hyperion.ng/libsrc/leddevice/LedDeviceWS2812b.cpp

870 lines
29 KiB
C++
Raw Normal View History

// For license and other informations see LedDeviceWS2812b.h
// To activate: use led device "ws2812s" in the hyperion configuration
// STL includes
#include <cstring>
#include <cstdio>
#include <iostream>
#include <vector>
// Linux includes
#include <fcntl.h>
#include <stdarg.h>
#include <sys/mman.h>
#include <unistd.h>
//#include <sys/types.h>
//#include <sys/ioctl.h>
#ifdef BENCHMARK
#include <time.h>
#endif
// hyperion local includes
#include "LedDeviceWS2812b.h"
// ==== Defines and Vars ====
// Base addresses for GPIO, PWM, PWM clock, and DMA controllers (physical, not bus!)
// These will be "memory mapped" into virtual RAM so that they can be written and read directly.
// -------------------------------------------------------------------------------------------------
#define DMA_BASE 0x20007000
#define DMA_LEN 0x24
#define PWM_BASE 0x2020C000
#define PWM_LEN 0x28
#define CLK_BASE 0x20101000
#define CLK_LEN 0xA8
#define GPIO_BASE 0x20200000
#define GPIO_LEN 0xB4
// GPIO
// -------------------------------------------------------------------------------------------------
#define GPFSEL0 0x20200000 // GPIO function select, pins 0-9 (bits 30-31 reserved)
#define GPFSEL1 0x20200004 // Pins 10-19
#define GPFSEL2 0x20200008 // Pins 20-29
#define GPFSEL3 0x2020000C // Pins 30-39
#define GPFSEL4 0x20200010 // Pins 40-49
#define GPFSEL5 0x20200014 // Pins 50-53
#define GPSET0 0x2020001C // Set (turn on) pin
#define GPCLR0 0x20200028 // Clear (turn off) pin
#define GPPUD 0x20200094 // Internal pullup/pulldown resistor control
#define GPPUDCLK0 0x20200098 // PUD clock for pins 0-31
#define GPPUDCLK1 0x2020009C // PUD clock for pins 32-53
// Memory offsets for the PWM clock register, which is undocumented! Please fix that, Broadcom!
// -------------------------------------------------------------------------------------------------
#define PWM_CLK_CNTL 40 // Control (on/off)
#define PWM_CLK_DIV 41 // Divisor (bits 11:0 are *quantized* floating part, 31:12 integer part)
// PWM Register Addresses (page 141)
// These are divided by 4 because the register offsets in the guide are in bytes (8 bits) but
// the pointers we use in this program are in words (32 bits). Buss' original defines are in
// word offsets, e.g. PWM_RNG1 was 4 and PWM_DAT1 was 5. This is functionally the same, but it
// matches the numbers supplied in the guide.
// -------------------------------------------------------------------------------------------------
#define PWM_CTL 0x00 // Control Register
#define PWM_STA (0x04 / 4) // Status Register
#define PWM_DMAC (0x08 / 4) // DMA Control Register
#define PWM_RNG1 (0x10 / 4) // Channel 1 Range
#define PWM_DAT1 (0x14 / 4) // Channel 1 Data
#define PWM_FIF1 (0x18 / 4) // FIFO (for both channels - bytes are interleaved if both active)
#define PWM_RNG2 (0x20 / 4) // Channel 2 Range
#define PWM_DAT2 (0x24 / 4) // Channel 2 Data
// PWM_CTL register bit offsets
// Note: Don't use MSEN1/2 for this purpose. It will screw things up.
// -------------------------------------------------------------------------------------------------
#define PWM_CTL_MSEN2 15 // Channel 2 - 0: Use PWM algorithm. 1: Use M/S (serial) algorithm.
#define PWM_CTL_USEF2 13 // Channel 2 - 0: Use PWM_DAT2. 1: Use FIFO.
#define PWM_CTL_POLA2 12 // Channel 2 - Invert output polarity (if set, 0=high and 1=low)
#define PWM_CTL_SBIT2 11 // Channel 2 - Silence bit (default line state when not transmitting)
#define PWM_CTL_RPTL2 10 // Channel 2 - Repeat last data in FIFO
#define PWM_CTL_MODE2 9 // Channel 2 - Mode. 0=PWM, 1=Serializer
#define PWM_CTL_PWEN2 8 // Channel 2 - Enable PWM
#define PWM_CTL_CLRF1 6 // Clear FIFO
#define PWM_CTL_MSEN1 7 // Channel 1 - 0: Use PWM algorithm. 1: Use M/S (serial) algorithm.
#define PWM_CTL_USEF1 5 // Channel 1 - 0: Use PWM_DAT1. 1: Use FIFO.
#define PWM_CTL_POLA1 4 // Channel 1 - Invert output polarity (if set, 0=high and 1=low)
#define PWM_CTL_SBIT1 3 // Channel 1 - Silence bit (default line state when not transmitting)
#define PWM_CTL_RPTL1 2 // Channel 1 - Repeat last data in FIFO
#define PWM_CTL_MODE1 1 // Channel 1 - Mode. 0=PWM, 1=Serializer
#define PWM_CTL_PWEN1 0 // Channel 1 - Enable PWM
// PWM_STA register bit offsets
// -------------------------------------------------------------------------------------------------
#define PWM_STA_STA4 12 // Channel 4 State
#define PWM_STA_STA3 11 // Channel 3 State
#define PWM_STA_STA2 10 // Channel 2 State
#define PWM_STA_STA1 9 // Channel 1 State
#define PWM_STA_BERR 8 // Bus Error
#define PWM_STA_GAPO4 7 // Gap Occurred on Channel 4
#define PWM_STA_GAPO3 6 // Gap Occurred on Channel 3
#define PWM_STA_GAPO2 5 // Gap Occurred on Channel 2
#define PWM_STA_GAPO1 4 // Gap Occurred on Channel 1
#define PWM_STA_RERR1 3 // FIFO Read Error
#define PWM_STA_WERR1 2 // FIFO Write Error
#define PWM_STA_EMPT1 1 // FIFO Empty
#define PWM_STA_FULL1 0 // FIFO Full
// PWM_DMAC bit offsets
// -------------------------------------------------------------------------------------------------
#define PWM_DMAC_ENAB 31 // 0: DMA Disabled. 1: DMA Enabled.
#define PWM_DMAC_PANIC 8 // Bits 15:8. Threshold for PANIC signal. Default 7.
#define PWM_DMAC_DREQ 0 // Bits 7:0. Threshold for DREQ signal. Default 7.
// PWM_RNG1, PWM_RNG2
// --------------------------------------------------------------------------------------------------
// Defines the transmission range. In PWM mode, evenly spaced pulses are sent within a period
// of length defined in these registers. In serial mode, serialized data is sent within the
// same period. The value is normally 32. If less, data will be truncated. If more, data will
// be padded with zeros.
// DAT1, DAT2
// --------------------------------------------------------------------------------------------------
// NOTE: These registers are not useful for our purposes - we will use the FIFO instead!
// Stores 32 bits of data to be sent when USEF1/USEF2 is 0. In PWM mode, defines how many
// pulses will be sent within the period specified in PWM_RNG1/PWM_RNG2. In serializer mode,
// defines a 32-bit word to be transmitted.
// FIF1
// --------------------------------------------------------------------------------------------------
// 32-bit-wide register used to "stuff" the FIFO, which has 16 32-bit words. (So, if you write
// it 16 times, it will fill the FIFO.)
// See also: PWM_STA_EMPT1 (FIFO empty)
// PWM_STA_FULL1 (FIFO full)
// PWM_CTL_CLRF1 (Clear FIFO)
// DMA
// --------------------------------------------------------------------------------------------------
// DMA registers (divided by four to convert form word to byte offsets, as with the PWM registers)
#define DMA_CS (0x00 / 4) // Control & Status register
#define DMA_CONBLK_AD (0x04 / 4) // Address of Control Block (must be 256-BYTE ALIGNED!!!)
#define DMA_TI (0x08 / 4) // Transfer Information (populated from CB)
#define DMA_SOURCE_AD (0x0C / 4) // Source address, populated from CB. Physical address.
#define DMA_DEST_AD (0x10 / 4) // Destination address, populated from CB. Bus address.
#define DMA_TXFR_LEN (0x14 / 4) // Transfer length, populated from CB
#define DMA_STRIDE (0x18 / 4) // Stride, populated from CB
#define DMA_NEXTCONBK (0x1C / 4) // Next control block address, populated from CB
#define DMA_DEBUG (0x20 / 4) // Debug settings
// DMA Control & Status register bit offsets
#define DMA_CS_RESET 31 // Reset the controller for this channel
#define DMA_CS_ABORT 30 // Set to abort transfer
#define DMA_CS_DISDEBUG 29 // Disable debug pause signal
#define DMA_CS_WAIT_FOR 28 // Wait for outstanding writes
#define DMA_CS_PANIC_PRI 20 // Panic priority (bits 23:20), default 7
#define DMA_CS_PRIORITY 16 // AXI priority level (bits 19:16), default 7
#define DMA_CS_ERROR 8 // Set when there's been an error
#define DMA_CS_WAITING_FOR 6 // Set when the channel's waiting for a write to be accepted
#define DMA_CS_DREQ_STOPS_DMA 5 // Set when the DMA is paused because DREQ is inactive
#define DMA_CS_PAUSED 4 // Set when the DMA is paused (active bit cleared, etc.)
#define DMA_CS_DREQ 3 // Set when DREQ line is high
#define DMA_CS_INT 2 // If INTEN is set, this will be set on CB transfer end
#define DMA_CS_END 1 // Set when the current control block is finished
#define DMA_CS_ACTIVE 0 // Enable DMA (CB_ADDR must not be 0)
// Default CS word
#define DMA_CS_CONFIGWORD (8 << DMA_CS_PANIC_PRI) | \
(8 << DMA_CS_PRIORITY) | \
(1 << DMA_CS_WAIT_FOR)
// DREQ lines (page 61, most DREQs omitted)
#define DMA_DREQ_ALWAYS 0
#define DMA_DREQ_PCM_TX 2
#define DMA_DREQ_PCM_RX 3
#define DMA_DREQ_PWM 5
#define DMA_DREQ_SPI_TX 6
#define DMA_DREQ_SPI_RX 7
#define DMA_DREQ_BSC_TX 8
#define DMA_DREQ_BSC_RX 9
// DMA Transfer Information register bit offsets
// We don't write DMA_TI directly. It's populated from the TI field in a control block.
#define DMA_TI_NO_WIDE_BURSTS 26 // Don't do wide writes in 2-beat bursts
#define DMA_TI_WAITS 21 // Wait this many cycles after end of each read/write
#define DMA_TI_PERMAP 16 // Peripheral # whose ready signal controls xfer rate (pwm=5)
#define DMA_TI_BURST_LENGTH 12 // Length of burst in words (bits 15:12)
#define DMA_TI_SRC_IGNORE 11 // Don't perform source reads (for fast cache fill)
#define DMA_TI_SRC_DREQ 10 // Peripheral in PERMAP gates source reads
#define DMA_TI_SRC_WIDTH 9 // Source transfer width - 0=32 bits, 1=128 bits
#define DMA_TI_SRC_INC 8 // Source address += SRC_WITH after each read
#define DMA_TI_DEST_IGNORE 7 // Don't perform destination writes
#define DMA_TI_DEST_DREQ 6 // Peripheral in PERMAP gates destination writes
#define DMA_TI_DEST_WIDTH 5 // Destination transfer width - 0=32 bits, 1=128 bits
#define DMA_TI_DEST_INC 4 // Dest address += DEST_WIDTH after each read
#define DMA_TI_WAIT_RESP 3 // Wait for write response
#define DMA_TI_TDMODE 1 // 2D striding mode
#define DMA_TI_INTEN 0 // Interrupt enable
// Default TI word
#define DMA_TI_CONFIGWORD (1 << DMA_TI_NO_WIDE_BURSTS) | \
(1 << DMA_TI_SRC_INC) | \
(1 << DMA_TI_DEST_DREQ) | \
(1 << DMA_TI_WAIT_RESP) | \
(1 << DMA_TI_INTEN) | \
(DMA_DREQ_PWM << DMA_TI_PERMAP)
// DMA Debug register bit offsets
#define DMA_DEBUG_LITE 28 // Whether the controller is "Lite"
#define DMA_DEBUG_VERSION 25 // DMA Version (bits 27:25)
#define DMA_DEBUG_DMA_STATE 16 // DMA State (bits 24:16)
#define DMA_DEBUG_DMA_ID 8 // DMA controller's AXI bus ID (bits 15:8)
#define DMA_DEBUG_OUTSTANDING_WRITES 4 // Outstanding writes (bits 7:4)
#define DMA_DEBUG_READ_ERROR 2 // Slave read response error (clear by setting)
#define DMA_DEBUG_FIFO_ERROR 1 // Operational read FIFO error (clear by setting)
#define DMA_DEBUG_READ_LAST_NOT_SET 0 // AXI bus read last signal not set (clear by setting)
#define PAGE_SIZE 4096 // Size of a RAM page to be allocated
#define PAGE_SHIFT 12 // This is used for address translation
#define NUM_PAGES ((sizeof(struct control_data_s) + PAGE_SIZE - 1) >> PAGE_SHIFT)
#define SETBIT(word, bit) word |= 1<<bit
#define CLRBIT(word, bit) word &= ~(1<<bit)
#define GETBIT(word, bit) word & (1 << bit) ? 1 : 0
#define true 1
#define false 0
// GPIO
#define INP_GPIO(g) *(gpio_reg+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio_reg+((g)/10)) |= (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio_reg+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))
#define GPIO_SET *(gpio_reg+7) // sets bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio_reg+10) // clears bits which are 1 ignores bits which are 0
LedDeviceWS2812b::LedDeviceWS2812b()
: LedDevice()
#ifdef BENCHMARK
, runCount(0)
, combinedNseconds(0)
, shortestNseconds(2147483647)
#endif
{
//shortestNseconds = 2147483647;
// Init PWM generator and clear LED buffer
initHardware();
//clearLEDBuffer();
// init bit pattern, it is always 1X0
unsigned int wireBit = 0;
while ((wireBit + 3) < ((NUM_DATA_WORDS) * 4 * 8))
{
setPWMBit(wireBit++, 1);
setPWMBit(wireBit++, 0); // just init it with 0
setPWMBit(wireBit++, 0);
}
printf("WS2812b init finished \n");
}
JsonCpp to QTJson (Final Part) (#273) * Update CMakeLists.txt * Update Hyperion.h * Update LedDevice.h * Update LedDeviceFactory.h * Update Hyperion.cpp * Update LedString.cpp * Update JsonClientConnection.cpp * Update LedDeviceAdalight.cpp * Update LedDeviceAdalight.h * Update LedDeviceAPA102.cpp * Update LedDeviceAdalightApa102.h * Update LedDeviceAdalightApa102.cpp * Update LedDeviceAPA102.h * Update LedDeviceAtmo.cpp * Update LedDeviceAtmo.h * Update LedDeviceAtmoOrb.cpp * Update LedDeviceAtmoOrb.h * Update LedDeviceDMX.cpp * Update LedDeviceDMX.h * Update LedDeviceFactory.cpp * Update LedDeviceFadeCandy.cpp * Update LedDeviceFadeCandy.h * Update LedDeviceFile.cpp * Update LedDeviceFile.h * Update LedDeviceHyperionUsbasp.cpp * Update LedDeviceHyperionUsbasp.h * Update LedDeviceLightpack.cpp * Update LedDeviceLightpack.h * Update LedDeviceLpd6803.cpp * Update LedDeviceLpd6803.h * Update LedDeviceLpd8806.cpp * Update LedDeviceLpd8806.h * Update LedDeviceMultiLightpack.cpp * Update LedDeviceMultiLightpack.h * Update LedDeviceP9813.cpp * Update LedDeviceP9813.h * Update LedDevicePaintpack.cpp * Update LedDevicePaintpack.h * Update LedDevicePhilipsHue.cpp * Update LedDevicePhilipsHue.h * Update LedDevicePiBlaster.cpp * Update LedDevicePiBlaster.h * Update LedDeviceRawHID.cpp * Update LedDeviceRawHID.h * Update LedDeviceSedu.cpp * Update LedDeviceSedu.h * Update LedDeviceSk6812SPI.cpp * Update LedDeviceSk6812SPI.h * Update LedDeviceTinkerforge.cpp * Update LedDeviceTinkerforge.h * Update LedDeviceTpm2.cpp * Update LedDeviceTpm2.h * Update LedDeviceTpm2net.cpp * Update LedDeviceTpm2net.h * Update LedDeviceUdpE131.cpp * Update LedDeviceUdpE131.h * Update LedDeviceUdpH801.cpp * Update LedDeviceUdpH801.h * Update LedDeviceUdpRaw.cpp * Update LedDeviceUdpRaw.h * Update LedDeviceWs2801.cpp * Update LedDeviceWs2801.h * Update LedDeviceWS2812b.cpp * Update LedDeviceWS2812b.h * Update LedDeviceWs2812SPI.cpp * Update LedDeviceWs2812SPI.h * Update LedDeviceWS281x.cpp * Update LedDeviceWS281x.h * Update ProviderHID.cpp * Update ProviderHID.h * Update ProviderRs232.cpp * Update ProviderRs232.h * Update ProviderSpi.cpp * Update ProviderSpi.h * Update ProviderUdp.cpp * Update ProviderUdp.h * Update LedDevice.cpp * Update CMakeLists.txt * Update hyperiond.cpp * Update hyperiond.h * Update TestSpi.cpp * Delete AUTHORS * Delete CMakeLists.txt * Delete LICENSE * Delete json_batchallocator.h * Delete json_internalarray.inl * Delete json_internalmap.inl * Delete json_reader.cpp * Delete json_tool.h * Delete json_value.cpp * Delete json_valueiterator.inl * Delete json_writer.cpp * Delete sconscript * Delete autolink.h * Delete config.h * Delete features.h * Delete forwards.h * Delete json.h * Delete reader.h * Delete value.h * Delete writer.h
2016-10-13 21:59:58 +02:00
LedDevice* LedDeviceWS2812b::construct(const QJsonObject &)
{
return new LedDeviceWS2812b();
}
#ifdef WS2812_ASM_OPTI
// rotate register, used to move the 1 around :-)
static inline __attribute__((always_inline)) uint32_t arm_ror_imm(uint32_t v, uint32_t sh)
{
uint32_t d;
asm ("ROR %[Rd], %[Rm], %[Is]" : [Rd] "=r" (d) : [Rm] "r" (v), [Is] "r" (sh));
return d;
}
// rotate register, used to move the 1 around, add 1 to int counter on carry
static inline __attribute__((always_inline)) uint32_t arm_ror_imm_add_on_carry(uint32_t v, uint32_t sh, uint32_t inc)
{
uint32_t d;
asm ("RORS %[Rd], %[Rm], %[Is]\n\t"
"ADDCS %[Rd1], %[Rd1], #1"
: [Rd] "=r" (d), [Rd1] "+r" (inc): [Rm] "r" (v), [Is] "r" (sh));
return d;
}
static inline __attribute__((always_inline)) uint32_t arm_ror(uint32_t v, uint32_t sh)
{
uint32_t d;
asm ("ROR %[Rd], %[Rm], %[Rs]" : [Rd] "=r" (d) : [Rm] "r" (v), [Rs] "r" (sh));
return d;
}
static inline __attribute__((always_inline)) uint32_t arm_Bit_Clear_imm(uint32_t v, uint32_t v2)
{
uint32_t d;
asm ("BIC %[Rd], %[Rm], %[Rs]" : [Rd] "=r" (d) : [Rm] "r" (v), [Rs] "r" (v2));
return d;
}
#endif
int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
{
#ifdef BENCHMARK
timespec timeStart;
timespec timeEnd;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &timeStart);
#endif
// Read data from LEDBuffer[], translate it into wire format, and write to PWMWaveform
unsigned int colorBits = 0; // Holds the GRB color before conversion to wire bit pattern
unsigned int wireBit = 1; // Holds the current bit we will set in PWMWaveform, start with 1 and skip the other two for speed
// Copy PWM waveform to DMA's data buffer
struct control_data_s *ctl = (struct control_data_s *)virtbase;
dma_cb_t *cbp = ctl->cb;
// 72 bits per pixel / 32 bits per word = 2.25 words per pixel
// Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes"
// Times 4 because DMA works in bytes, not words
cbp->length = ((_ledCount * 2.25) + 1) * 4;
if(cbp->length > NUM_DATA_WORDS * 4)
{
cbp->length = NUM_DATA_WORDS * 4;
_ledCount = (NUM_DATA_WORDS - 1) / 2.25;
}
#ifdef WS2812_ASM_OPTI
unsigned int startbitPattern = 0x40000000; // = 0100 0000 0000 0000 0000 0000 0000 0000 pattern
#endif
2016-08-16 18:14:36 +02:00
for(size_t i=0; i<(size_t)_ledCount; i++)
{
// Create bits necessary to represent one color triplet (in GRB, not RGB, order)
colorBits = ((unsigned int)ledValues[i].red << 8) | ((unsigned int)ledValues[i].green << 16) | ledValues[i].blue;
// Iterate through color bits to get wire bits
for(int j=23; j>=0; j--) {
#ifdef WS2812_ASM_OPTI
// Fetch word the bit is in
unsigned int wordOffset = (int)(wireBit / 32);
wireBit +=3;
if (colorBits & (1 << j)) {
PWMWaveform[wordOffset] |= startbitPattern;
} else {
PWMWaveform[wordOffset] = arm_Bit_Clear_imm(PWMWaveform[wordOffset], startbitPattern);
}
startbitPattern = arm_ror_imm(startbitPattern, 3);
#else
unsigned char colorBit = (colorBits & (1 << j)) ? 1 : 0; // Holds current bit out of colorBits to be processed
setPWMBit(wireBit, colorBit);
wireBit +=3;
#endif
/* old code for better understanding
switch(colorBit) {
case 1:
//wireBits = 0b110; // High, High, Low
setPWMBit(wireBit++, 1);
setPWMBit(wireBit++, 1);
setPWMBit(wireBit++, 0);
break;
case 0:
//wireBits = 0b100; // High, Low, Low
setPWMBit(wireBit++, 1);
setPWMBit(wireBit++, 0);
setPWMBit(wireBit++, 0);
break;
}*/
}
}
#ifdef WS2812_ASM_OPTI
// calculate the bits manually since it is not needed with asm
//wireBit += _ledCount * 24 *3;
#endif
//remove one to undo optimization
wireBit --;
#ifdef WS2812_ASM_OPTI
int rest = 32 - wireBit % 32; // 64: 32 - used Bits
startbitPattern = (1 << (rest-1)); // set new bitpattern to start at the benigining of one bit (3 bit in wave form)
rest += 32; // add one int extra for pwm
unsigned int oldwireBitValue = wireBit;
unsigned int oldbitPattern = startbitPattern;
// zero rest of the 4 bytes / int so that output is 0 (no data is send)
for (int i = 0; i < rest; i += 3)
{
unsigned int wordOffset = (int)(wireBit / 32);
wireBit += 3;
PWMWaveform[wordOffset] = arm_Bit_Clear_imm(PWMWaveform[wordOffset], startbitPattern);
startbitPattern = arm_ror_imm(startbitPattern, 3);
}
#else
// fill up the bytes
int rest = 32 - wireBit % 32 + 32; // 64: 32 - used Bits + 32 (one int extra for pwm)
unsigned int oldwireBitValue = wireBit;
// zero rest of the 4 bytes / int so that output is 0 (no data is send)
for (int i = 0; i < rest; i += 3)
{
setPWMBit(wireBit, 0);
wireBit += 3;
}
#endif
memcpy ( ctl->sample, PWMWaveform, cbp->length );
// Enable DMA and PWM engines, which should now send the data
startTransfer();
// restore bit pattern
wireBit = oldwireBitValue;
#ifdef WS2812_ASM_OPTI
startbitPattern = oldbitPattern;
for (int i = 0; i < rest; i += 3)
{
unsigned int wordOffset = (int)(wireBit / 32);
wireBit += 3;
PWMWaveform[wordOffset] |= startbitPattern;
startbitPattern = arm_ror_imm(startbitPattern, 3);
}
#else
for (int i = 0; i < rest; i += 3)
{
setPWMBit(wireBit, 1);
wireBit += 3;
}
#endif
#ifdef BENCHMARK
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &timeEnd);
timespec result;
result.tv_sec = timeEnd.tv_sec - timeStart.tv_sec;
result.tv_nsec = timeEnd.tv_nsec - timeStart.tv_nsec;
if (result.tv_nsec < 0)
{
result.tv_nsec = 1e9 - result.tv_nsec;
result.tv_sec -= 1;
}
runCount ++;
combinedNseconds += result.tv_nsec;
shortestNseconds = result.tv_nsec < shortestNseconds ? result.tv_nsec : shortestNseconds;
#endif
return 0;
}
LedDeviceWS2812b::~LedDeviceWS2812b()
{
// Exit cleanly, freeing memory and stopping the DMA & PWM engines
terminate(0);
#ifdef BENCHMARK
printf("WS2812b Benchmark results: Runs %d - Avarage %lu (n) - Minimum %ld (n)\n",
runCount, (runCount > 0 ? combinedNseconds / runCount : 0), shortestNseconds);
#endif
}
// =================================================================================================
// ________ .__
// / _____/ ____ ____ ________________ | |
// / \ ____/ __ \ / \_/ __ \_ __ \__ \ | |
// \ \_\ \ ___/| | \ ___/| | \// __ \| |__
// \______ /\___ >___| /\___ >__| (____ /____/
// \/ \/ \/ \/ \/
// =================================================================================================
// Convenience functions
// --------------------------------------------------------------------------------------------------
// Print some bits of a binary number (2nd arg is how many bits)
void LedDeviceWS2812b::printBinary(unsigned int i, unsigned int bits)
{
int x;
for(x=bits-1; x>=0; x--)
{
printf("%d", (i & (1 << x)) ? 1 : 0);
if(x % 16 == 0 && x > 0)
{
printf(" ");
}
else if(x % 4 == 0 && x > 0)
{
printf(":");
}
}
}
// Reverse the bits in a word
unsigned int reverseWord(unsigned int word)
{
unsigned int output = 0;
//unsigned char bit;
int i;
for(i=0; i<32; i++)
{
output |= word & (1 << i) ? 1 : 0;
if(i<31)
{
output <<= 1;
}
}
return output;
}
// Shutdown functions
// --------------------------------------------------------------------------------------------------
void LedDeviceWS2812b::terminate(int dummy) {
// Shut down the DMA controller
if(dma_reg)
{
CLRBIT(dma_reg[DMA_CS], DMA_CS_ACTIVE);
usleep(100);
SETBIT(dma_reg[DMA_CS], DMA_CS_RESET);
usleep(100);
}
// Shut down PWM
if(pwm_reg)
{
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_PWEN1);
usleep(100);
pwm_reg[PWM_CTL] = (1 << PWM_CTL_CLRF1);
}
// Free the allocated memory
if(page_map != 0)
{
free(page_map);
}
}
void LedDeviceWS2812b::fatal(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
terminate(0);
}
// Memory management
// --------------------------------------------------------------------------------------------------
// Translate from virtual address to physical
unsigned int LedDeviceWS2812b::mem_virt_to_phys(void *virt)
{
unsigned int offset = (uint8_t *)virt - virtbase;
return page_map[offset >> PAGE_SHIFT].physaddr + (offset % PAGE_SIZE);
}
// Translate from physical address to virtual
unsigned int LedDeviceWS2812b::mem_phys_to_virt(uint32_t phys)
{
unsigned int pg_offset = phys & (PAGE_SIZE - 1);
unsigned int pg_addr = phys - pg_offset;
for (unsigned int i = 0; i < NUM_PAGES; i++)
{
if (page_map[i].physaddr == pg_addr)
{
return (uint32_t)virtbase + i * PAGE_SIZE + pg_offset;
}
}
fatal("Failed to reverse map phys addr %08x\n", phys);
return 0;
}
// Map a peripheral's IO memory into our virtual memory, so we can read/write it directly
void * LedDeviceWS2812b::map_peripheral(uint32_t base, uint32_t len)
{
int fd = ::open("/dev/mem", O_RDWR);
void * vaddr;
if (fd < 0)
{
fatal("Failed to open /dev/mem: %m\n");
}
vaddr = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, base);
if (vaddr == MAP_FAILED)
{
fatal("Failed to map peripheral at 0x%08x: %m\n", base);
}
close(fd);
return vaddr;
}
// Zero out the PWM waveform buffer
void LedDeviceWS2812b::clearPWMBuffer()
{
memset(PWMWaveform, 0, NUM_DATA_WORDS * 4); // Times four because memset deals in bytes.
}
// Set an individual bit in the PWM output array, accounting for word boundaries
// The (31 - bitIdx) is so that we write the data backwards, correcting its endianness
// This means getPWMBit will return something other than what was written, so it would be nice
// if the logic that calls this function would figure it out instead. (However, that's trickier)
void LedDeviceWS2812b::setPWMBit(unsigned int bitPos, unsigned char bit)
{
// Fetch word the bit is in
unsigned int wordOffset = (int)(bitPos / 32);
unsigned int bitIdx = bitPos - (wordOffset * 32);
switch(bit)
{
case 1:
PWMWaveform[wordOffset] |= (1 << (31 - bitIdx));
break;
case 0:
PWMWaveform[wordOffset] &= ~(1 << (31 - bitIdx));
break;
}
}
// ==== Init Hardware ====
void LedDeviceWS2812b::initHardware()
{
int pid;
int fd;
char pagemap_fn[64];
// Clear the PWM buffer
// ---------------------------------------------------------------
clearPWMBuffer();
// Set up peripheral access
// ---------------------------------------------------------------
dma_reg = (unsigned int *) map_peripheral(DMA_BASE, DMA_LEN);
dma_reg += 0x000;
pwm_reg = (unsigned int *) map_peripheral(PWM_BASE, PWM_LEN);
clk_reg = (unsigned int *) map_peripheral(CLK_BASE, CLK_LEN);
gpio_reg = (unsigned int *) map_peripheral(GPIO_BASE, GPIO_LEN);
// Set PWM alternate function for GPIO18
// ---------------------------------------------------------------
//gpio_reg[1] &= ~(7 << 24);
//usleep(100);
//gpio_reg[1] |= (2 << 24);
//usleep(100);
SET_GPIO_ALT(18, 5);
// Allocate memory for the DMA control block & data to be sent
// ---------------------------------------------------------------
virtbase = (uint8_t *) mmap(
NULL, // Address
NUM_PAGES * PAGE_SIZE, // Length
PROT_READ | PROT_WRITE, // Protection
MAP_SHARED | // Shared
MAP_ANONYMOUS | // Not file-based, init contents to 0
MAP_NORESERVE | // Don't reserve swap space
MAP_LOCKED, // Lock in RAM (don't swap)
-1, // File descriptor
0); // Offset
if (virtbase == MAP_FAILED)
{
fatal("Failed to mmap physical pages: %m\n");
return;
}
if ((unsigned long)virtbase & (PAGE_SIZE-1))
{
fatal("Virtual address is not page aligned\n");
return;
}
// Allocate page map (pointers to the control block(s) and data for each CB
page_map = (page_map_t *) malloc(NUM_PAGES * sizeof(*page_map));
if (page_map == 0)
{
fatal("Failed to malloc page_map: %m\n");
return;
}
// Use /proc/self/pagemap to figure out the mapping between virtual and physical addresses
pid = getpid();
sprintf(pagemap_fn, "/proc/%d/pagemap", pid);
fd = ::open(pagemap_fn, O_RDONLY);
if (fd < 0)
{
fatal("Failed to open %s: %m\n", pagemap_fn);
}
off_t newOffset = (unsigned long)virtbase >> 9;
if (lseek(fd, newOffset, SEEK_SET) != newOffset)
{
fatal("Failed to seek on %s: %m\n", pagemap_fn);
}
printf("Page map: %i pages\n", (int)NUM_PAGES);
for (unsigned int i = 0; i < NUM_PAGES; i++)
{
uint64_t pfn;
page_map[i].virtaddr = virtbase + i * PAGE_SIZE;
// Following line forces page to be allocated
// (Note: Copied directly from Hirst's code... page_map[i].virtaddr[0] was just set...?)
page_map[i].virtaddr[0] = 0;
if (read(fd, &pfn, sizeof(pfn)) != sizeof(pfn)) {
fatal("Failed to read %s: %m\n", pagemap_fn);
}
if (((pfn >> 55) & 0xfbf) != 0x10c) { // pagemap bits: https://www.kernel.org/doc/Documentation/vm/pagemap.txt
fatal("Page %d not present (pfn 0x%016llx)\n", i, pfn);
}
page_map[i].physaddr = (unsigned int)pfn << PAGE_SHIFT | 0x40000000;
//printf("Page map #%2d: virtual %8p ==> physical 0x%08x [0x%016llx]\n", i, page_map[i].virtaddr, page_map[i].physaddr, pfn);
}
// Set up control block
// ---------------------------------------------------------------
struct control_data_s *ctl = (struct control_data_s *)virtbase;
dma_cb_t *cbp = ctl->cb;
// FIXME: Change this to use DEFINEs
unsigned int phys_pwm_fifo_addr = 0x7e20c000 + 0x18;
// No wide bursts, source increment, dest DREQ on line 5, wait for response, enable interrupt
cbp->info = DMA_TI_CONFIGWORD;
// Source is our allocated memory
cbp->src = mem_virt_to_phys(ctl->sample);
// Destination is the PWM controller
cbp->dst = phys_pwm_fifo_addr;
// 72 bits per pixel / 32 bits per word = 2.25 words per pixel
// Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes"
// Times 4 because DMA works in bytes, not words
cbp->length = ((_ledCount * 2.25) + 1) * 4;
if(cbp->length > NUM_DATA_WORDS * 4)
{
cbp->length = NUM_DATA_WORDS * 4;
}
// We don't use striding
cbp->stride = 0;
// These are reserved
cbp->pad[0] = 0;
cbp->pad[1] = 0;
// Pointer to next block - 0 shuts down the DMA channel when transfer is complete
cbp->next = 0;
// Stop any existing DMA transfers
// ---------------------------------------------------------------
dma_reg[DMA_CS] |= (1 << DMA_CS_ABORT);
usleep(100);
dma_reg[DMA_CS] = (1 << DMA_CS_RESET);
usleep(100);
// PWM Clock
// ---------------------------------------------------------------
// Kill the clock
// FIXME: Change this to use a DEFINE
clk_reg[PWM_CLK_CNTL] = 0x5A000000 | (1 << 5);
usleep(100);
// Disable DMA requests
CLRBIT(pwm_reg[PWM_DMAC], PWM_DMAC_ENAB);
usleep(100);
// The fractional part is quantized to a range of 0-1024, so multiply the decimal part by 1024.
// E.g., 0.25 * 1024 = 256.
// So, if you want a divisor of 400.5, set idiv to 400 and fdiv to 512.
unsigned int idiv = 400;
unsigned short fdiv = 0; // Should be 16 bits, but the value must be <= 1024
clk_reg[PWM_CLK_DIV] = 0x5A000000 | (idiv << 12) | fdiv; // Set clock multiplier
usleep(100);
// Enable the clock. Next-to-last digit means "enable clock". Last digit is 1 (oscillator),
// 4 (PLLA), 5 (PLLC), or 6 (PLLD) (according to the docs) although PLLA doesn't seem to work.
// FIXME: Change this to use a DEFINE
clk_reg[PWM_CLK_CNTL] = 0x5A000015;
usleep(100);
// PWM
// ---------------------------------------------------------------
// Clear any preexisting crap from the control & status register
pwm_reg[PWM_CTL] = 0;
// Set transmission range (32 bytes, or 1 word)
// <32: Truncate. >32: Pad with SBIT1. As it happens, 32 is perfect.
pwm_reg[PWM_RNG1] = 32;
usleep(100);
// Send DMA requests to fill the FIFO
pwm_reg[PWM_DMAC] =
(1 << PWM_DMAC_ENAB) |
(8 << PWM_DMAC_PANIC) |
(8 << PWM_DMAC_DREQ);
usleep(1000);
// Clear the FIFO
SETBIT(pwm_reg[PWM_CTL], PWM_CTL_CLRF1);
usleep(100);
// Don't repeat last FIFO contents if it runs dry
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_RPTL1);
usleep(100);
// Silence (default) bit is 0
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_SBIT1);
usleep(100);
// Polarity = default (low = 0, high = 1)
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_POLA1);
usleep(100);
// Enable serializer mode
SETBIT(pwm_reg[PWM_CTL], PWM_CTL_MODE1);
usleep(100);
// Use FIFO rather than DAT1
SETBIT(pwm_reg[PWM_CTL], PWM_CTL_USEF1);
usleep(100);
// Disable MSEN1
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_MSEN1);
usleep(100);
// DMA
// ---------------------------------------------------------------
// Raise an interrupt when transfer is complete, which will set the INT flag in the CS register
SETBIT(dma_reg[DMA_CS], DMA_CS_INT);
usleep(100);
// Clear the END flag (by setting it - this is a "write 1 to clear", or W1C, bit)
SETBIT(dma_reg[DMA_CS], DMA_CS_END);
usleep(100);
// Send the physical address of the control block into the DMA controller
dma_reg[DMA_CONBLK_AD] = mem_virt_to_phys(ctl->cb);
usleep(100);
// Clear error flags, if any (these are also W1C bits)
// FIXME: Use a define instead of this
dma_reg[DMA_DEBUG] = 7;
usleep(100);
}
// Begin the transfer
void LedDeviceWS2812b::startTransfer()
{
// Enable DMA
dma_reg[DMA_CONBLK_AD] = mem_virt_to_phys(((struct control_data_s *) virtbase)->cb);
dma_reg[DMA_CS] = DMA_CS_CONFIGWORD | (1 << DMA_CS_ACTIVE);
usleep(100);
// Enable PWM
SETBIT(pwm_reg[PWM_CTL], PWM_CTL_PWEN1);
}