int64
WriteReqErr int64
FieldsCreated int64
WritePointsErr int64
WritePointsDropped int64
WritePointsOK int64
BytesWritten int64
DiskBytes int64
}
// Statistics returns statistics for periodic monitoring.
func (s *Shard) Statistics(tags map[string]string) []models.Statistic {
engine, err := s.engine()
if err != nil {
return nil
}
// Refresh our disk size stat
if _, err := s.DiskSize(); err != nil {
return nil
}
seriesN := engine.SeriesN()
tags = s.defaultTags.Merge(tags)
statistics := []models.Statistic{{
Name: "shard",
Tags: tags,
Values: map[string]interface{}{
statWriteReq: atomic.LoadInt64(&s.stats.WriteReq),
statWriteReqOK: atomic.LoadInt64(&s.stats.WriteReqOK),
statWriteReqErr: atomic.LoadInt64(&s.stats.WriteReqErr),
statSeriesCreate: seriesN,
statFieldsCreate: atomic.LoadInt64(&s.stats.FieldsCreated),
statWritePointsErr: atomic.LoadInt64(&s.stats.WritePointsErr),
statWritePointsDropped: atomic.LoadInt64(&s.stats.WritePointsDropped),
statWritePointsOK: atomic.LoadInt64(&s.stats.WritePointsOK),
statWriteBytes: atomic.LoadInt64(&s.stats.BytesWritten),
statDiskBytes: atomic.LoadInt64(&s.stats.DiskBytes),
},
}}
// Add the index and engine statistics.
statistics = append(statistics, engine.Statistics(tags)...)
return statistics
}
// Path returns the path set on the shard when it was created.
func (s *Shard) Path() string { return s.path }
// Open initializes and opens the shard's store.
func (s *Shard) Open() error {
if err := func() error {
s.mu.Lock()
defer s.mu.Unlock()
// Return if the shard is already open
if s._engine != nil {
return nil
}
// Initialize underlying index.
ipath := filepath.Join(s.path, "index")
idx, err := NewIndex(s.id, s.database, ipath, s.options)
if err != nil {
return err
}
// Open index.
if err := idx.Open(); err != nil {
return err
}
s.index = idx
idx.WithLogger(s.baseLogger)
// Initialize underlying engine.
e, err := NewEngine(s.id, idx, s.database, s.path, s.walPath, s.options)
if err != nil {
return err
}
// Set log output on the engine.
e.WithLogger(s.baseLogger)
// Disable compactions while loading the index
e.SetEnabled(false)
// Open engine.
if err := e.Open(); err != nil {
return err
}
// Load metadata index for the inmem index only.
if err := e.LoadMetadataIndex(s.id, s.index); err != nil {
return err
}
s._engine = e
return nil
}(); err != nil {
s.close(true)
return NewShardError(s.id, err)
}
if s.EnableOnOpen {
// enable writes, queries and compactions
s.SetEnabled(true)
}
return nil
}
// Close shuts down the shard's store.
func (s *Shard) Close() error {
s.mu.Lock()
defer s.mu.Unlock()
return s.close(true)
}
// CloseFast closes the shard without cleaning up the shard ID or any of the
// shard's series keys from the index it belongs to.
//
// CloseFast can be called when the entire index is being removed, e.g., when
// the database the shard belongs to is being dropped.
func (s *Shard) CloseFast() error {
s.mu.Lock()
defer s.mu.Unlock()
return s.close(false)
}
// close closes the shard an removes reference to the shard from associated
// indexes, unless clean is false.
func (s *Shard) close(clean bool) error {
if s._engine == nil {
return nil
}
// Close the closing channel at most once.
select {
case <-s.closing:
default:
close(s.closing)
}
if clean {
// Don't leak our shard ID and series keys in the index
s.index.RemoveShard(s.id)
}
err := s._engine.Close()
if err == nil {
s._engine = nil
}
if e := s.index.Close(); e == nil {
s.index = nil
}
return err
}
func (s *Shard) IndexType() string {
s.mu.RLock()
defer s.mu.RUnlock()
if err := s.ready(); err != nil {
return ""
}
return s.index.Type()
}
// ready determines if the Shard is ready for queries or writes.
// It returns nil if ready, otherwise ErrShardClosed or ErrShardDiabled
func (s *Shard) ready() error {
var err error
if s._engine == nil {
err = ErrEngineClosed
} else if !s.enabled {
err = ErrShardDisabled
}
return err
}
// LastModified returns the time when this shard was last modified.
func (s *Shard) LastModified() time.Time {
engine, err := s.engine()
if err != nil {
return time.Time{}
}
return engine.LastModified()
}
// UnloadIndex removes all references to this shard from the DatabaseIndex
func (s *Shard) UnloadIndex() {
s.mu.RLock()
defer s.mu.RUnlock()
if err := s.ready(); err != nil {
return
}
s.index.RemoveShard(s.id)
}
// IsIdle return true if the shard is not receiving writes and is fully compacted.
func (s *Shard) IsIdle() bool {
engine, err := s.engine()
if err != nil {
return true
}
return engine.IsIdle()
}
// SetCompactionsEnabled enables or disable shard background compactions.
func (s *Shard) SetCompactionsEnabled(enabled bool) {
engine, err := s.engine()
if err != nil {
return
}
engine.SetCompactionsEnabled(enabled)
}
// DiskSize returns the size on disk of this shard.
func (s *Shard) DiskSize() (int64, error) {
s.mu.RLock()
defer s.mu.RUnlock()
// We don't use engine() becuase we still want to report the shard's disk
// size even if the shard has been disabled.
if s._engine == nil {
return 0, ErrEngineClosed
}
size := s._engine.DiskSize()
atomic.StoreInt64(&s.stats.DiskBytes, size)
return size, nil
}
// FieldCreate holds information for a field to create on a measurement.
type FieldCreate struct {
Measurement []byte
Field *Field
}
// WritePoints will write the raw data points and any new metadata to the index in the shard.
func (s *Shard) WritePoints(points []models.Point) error {
s.mu.RLock()
defer s.mu.RUnlock()
engine, err := s.engineNoLock()
if err != nil {
return err
}
var writeError error
atomic.AddInt64(&s.stats.WriteReq, 1)
points, fieldsToCreate, err := s.validateSeriesAndFields(points)
if err != nil {
if _, ok := err.(PartialWriteError); !ok {
return err
}
// There was a partial write (points dropped), hold onto the error to return
// to the caller, but continue on writing the remaining points.
writeError = err
}
atomic.AddInt64(&s.stats.FieldsCreated, int64(len(fieldsToCreate)))
// add any new fields and keep track of what needs to be saved
if err := s.createFieldsAndMeasurements(fieldsToCreate); err != nil {
return err
}
// Write to the engine.
if err := engine.WritePoints(points); err != nil {
atomic.AddInt64(&s.stats.WritePointsErr, int64(len(points)))
atomic.AddInt64(&s.stats.WriteReqErr, 1)
return fmt.Errorf("engine: %s", err)
}
atomic.AddInt64(&s.stats.WritePointsOK, int64(len(points)))
atomic.AddInt64(&s.stats.WriteReqOK, 1)
return writeError
}
// validateSeriesAndFields checks which series and fields are new and whose metadata should be saved and indexed.
func (s *Shard) validateSeriesAndFields(points []models.Point) ([]models.Point, []*FieldCreate, error) {
var (
fieldsToCreate []*FieldCreate
err error
dropped int
reason string // only first error reason is set unless returned from CreateSeriesListIfNotExists
)
// Create all series against the index in bulk.
keys := make([][]byte, len(points))
names := make([][]byte, len(points))
tagsSlice := make([]models.Tags, len(points))
// Drop any series w/ a "time" tag, these are illegal
var j int
for i, p := range points {
tags := p.Tags()
if v := tags.Get(timeBytes); v != nil {
dropped++
if reason == "" {
reason = fmt.Sprintf("invalid tag key: input tag \"%s\" on measurement \"%s\" is invalid", "time", string(p.Name()))
}
continue
}
keys[j] = p.Key()
names[j] = p.Name()
tagsSlice[j] = tags
points[j] = points[i]
j++
}
points, keys, names, tagsSlice = points[:j], keys[:j], names[:j], tagsSlice[:j]
engine, err := s.engineNoLock()
if err != nil {
return nil, nil, err
}
// Add new series. Check for partial writes.
var droppedKeys map[string]struct{}
if err := engine.CreateSeriesListIfNotExists(keys, names, tagsSlice); err != nil {
switch err := err.(type) {
case *PartialWriteError:
reason = err.Reason
dropped += err.Dropped
droppedKeys = err.DroppedKeys
atomic.AddInt64(&s.stats.WritePointsDropped, int64(err.Dropped))
default:
return nil, nil, err
}
}
// get the shard mutex for locally defined fields
n := 0
// mfCache is a local cache of MeasurementFields to reduce lock contention when validating
// field types.
mfCache := make(map[string]*MeasurementFields, 16)
for i, p := range points {
var skip bool
var validField bool
iter := p.FieldIterator()
for iter.Next() {
if bytes.Equal(iter.FieldKey(), timeBytes) {
continue
}
validField = true
break
}
if !validField {
dropped++
if reason == "" {
reason = fmt.Sprintf("invalid field name: input field \"%s\" on measurement \"%s\" is invalid", "time", string(p.Name()))
}
continue
}
iter.Reset()
// Skip points if keys have been dropped.
// The drop count has already been incremented during series creation.
if droppedKeys != nil {
if _, ok := droppedKeys[string(keys[i])]; ok {
continue
}
}
name := p.Name()
// see if the field definitions need to be saved to the shard
mf := mfCache[string(name)]
if mf == nil {
mf = engine.MeasurementFields(name).Clone()
mfCache[string(name)] = mf
}
iter.Reset()
// validate field types and encode data
for iter.Next() {
// Skip fields name "time", they are illegal
if bytes.Equal(iter.FieldKey(), timeBytes) {
continue
}
var fieldType influxql.DataType
switch iter.Type() {
case models.Float:
fieldType = influxql.Float
case models.Integer:
fieldType = influxql.Integer
case models.Boolean:
fieldType = influxql.Boolean
case models.String:
fieldType = influxql.String
default:
continue
}
if f := mf.FieldBytes(iter.FieldKey()); f != nil {
// Field present in shard metadata, make sure there is no type conflict.
if f.Type != fieldType {
atomic.AddInt64(&s.stats.WritePointsDropped, 1)
dropped++
if reason == "" {
reason = fmt.Sprintf("%s: input field \"%s\" on measurement \"%s\" is type %s, already exists as type %s", ErrFieldTypeConflict, iter.FieldKey(), name, fieldType, f.Type)
}
skip = true
} else {
continue // Field is present, and it's of the same type. Nothing more to do.
}
}
if !skip {
fieldsToCreate = append(fieldsToCreate, &FieldCreate{p.Name(), &Field{Name: string(iter.FieldKey()), Type: fieldType}})
}
}
if !skip {
points[n] = points[i]
n++
}
}
points = points[:n]
if dropped > 0 {
err = PartialWriteError{Reason: reason, Dropped: dropped}
}
return points, fieldsToCreate, err
}
func (s *Shard) createFieldsAndMeasurements(fieldsToCreate []*FieldCreate) error {
if len(fieldsToCreate) == 0 {
return nil
}
engine, err := s.engineNoLock()
if err != nil {
return err
}
// add fields
for _, f := range fieldsToCreate {
mf := engine.MeasurementFields(f.Measurement)
if err := mf.CreateFieldIfNotExists([]byte(f.Field.Name), f.Field.Type, false); err != nil {
return err
}
s.index.SetFieldName(f.Measurement, f.Field.Name)
}
return nil
}
// DeleteSeries deletes a list of series.
func (s *Shard) DeleteSeries(seriesKeys [][]byte) error {
return s.DeleteSeriesRange(seriesKeys, math.MinInt64, math.MaxInt64)
}
// DeleteSeriesRange deletes all values from for seriesKeys between min and max (inclusive)
func (s *Shard) DeleteSeriesRange(seriesKeys [][]byte, min, max int64) error {
engine, err := s.engine()
if err != nil {
return err
}
return engine.DeleteSeriesRange(seriesKeys, min, max)
}
// DeleteMeasurement deletes a measurement and all underlying series.
func (s *Shard) DeleteMeasurement(name []byte) error {
engine, err := s.engine()
if err != nil {
return err
}
return engine.DeleteMeasurement(name)
}
// SeriesN returns the unique number of series in the shard.
func (s *Shard) SeriesN() int64 {
engine, err := s.engine()
if err != nil {
return 0
}
return engine.SeriesN()
}
// SeriesSketches returns the series sketches for the shard.
func (s *Shard) SeriesSketches() (estimator.Sketch, estimator.Sketch, error) {
engine, err := s.engine()
if err != nil {
return nil, nil, err
}
return engine.SeriesSketches()
}
// MeasurementsSketches returns the measurement sketches for the shard.
func (s *Shard) MeasurementsSketches() (estimator.Sketch, estimator.Sketch, error) {
engine, err := s.engine()
if err != nil {
return nil, nil, err
}
return engine.MeasurementsSketches()
}
// MeasurementNamesByExpr returns names of measurements matching the condition.
// If cond is nil then all measurement names are returned.
func (s *Shard) MeasurementNamesByExpr(cond influxql.Expr) ([][]byte, error) {
engine, err := s.engine()
if err != nil {
return nil, err
}
return engine.MeasurementNamesByExpr(cond)
}
// MeasurementNamesByRegex returns names of measurements matching the regular expression.
func (s *Shard) MeasurementNamesByRegex(re *regexp.Regexp) ([][]byte, error) {
engine, err := s.engine()
if err != nil {
return nil, err
}
return engine.MeasurementNamesByRegex(re)
}
// MeasurementSeriesKeysByExpr returns a list of series keys from the shard
// matching expr.
func (s *Shard) MeasurementSeriesKeysByExpr(name []byte, expr influxql.Expr) ([][]byte, error) {
engine, err := s.engine()
if err != nil {
return nil, err
}
return engine.MeasurementSeriesKeysByExpr(name, expr)
}
// MeasurementTagKeysByExpr returns all the tag keys for the provided expression.
func (s *Shard) MeasurementTagKeysByExpr(name []byte, expr influxql.Expr) (map[string]struct{}, error) {
engine, err := s.engine()
if err != nil {
return nil, err
}
return engine.MeasurementTagKeysByExpr(name, expr)
}
// MeasurementTagKeyValuesByExpr returns all the tag keys values for the
// provided expression.
func (s *Shard) MeasurementTagKeyValuesByExpr(name []byte, key []string, expr influxql.Expr, keysSorted bool) ([][]string, error) {
engine, err := s.engine()
if err != nil {
return nil, err
}
return engine.MeasurementTagKeyValuesByExpr(name, key, expr, keysSorted)
}
// MeasurementFields returns fields for a measurement.
// TODO(edd): This method is currently only being called from tests; do we
// really need it?
func (s *Shard) MeasurementFields(name []byte) *MeasurementFields {
engine, err := s.engine()
if err != nil {
return nil
}
return engine.MeasurementFields(name)
}
// MeasurementExists returns true if the shard contains name.
// TODO(edd): This method is currently only being called from tests; do we
// really need it?
func (s *Shard) MeasurementExists(name []byte) (bool, error) {
engine, err := s.engine()
if err != nil {
return false, err
}
return engine.MeasurementExists(name)
}
// WriteTo writes the shard's data to w.
func (s *Shard) WriteTo(w io.Writer) (int64, error) {
engine, err := s.engine()
if err != nil {
return 0, err
}
n, err := engine.WriteTo(w)
atomic.AddInt64(&s.stats.BytesWritten, int64(n))
return n, err
}
// CreateIterator returns an iterator for the data in the shard.
func (s *Shard) CreateIterator(measurement string, opt influxql.IteratorOptions) (influxql.Iterator, error) {
engine, err := s.engine()
if err != nil {
return nil, err
}
if strings.HasPrefix(measurement, "_") {
if itr, ok, err := s.createSystemIterator(engine, measurement, opt); ok {
return itr, err
}
// Unknown system source so pass this to the engine.
}
return engine.CreateIterator(measurement, opt)
}
// createSystemIterator returns an iterator for a system source.
func (s *Shard) createSystemIterator(engine Engine, measurement string, opt influxql.IteratorOptions) (influxql.Iterator, bool, error) {
switch measurement {
case "_fieldKeys":
itr, err := NewFieldKeysIterator(engine, opt)
return itr, true, err
case "_series":
itr, err := s.createSeriesIterator(opt)
return itr, true, err
case "_tagKeys":
itr, err := NewTagKeysIterator(engine, opt)
return itr, true, err
}
return nil, false, nil
}
// createSeriesIterator returns a new instance of SeriesIterator.
func (s *Shard) createSeriesIterator(opt influxql.IteratorOptions) (influxql.Iterator, error) {
engine, err := s.engine()
if err != nil {
return nil, err
}
// Only equality operators are allowed.
influxql.WalkFunc(opt.Condition, func(n influxql.Node) {
switch n := n.(type) {
case *influxql.BinaryExpr:
switch n.Op {
case influxql.EQ, influxql.NEQ, influxql.EQREGEX, influxql.NEQREGEX,
influxql.OR, influxql.AND:
default:
err = errors.New("invalid tag comparison operator")
}
}
})
if err != nil {
return nil, err
}
return engine.SeriesPointIterator(opt)
}
// FieldDimensions returns unique sets of fields and dimensions across a list of sources.
func (s *Shard) FieldDimensions(measurements []string) (fields map[string]influxql.DataType, dimensions map[string]struct{}, err error) {
engine, err := s.engine()
if err != nil {
return nil, nil, err
}
fields = make(map[string]influxql.DataType)
dimensions = make(map[string]struct{})
for _, name := range measurements {
// Handle system sources.
if strings.HasPrefix(name, "_") {
var keys []string
switch name {
case "_fieldKeys":
keys = []string{"fieldKey", "fieldType"}
case "_series":
keys = []string{"key"}
case "_tagKeys":
keys = []string{"tagKey"}
}
if len(keys) > 0 {
for _, k := range keys {
if _, ok := fields[k]; !ok || influxql.String < fields[k] {
fields[k] = influxql.String
}
}
continue
}
// Unknown system source so default to looking for a measurement.
}
// Retrieve measurement.
if exists, err := engine.MeasurementExists([]byte(name)); err != nil {
return nil, nil, err
} else if !exists {
continue
}
// Append fields and dimensions.
mf := engine.MeasurementFields([]byte(name))
if mf != nil {
for k, typ := range mf.FieldSet() {
if _, ok := fields[k]; !ok || typ < fields[k] {
fields[k] = typ
}
}
}
if err := engine.ForEachMeasurementTagKey([]byte(name), func(key []byte) error {
dimensions[string(key)] = struct{}{}
return nil
}); err != nil {
return nil, nil, err
}
}
return fields, dimensions, nil
}
// mapType returns the data type for the field within the measurement.
func (s *Shard) mapType(measurement, field string) (influxql.DataType, error) {
engine, err := s.engineNoLock()
if err != nil {
return 0, err
}
// Process system measurements.
if strings.HasPrefix(measurement, "_") {
switch measurement {
case "_fieldKeys":
if field == "fieldKey" || field == "fieldType" {
return influxql.String, nil
}
return influxql.Unknown, nil
case "_series":
if field == "key" {
return influxql.String, nil
}
return influxql.Unknown, nil
case "_tagKeys":
if field == "tagKey" {
return influxql.String, nil
}
return influxql.Unknown, nil
}
// Unknown system source so default to looking for a measurement.
}
if exists, _ := engine.MeasurementExists([]byte(measurement)); !exists {
return influxql.Unknown, nil
}
mf := engine.MeasurementFields([]byte(measurement))
if mf != nil {
f := mf.Field(field)
if f != nil {
return f.Type, nil
}
}
if exists, _ := engine.HasTagKey([]byte(measurement), []byte(field)); exists {
return influxql.Tag, nil
}
return influxql.Unknown, nil
}
// expandSources expands regex sources and removes duplicates.
// NOTE: sources must be normalized (db and rp set) before calling this function.
func (s *Shard) expandSources(sources influxql.Sources) (influxql.Sources, error) {
engine, err := s.engineNoLock()
if err != nil {
return nil, err
}
// Use a map as a set to prevent duplicates.
set := map[string]influxql.Source{}
// Iterate all sources, expanding regexes when they're found.
for _, source := range sources {
switch src := source.(type) {
case *influxql.Measurement:
// Add non-regex measurements directly to the set.
if src.Regex == nil {
set[src.String()] = src
continue
}
// Loop over matching measurements.
names, err := engine.MeasurementNamesByRegex(src.Regex.Val)
if err != nil {
return nil, err
}
for _, name := range names {
other := &influxql.Measurement{
Database: src.Database,
RetentionPolicy: src.RetentionPolicy,
Name: string(name),
}
set[other.String()] = other
}
default:
return nil, fmt.Errorf("expandSources: unsupported source type: %T", source)
}
}
// Convert set to sorted slice.
names := make([]string, 0, len(set))
for name := range set {
names = append(names, name)
}
sort.Strings(names)
// Convert set to a list of Sources.
expanded := make(influxql.Sources, 0, len(set))
for _, name := range names {
expanded = append(expanded, set[name])
}
return expanded, nil
}
// Backup backs up the shard by creating a tar archive of all TSM files that
// have been modified since the provided time. See Engine.Backup for more details.
func (s *Shard) Backup(w io.Writer, basePath string, since time.Time) error {
engine, err := s.engine()
if err != nil {
return err
}
return engine.Backup(w, basePath, since)
}
// Restore restores data to the underlying engine for the shard.
// The shard is reopened after restore.
func (s *Shard) Restore(r io.Reader, basePath string) error {
if err := func() error {
s.mu.Lock()
defer s.mu.Unlock()
// Special case - we can still restore to a disabled shard, so we should
// only check if the engine is closed and not care if the shard is
// disabled.
if s._engine == nil {
return ErrEngineClosed
}
// Restore to engine.
return s._engine.Restore(r, basePath)
}(); err != nil {
return err
}
// Close shard.
if err := s.Close(); err != nil {
return err
}
// Reopen engine.
return s.Open()
}
// Import imports data to the underlying engine for the shard. r should
// be a reader from a backup created by Backup.
func (s *Shard) Import(r io.Reader, basePath string) error {
// Special case - we can still import to a disabled shard, so we should
// only check if the engine is closed and not care if the shard is
// disabled.
s.mu.Lock()
defer s.mu.Unlock()
if s._engine == nil {
return ErrEngineClosed
}
// Import to engine.
return s._engine.Import(r, basePath)
}
// CreateSnapshot will return a path to a temp directory
// containing hard links to the underlying shard files.
func (s *Shard) CreateSnapshot() (string, error) {
engine, err := s.engine()
if err != nil {
return "", err
}
return engine.CreateSnapshot()
}
// ForEachMeasurementName iterates over each measurement in the shard.
func (s *Shard) ForEachMeasurementName(fn func(name []byte) error) error {
engine, err := s.engine()
if err != nil {
return err
}
return engine.ForEachMeasurementName(fn)
}
func (s *Shard) ForEachMeasurementTagKey(name []byte, fn func(key []byte) error) error {
engine, err := s.engine()
if err != nil {
return err
}
return engine.ForEachMeasurementTagKey(name, fn)
}
func (s *Shard) TagKeyCardinality(name, key []byte) int {
engine, err := s.engine()
if err != nil {
return 0
}
return engine.TagKeyCardinality(name, key)
}
// engine safely (under an RLock) returns a reference to the shard's Engine, or
// an error if the Engine is closed, or the shard is currently disabled.
//
// The shard's Engine should always be accessed via a call to engine(), rather
// than directly referencing Shard.engine.
//
// If a caller needs an Engine reference but is already under a lock, then they
// should use engineNoLock().
func (s *Shard) engine() (Engine, error) {
s.mu.RLock()
defer s.mu.RUnlock()
return s.engineNoLock()
}
// engineNoLock is similar to calling engine(), but the caller must guarantee
// that they already hold an appropriate lock.
func (s *Shard) engineNoLock() (Engine, error) {
if err := s.ready(); err != nil {
return nil, err
}
return s._engine, nil
}
type ShardGroup interface {
MeasurementsByRegex(re *regexp.Regexp) []string
FieldDimensions(measurements []string) (fields map[string]influxql.DataType, dimensions map[string]struct{}, err error)
MapType(measurement, field string) influxql.DataType
CreateIterator(measurement string, opt influxql.IteratorOptions) (influxql.Iterator, error)
ExpandSources(sources influxql.Sources) (influxql.Sources, error)
}
// Shards represents a sortable list of shards.
type Shards []*Shard
// Len implements sort.Interface.
func (a Shards) Len() int { return len(a) }
// Less implements sort.Interface.
func (a Shards) Less(i, j int) bool { return a[i].id < a[j].id }
// Swap implements sort.Interface.
func (a Shards) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// MeasurementsByRegex returns the unique set of measurements matching the
// provided regex, for all the shards.
func (a Shards) MeasurementsByRegex(re *regexp.Regexp) []string {
var m map[string]struct{}
for _, sh := range a {
names, err := sh.MeasurementNamesByRegex(re)
if err != nil {
continue // Skip this shard's results—previous behaviour.
}
if m == nil {
m = make(map[string]struct{}, len(names))
}
for _, name := range names {
m[string(name)] = struct{}{}
}
}
if len(m) == 0 {
return nil
}
names := make([]string, 0, len(m))
for key := range m {
names = append(names, key)
}
sort.Strings(names)
return names
}
func (a Shards) FieldDimensions(measurements []string) (fields map[string]influxql.DataType, dimensions map[string]struct{}, err error) {
fields = make(map[string]influxql.DataType)
dimensions = make(map[string]struct{})
for _, sh := range a {
f, d, err := sh.FieldDimensions(measurements)
if err != nil {
return nil, nil, err
}
for k, typ := range f {
if _, ok := fields[k]; typ != influxql.Unknown && (!ok || typ < fields[k]) {
fields[k] = typ
}
}
for k := range d {
dimensions[k] = struct{}{}
}
}
return
}
func (a Shards) MapType(measurement, field string) influxql.DataType {
var typ influxql.DataType
for _, sh := range a {
sh.mu.RLock()
if t, err := sh.mapType(measurement, field); err == nil && typ.LessThan(t) {
typ = t
}
sh.mu.RUnlock()
}
return typ
}
func (a Shards) CreateIterator(measurement string, opt influxql.IteratorOptions) (influxql.Iterator, error) {
itrs := make([]influxql.Iterator, 0, len(a))
for _, sh := range a {
itr, err := sh.CreateIterator(measurement, opt)
if err != nil {
influxql.Iterators(itrs).Close()
return nil, err
} else if itr == nil {
continue
}
itrs = append(itrs, itr)
select {
case <-opt.InterruptCh:
influxql.Iterators(itrs).Close()
return nil, err
default:
}
// Enforce series limit at creation time.
if opt.MaxSeriesN > 0 {
stats := itr.Stats()
if stats.SeriesN > opt.MaxSeriesN {
influxql.Iterators(itrs).Close()
return nil, fmt.Errorf("max-select-series limit exceeded: (%d/%d)", stats.SeriesN, opt.MaxSeriesN)
}
}
}
return influxql.Iterators(itrs).Merge(opt)
}
func (a Shards) ExpandSources(sources influxql.Sources) (influxql.Sources, error) {
// Use a map as a set to prevent duplicates.
set := map[string]influxql.Source{}
// Iterate through every shard and expand the sources.
for _, sh := range a {
sh.mu.RLock()
expanded, err := sh.expandSources(sources)
sh.mu.RUnlock()
if err != nil {
return nil, err
}
for _, src := range expanded {
switch src := src.(type) {
case *influxql.Measurement:
set[src.String()] = src
default:
return nil, fmt.Errorf("Store.ExpandSources: unsupported source type: %T", src)
}
}
}
// Convert set to sorted slice.
names := make([]string, 0, len(set))
for name := range set {
names = append(names, name)
}
sort.Strings(names)
// Convert set to a list of Sources.
sorted := make([]influxql.Source, 0, len(set))
for _, name := range names {
sorted = append(sorted, set[name])
}
return sorted, nil
}
// MeasurementFields holds the fields of a measurement and their codec.
type MeasurementFields struct {
mu sync.RWMutex
fields map[string]*Field
}
// NewMeasurementFields returns an initialised *MeasurementFields value.
func NewMeasurementFields() *MeasurementFields {
return &MeasurementFields{fields: make(map[string]*Field)}
}
// MarshalBinary encodes the object to a binary format.
func (m *MeasurementFields) MarshalBinary() ([]byte, error) {
m.mu.RLock()
defer m.mu.RUnlock()
var pb internal.MeasurementFields
for _, f := range m.fields {
id := int32(f.ID)
name := f.Name
t := int32(f.Type)
pb.Fields = append(pb.Fields, &internal.Field{ID: &id, Name: &name, Type: &t})
}
return proto.Marshal(&pb)
}
// UnmarshalBinary decodes the object from a binary format.
func (m *MeasurementFields) UnmarshalBinary(buf []byte) error {
m.mu.Lock()
defer m.mu.Unlock()
var pb internal.MeasurementFields
if err := proto.Unmarshal(buf, &pb); err != nil {
return err
}
m.fields = make(map[string]*Field, len(pb.Fields))
for _, f := range pb.Fields {
m.fields[f.GetName()] = &Field{ID: uint8(f.GetID()), Name: f.GetName(), Type: influxql.DataType(f.GetType())}
}
return nil
}
// CreateFieldIfNotExists creates a new field with an autoincrementing ID.
// Returns an error if 255 fields have already been created on the measurement or
// the fields already exists with a different type.
func (m *MeasurementFields) CreateFieldIfNotExists(name []byte, typ influxql.DataType, limitCount bool) error {
m.mu.RLock()
// Ignore if the field already exists.
if f := m.fields[string(name)]; f != nil {
if f.Type != typ {
m.mu.RUnlock()
return ErrFieldTypeConflict
}
m.mu.RUnlock()
return nil
}
m.mu.RUnlock()
m.mu.Lock()
defer m.mu.Unlock()
// Re-check field and type under write lock.
if f := m.fields[string(name)]; f != nil {
if f.Type != typ {
return ErrFieldTypeConflict
}
return nil
}
// Create and append a new field.
f := &Field{
ID: uint8(len(m.fields) + 1),
Name: string(name),
Type: typ,
}
m.fields[string(name)] = f
return nil
}
func (m *MeasurementFields) FieldN() int {
m.mu.RLock()
n := len(m.fields)
m.mu.RUnlock()
return n
}
// Field returns the field for name, or nil if there is no field for name.
func (m *MeasurementFields) Field(name string) *Field {
m.mu.RLock()
f := m.fields[name]
m.mu.RUnlock()
return f
}
func (m *MeasurementFields) HasField(name string) bool {
m.mu.RLock()
f := m.fields[name]
m.mu.RUnlock()
return f != nil
}
// FieldBytes returns the field for name, or nil if there is no field for name.
// FieldBytes should be preferred to Field when the caller has a []byte, because
// it avoids a string allocation, which can't be avoided if the caller converts
// the []byte to a string and calls Field.
func (m *MeasurementFields) FieldBytes(name []byte) *Field {
m.mu.RLock()
f := m.fields[string(name)]
m.mu.RUnlock()
return f
}
// FieldSet returns the set of fields and their types for the measurement.
func (m *MeasurementFields) FieldSet() map[string]influxql.DataType {
m.mu.RLock()
defer m.mu.RUnlock()
fields := make(map[string]influxql.DataType)
for name, f := range m.fields {
fields[name] = f.Type
}
return fields
}
// Clone returns copy of the MeasurementFields
func (m *MeasurementFields) Clone() *MeasurementFields {
m.mu.RLock()
defer m.mu.RUnlock()
fields := make(map[string]*Field, len(m.fields))
for key, field := range m.fields {
fields[key] = field
}
return &MeasurementFields{
fields: fields,
}
}
// MeasurementFieldSet represents a collection of fields by measurement.
// This safe for concurrent use.
type MeasurementFieldSet struct {
mu sync.RWMutex
fields map[string]*MeasurementFields
}
// NewMeasurementFieldSet returns a new instance of MeasurementFieldSet.
func NewMeasurementFieldSet() *MeasurementFieldSet {
return &MeasurementFieldSet{
fields: make(map[string]*MeasurementFields),
}
}
// Fields returns fields for a measurement by name.
func (fs *MeasurementFieldSet) Fields(name string) *MeasurementFields {
fs.mu.RLock()
mf := fs.fields[name]
fs.mu.RUnlock()
return mf
}
// CreateFieldsIfNotExists returns fields for a measurement by name.
func (fs *MeasurementFieldSet) CreateFieldsIfNotExists(name []byte) *MeasurementFields {
fs.mu.RLock()
mf := fs.fields[string(name)]
fs.mu.RUnlock()
if mf != nil {
return mf
}
fs.mu.Lock()
mf = fs.fields[string(name)]
if mf == nil {
mf = NewMeasurementFields()
fs.fields[string(name)] = mf
}
fs.mu.Unlock()
return mf
}
// Delete removes a field set for a measurement.
func (fs *MeasurementFieldSet) Delete(name string) {
fs.mu.Lock()
delete(fs.fields, name)
fs.mu.Unlock()
}
// DeleteWithLock executes fn and removes a field set from a measurement under lock.
func (fs *MeasurementFieldSet) DeleteWithLock(name string, fn func() error) error {
fs.mu.Lock()
defer fs.mu.Unlock()
if err := fn(); err != nil {
return err
}
delete(fs.fields, name)
return nil
}
// Field represents a series field.
type Field struct {
ID uint8 `json:"id,omitempty"`
Name string `json:"name,omitempty"`
Type influxql.DataType `json:"type,omitempty"`
}
// NewFieldKeysIterator returns an iterator that can be iterated over to
// retrieve field keys.
func NewFieldKeysIterator(engine Engine, opt influxql.IteratorOptions) (influxql.Iterator, error) {
itr := &fieldKeysIterator{engine: engine}
// Retrieve measurements from shard. Filter if condition specified.
names, err := engine.MeasurementNamesByExpr(opt.Condition)
if err != nil {
return nil, err
}
itr.names = names
return itr, nil
}
// fieldKeysIterator iterates over measurements and gets field keys from each measurement.
type fieldKeysIterator struct {
engine Engine
names [][]byte // remaining measurement names
buf struct {
name []byte // current measurement name
fields []Field // current measurement's fields
}
}
// Stats returns stats about the points processed.
func (itr *fieldKeysIterator) Stats() influxql.IteratorStats { return influxql.IteratorStats{} }
// Close closes the iterator.
func (itr *fieldKeysIterator) Close() error { return nil }
// Next emits the next tag key name.
func (itr *fieldKeysIterator) Next() (*influxql.FloatPoint, error) {
for {
// If there are no more keys then move to the next measurements.
if len(itr.buf.fields) == 0 {
if len(itr.names) == 0 {
return nil, nil
}
itr.buf.name = itr.names[0]
mf := itr.engine.MeasurementFields(itr.buf.name)
if mf != nil {
fset := mf.FieldSet()
if len(fset) == 0 {
itr.names = itr.names[1:]
continue
}
keys := make([]string, 0, len(fset))
for k := range fset {
keys = append(keys, k)
}
sort.Strings(keys)
itr.buf.fields = make([]Field, len(keys))
for i, name := range keys {
itr.buf.fields[i] = Field{Name: name, Type: fset[name]}
}
}
itr.names = itr.names[1:]
continue
}
// Return next key.
field := itr.buf.fields[0]
p := &influxql.FloatPoint{
Name: string(itr.buf.name),
Aux: []interface{}{field.Name, field.Type.String()},
}
itr.buf.fields = itr.buf.fields[1:]
return p, nil
}
}
// NewTagKeysIterator returns a new instance of TagKeysIterator.
func NewTagKeysIterator(engine Engine, opt influxql.IteratorOptions) (influxql.Iterator, error) {
fn := func(name []byte) ([][]byte, error) {
var keys [][]byte
if err := engine.ForEachMeasurementTagKey(name, func(key []byte) error {
keys = append(keys, key)
return nil
}); err != nil {
return nil, err
}
return keys, nil
}
return newMeasurementKeysIterator(engine, fn, opt)
}
// measurementKeyFunc is the function called by measurementKeysIterator.
type measurementKeyFunc func(name []byte) ([][]byte, error)
func newMeasurementKeysIterator(engine Engine, fn measurementKeyFunc, opt influxql.IteratorOptions) (*measurementKeysIterator, error) {
itr := &measurementKeysIterator{fn: fn}
names, err := engine.MeasurementNamesByExpr(opt.Condition)
if err != nil {
return nil, err
}
itr.names = names
return itr, nil
}
// measurementKeysIterator iterates over measurements and gets keys from each measurement.
type measurementKeysIterator struct {
names [][]byte // remaining measurement names
buf struct {
name []byte // current measurement name
keys [][]byte // current measurement's keys
}
fn measurementKeyFunc
}
// Stats returns stats about the points processed.
func (itr *measurementKeysIterator) Stats() influxql.IteratorStats { return influxql.IteratorStats{} }
// Close closes the iterator.
func (itr *measurementKeysIterator) Close() error { return nil }
// Next emits the next tag key name.
func (itr *measurementKeysIterator) Next() (*influxql.FloatPoint, error) {
for {
// If there are no more keys then move to the next measurements.
if len(itr.buf.keys) == 0 {
if len(itr.names) == 0 {
return nil, nil
}
itr.buf.name, itr.names = itr.names[0], itr.names[1:]
keys, err := itr.fn(itr.buf.name)
if err != nil {
return nil, err
}
itr.buf.keys = keys
continue
}
// Return next key.
p := &influxql.FloatPoint{
Name: string(itr.buf.name),
Aux: []interface{}{string(itr.buf.keys[0])},
}
itr.buf.keys = itr.buf.keys[1:]
return p, nil
}
}
// LimitError represents an error caused by a configurable limit.
type LimitError struct {
Reason string
}
func (e *LimitError) Error() string { return e.Reason }