mirror of
https://github.com/hyperion-project/hyperion.ng.git
synced 2023-10-10 13:36:59 +02:00
Added LedDevice for "ws2812s" leds
To activate: use led device "ws2812s" in the hyperion configuration Former-commit-id: 0b5ee38679fe353f43bb4a347882d056ca237128
This commit is contained in:
parent
f12bffb44f
commit
042d4b6e91
@ -68,6 +68,15 @@ if(ENABLE_SPIDEV)
|
||||
)
|
||||
endif(ENABLE_SPIDEV)
|
||||
|
||||
SET(Leddevice_HEADERS
|
||||
${Leddevice_HEADERS}
|
||||
${CURRENT_SOURCE_DIR}/LedDeviceWS2812s.h
|
||||
)
|
||||
SET(Leddevice_SOURCES
|
||||
${Leddevice_SOURCES}
|
||||
${CURRENT_SOURCE_DIR}/LedDeviceWS2812s.cpp
|
||||
)
|
||||
|
||||
if(ENABLE_TINKERFORGE)
|
||||
SET(Leddevice_HEADERS
|
||||
${Leddevice_HEADERS}
|
||||
|
@ -31,6 +31,8 @@
|
||||
#include "LedDevicePhilipsHue.h"
|
||||
#include "LedDeviceTpm2.h"
|
||||
|
||||
#include "LedDeviceWS2812s.h"
|
||||
|
||||
LedDevice * LedDeviceFactory::construct(const Json::Value & deviceConfig)
|
||||
{
|
||||
std::cout << "Device configuration: " << deviceConfig << std::endl;
|
||||
@ -181,6 +183,10 @@ LedDevice * LedDeviceFactory::construct(const Json::Value & deviceConfig)
|
||||
LedDeviceTpm2* deviceTpm2 = new LedDeviceTpm2(output, rate);
|
||||
deviceTpm2->open();
|
||||
device = deviceTpm2;
|
||||
}else if (type == "ws2812s")
|
||||
{
|
||||
LedDeviceWS2812s * ledDeviceWS2812s = new LedDeviceWS2812s();
|
||||
device = ledDeviceWS2812s;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
529
libsrc/leddevice/LedDeviceWS2812s.cpp
Normal file
529
libsrc/leddevice/LedDeviceWS2812s.cpp
Normal file
@ -0,0 +1,529 @@
|
||||
// For license and other informations see LedDeviceWS2812s.h
|
||||
// To activate: use led device "ws2812s" in the hyperion configuration
|
||||
|
||||
// STL includes
|
||||
#include <cstring>
|
||||
#include <cstdio>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
// Linux includes
|
||||
#include <fcntl.h>
|
||||
//#include <sys/ioctl.h>
|
||||
|
||||
// hyperion local includes
|
||||
#include "LedDeviceWS2812s.h"
|
||||
|
||||
LedDeviceWS2812s::LedDeviceWS2812s() :
|
||||
LedDevice(),
|
||||
mLedCount(0)
|
||||
{
|
||||
// Init PWM generator and clear LED buffer
|
||||
initHardware();
|
||||
//clearLEDBuffer();
|
||||
}
|
||||
|
||||
|
||||
int LedDeviceWS2812s::write(const std::vector<ColorRgb> &ledValues)
|
||||
{
|
||||
mLedCount = ledValues.size();
|
||||
//printf("Set leds, number: %d\n", mLedCount);
|
||||
|
||||
// const unsigned dataLen = ledValues.size() * sizeof(ColorRgb);
|
||||
// const uint8_t * dataPtr = reinterpret_cast<const uint8_t *>(ledValues.data());
|
||||
|
||||
// Clear out the PWM buffer
|
||||
// Disabled, because we will overwrite the buffer anyway.
|
||||
|
||||
// Read data from LEDBuffer[], translate it into wire format, and write to PWMWaveform
|
||||
// unsigned int LEDBuffeWordPos = 0;
|
||||
// unsigned int PWMWaveformBitPos = 0;
|
||||
unsigned int colorBits = 0; // Holds the GRB color before conversion to wire bit pattern
|
||||
unsigned char colorBit = 0; // Holds current bit out of colorBits to be processed
|
||||
unsigned int wireBit = 0; // Holds the current bit we will set in PWMWaveform
|
||||
// Color_t color;
|
||||
|
||||
for(size_t i=0; i<mLedCount; i++) {
|
||||
// Create bits necessary to represent one color triplet (in GRB, not RGB, order)
|
||||
//printf("RGB: %d, %d, %d\n", ledValues[i].red, ledValues[i].green, ledValues[i].blue);
|
||||
colorBits = ((unsigned int)ledValues[i].red << 8) | ((unsigned int)ledValues[i].green << 16) | ledValues[i].blue;
|
||||
//printBinary(colorBits, 24);
|
||||
//printf(" (binary, GRB order)\n");
|
||||
|
||||
// Iterate through color bits to get wire bits
|
||||
for(int j=23; j>=0; j--) {
|
||||
colorBit = (colorBits & (1 << j)) ? 1 : 0;
|
||||
switch(colorBit) {
|
||||
case 1:
|
||||
//wireBits = 0b110; // High, High, Low
|
||||
setPWMBit(wireBit++, 1);
|
||||
setPWMBit(wireBit++, 1);
|
||||
setPWMBit(wireBit++, 0);
|
||||
break;
|
||||
case 0:
|
||||
//wireBits = 0b100; // High, Low, Low
|
||||
setPWMBit(wireBit++, 1);
|
||||
setPWMBit(wireBit++, 0);
|
||||
setPWMBit(wireBit++, 0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy PWM waveform to DMA's data buffer
|
||||
//printf("Copying %d words to DMA data buffer\n", NUM_DATA_WORDS);
|
||||
ctl = (struct control_data_s *)virtbase;
|
||||
dma_cb_t *cbp = ctl->cb;
|
||||
|
||||
// 72 bits per pixel / 32 bits per word = 2.25 words per pixel
|
||||
// Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes"
|
||||
// Times 4 because DMA works in bytes, not words
|
||||
cbp->length = ((mLedCount * 2.25) + 1) * 4;
|
||||
if(cbp->length > NUM_DATA_WORDS * 4) {
|
||||
cbp->length = NUM_DATA_WORDS * 4;
|
||||
}
|
||||
|
||||
// This block is a major CPU hog when there are lots of pixels to be transmitted.
|
||||
// It would go quicker with DMA.
|
||||
for(unsigned int i = 0; i < (cbp->length / 4); i++) {
|
||||
ctl->sample[i] = PWMWaveform[i];
|
||||
}
|
||||
|
||||
|
||||
// Enable DMA and PWM engines, which should now send the data
|
||||
startTransfer();
|
||||
|
||||
// Wait long enough for the DMA transfer to finish
|
||||
// 3 RAM bits per wire bit, so 72 bits to send one color command.
|
||||
//float bitTimeUSec = (float)(NUM_DATA_WORDS * 32) * 0.4; // Bits sent * time to transmit one bit, which is 0.4μSec
|
||||
//printf("Delay for %d μSec\n", (int)bitTimeUSec);
|
||||
//usleep((int)bitTimeUSec);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int LedDeviceWS2812s::switchOff()
|
||||
{
|
||||
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0}));
|
||||
}
|
||||
|
||||
LedDeviceWS2812s::~LedDeviceWS2812s()
|
||||
{
|
||||
// Exit cleanly, freeing memory and stopping the DMA & PWM engines
|
||||
// We trap all signals (including Ctrl+C), so even if you don't get here, it terminates correctly
|
||||
terminate(0);
|
||||
}
|
||||
|
||||
|
||||
// =================================================================================================
|
||||
// ________ .__
|
||||
// / _____/ ____ ____ ________________ | |
|
||||
// / \ ____/ __ \ / \_/ __ \_ __ \__ \ | |
|
||||
// \ \_\ \ ___/| | \ ___/| | \// __ \| |__
|
||||
// \______ /\___ >___| /\___ >__| (____ /____/
|
||||
// \/ \/ \/ \/ \/
|
||||
// =================================================================================================
|
||||
|
||||
// Convenience functions
|
||||
// --------------------------------------------------------------------------------------------------
|
||||
// Print some bits of a binary number (2nd arg is how many bits)
|
||||
void LedDeviceWS2812s::printBinary(unsigned int i, unsigned int bits) {
|
||||
int x;
|
||||
for(x=bits-1; x>=0; x--) {
|
||||
printf("%d", (i & (1 << x)) ? 1 : 0);
|
||||
if(x % 16 == 0 && x > 0) {
|
||||
printf(" ");
|
||||
} else if(x % 4 == 0 && x > 0) {
|
||||
printf(":");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Reverse the bits in a word
|
||||
unsigned int reverseWord(unsigned int word) {
|
||||
unsigned int output = 0;
|
||||
//unsigned char bit;
|
||||
int i;
|
||||
for(i=0; i<32; i++) {
|
||||
//bit = word & (1 << i) ? 1 : 0;
|
||||
output |= word & (1 << i) ? 1 : 0;
|
||||
if(i<31) {
|
||||
output <<= 1;
|
||||
}
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
// Not sure how this is better than usleep...?
|
||||
/*
|
||||
static void udelay(int us) {
|
||||
struct timespec ts = { 0, us * 1000 };
|
||||
nanosleep(&ts, NULL);
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
// Shutdown functions
|
||||
// --------------------------------------------------------------------------------------------------
|
||||
void LedDeviceWS2812s::terminate(int dummy) {
|
||||
// Shut down the DMA controller
|
||||
if(dma_reg) {
|
||||
CLRBIT(dma_reg[DMA_CS], DMA_CS_ACTIVE);
|
||||
usleep(100);
|
||||
SETBIT(dma_reg[DMA_CS], DMA_CS_RESET);
|
||||
usleep(100);
|
||||
}
|
||||
|
||||
// Shut down PWM
|
||||
if(pwm_reg) {
|
||||
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_PWEN1);
|
||||
usleep(100);
|
||||
pwm_reg[PWM_CTL] = (1 << PWM_CTL_CLRF1);
|
||||
}
|
||||
|
||||
// Free the allocated memory
|
||||
if(page_map != 0) {
|
||||
free(page_map);
|
||||
}
|
||||
|
||||
//exit(1);
|
||||
}
|
||||
|
||||
void LedDeviceWS2812s::fatal(char *fmt, ...) {
|
||||
va_list ap;
|
||||
va_start(ap, fmt);
|
||||
vfprintf(stderr, fmt, ap);
|
||||
va_end(ap);
|
||||
terminate(0);
|
||||
}
|
||||
|
||||
|
||||
// Memory management
|
||||
// --------------------------------------------------------------------------------------------------
|
||||
// Translate from virtual address to physical
|
||||
unsigned int LedDeviceWS2812s::mem_virt_to_phys(void *virt) {
|
||||
unsigned int offset = (uint8_t *)virt - virtbase;
|
||||
return page_map[offset >> PAGE_SHIFT].physaddr + (offset % PAGE_SIZE);
|
||||
}
|
||||
|
||||
// Translate from physical address to virtual
|
||||
unsigned int LedDeviceWS2812s::mem_phys_to_virt(uint32_t phys) {
|
||||
unsigned int pg_offset = phys & (PAGE_SIZE - 1);
|
||||
unsigned int pg_addr = phys - pg_offset;
|
||||
|
||||
for (unsigned int i = 0; i < NUM_PAGES; i++) {
|
||||
if (page_map[i].physaddr == pg_addr) {
|
||||
return (uint32_t)virtbase + i * PAGE_SIZE + pg_offset;
|
||||
}
|
||||
}
|
||||
fatal("Failed to reverse map phys addr %08x\n", phys);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Map a peripheral's IO memory into our virtual memory, so we can read/write it directly
|
||||
void * LedDeviceWS2812s::map_peripheral(uint32_t base, uint32_t len) {
|
||||
int fd = open("/dev/mem", O_RDWR);
|
||||
void * vaddr;
|
||||
|
||||
if (fd < 0)
|
||||
fatal("Failed to open /dev/mem: %m\n");
|
||||
vaddr = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, base);
|
||||
if (vaddr == MAP_FAILED)
|
||||
fatal("Failed to map peripheral at 0x%08x: %m\n", base);
|
||||
close(fd);
|
||||
|
||||
return vaddr;
|
||||
}
|
||||
|
||||
// Zero out the PWM waveform buffer
|
||||
void LedDeviceWS2812s::clearPWMBuffer() {
|
||||
memset(PWMWaveform, 0, NUM_DATA_WORDS * 4); // Times four because memset deals in bytes.
|
||||
}
|
||||
|
||||
// Set an individual bit in the PWM output array, accounting for word boundaries
|
||||
// The (31 - bitIdx) is so that we write the data backwards, correcting its endianness
|
||||
// This means getPWMBit will return something other than what was written, so it would be nice
|
||||
// if the logic that calls this function would figure it out instead. (However, that's trickier)
|
||||
void LedDeviceWS2812s::setPWMBit(unsigned int bitPos, unsigned char bit) {
|
||||
|
||||
// Fetch word the bit is in
|
||||
unsigned int wordOffset = (int)(bitPos / 32);
|
||||
unsigned int bitIdx = bitPos - (wordOffset * 32);
|
||||
|
||||
//printf("bitPos=%d wordOffset=%d bitIdx=%d value=%d\n", bitPos, wordOffset, bitIdx, bit);
|
||||
|
||||
switch(bit) {
|
||||
case 1:
|
||||
PWMWaveform[wordOffset] |= (1 << (31 - bitIdx));
|
||||
// PWMWaveform[wordOffset] |= (1 << bitIdx);
|
||||
break;
|
||||
case 0:
|
||||
PWMWaveform[wordOffset] &= ~(1 << (31 - bitIdx));
|
||||
// PWMWaveform[wordOffset] &= ~(1 << bitIdx);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
// .___ .__ __ ___ ___ .___
|
||||
// | | ____ |__|/ |_ / | \_____ _______ __| _/_ _ _______ _______ ____
|
||||
// | |/ \| \ __\ / ~ \__ \\_ __ \/ __ |\ \/ \/ /\__ \\_ __ \_/ __ \
|
||||
// | | | \ || | \ Y // __ \| | \/ /_/ | \ / / __ \| | \/\ ___/
|
||||
// |___|___| /__||__| \___|_ /(____ /__| \____ | \/\_/ (____ /__| \___ >
|
||||
// \/ \/ \/ \/ \/ \/
|
||||
// =================================================================================================
|
||||
|
||||
void LedDeviceWS2812s::initHardware() {
|
||||
int pid;
|
||||
int fd;
|
||||
char pagemap_fn[64];
|
||||
|
||||
// Clear the PWM buffer
|
||||
// ---------------------------------------------------------------
|
||||
clearPWMBuffer();
|
||||
|
||||
// Set up peripheral access
|
||||
// ---------------------------------------------------------------
|
||||
dma_reg = (unsigned int *) map_peripheral(DMA_BASE, DMA_LEN);
|
||||
dma_reg += 0x000;
|
||||
pwm_reg = (unsigned int *) map_peripheral(PWM_BASE, PWM_LEN);
|
||||
clk_reg = (unsigned int *) map_peripheral(CLK_BASE, CLK_LEN);
|
||||
gpio_reg = (unsigned int *) map_peripheral(GPIO_BASE, GPIO_LEN);
|
||||
|
||||
|
||||
// Set PWM alternate function for GPIO18
|
||||
// ---------------------------------------------------------------
|
||||
//gpio_reg[1] &= ~(7 << 24);
|
||||
//usleep(100);
|
||||
//gpio_reg[1] |= (2 << 24);
|
||||
//usleep(100);
|
||||
SET_GPIO_ALT(18, 5);
|
||||
|
||||
|
||||
// Allocate memory for the DMA control block & data to be sent
|
||||
// ---------------------------------------------------------------
|
||||
virtbase = (uint8_t *) mmap(
|
||||
NULL, // Address
|
||||
NUM_PAGES * PAGE_SIZE, // Length
|
||||
PROT_READ | PROT_WRITE, // Protection
|
||||
MAP_SHARED | // Shared
|
||||
MAP_ANONYMOUS | // Not file-based, init contents to 0
|
||||
MAP_NORESERVE | // Don't reserve swap space
|
||||
MAP_LOCKED, // Lock in RAM (don't swap)
|
||||
-1, // File descriptor
|
||||
0); // Offset
|
||||
|
||||
if (virtbase == MAP_FAILED) {
|
||||
fatal("Failed to mmap physical pages: %m\n");
|
||||
}
|
||||
|
||||
if ((unsigned long)virtbase & (PAGE_SIZE-1)) {
|
||||
fatal("Virtual address is not page aligned\n");
|
||||
}
|
||||
|
||||
//printf("virtbase mapped 0x%x bytes at 0x%x\n", NUM_PAGES * PAGE_SIZE, virtbase);
|
||||
|
||||
// Allocate page map (pointers to the control block(s) and data for each CB
|
||||
page_map = (page_map_t *) malloc(NUM_PAGES * sizeof(*page_map));
|
||||
if (page_map == 0) {
|
||||
fatal("Failed to malloc page_map: %m\n");
|
||||
} else {
|
||||
//printf("Allocated 0x%x bytes for page_map at 0x%x\n", NUM_PAGES * sizeof(*page_map), page_map);
|
||||
}
|
||||
|
||||
// Use /proc/self/pagemap to figure out the mapping between virtual and physical addresses
|
||||
pid = getpid();
|
||||
sprintf(pagemap_fn, "/proc/%d/pagemap", pid);
|
||||
fd = open(pagemap_fn, O_RDONLY);
|
||||
|
||||
if (fd < 0) {
|
||||
fatal("Failed to open %s: %m\n", pagemap_fn);
|
||||
}
|
||||
|
||||
if (lseek(fd, (unsigned long)virtbase >> 9, SEEK_SET) != (unsigned long)virtbase >> 9) {
|
||||
fatal("Failed to seek on %s: %m\n", pagemap_fn);
|
||||
}
|
||||
|
||||
printf("Page map: %d pages\n", NUM_PAGES);
|
||||
for (unsigned int i = 0; i < NUM_PAGES; i++) {
|
||||
uint64_t pfn;
|
||||
page_map[i].virtaddr = virtbase + i * PAGE_SIZE;
|
||||
|
||||
// Following line forces page to be allocated
|
||||
// (Note: Copied directly from Hirst's code... page_map[i].virtaddr[0] was just set...?)
|
||||
page_map[i].virtaddr[0] = 0;
|
||||
|
||||
if (read(fd, &pfn, sizeof(pfn)) != sizeof(pfn)) {
|
||||
fatal("Failed to read %s: %m\n", pagemap_fn);
|
||||
}
|
||||
|
||||
if (((pfn >> 55) & 0xfbf) != 0x10c) { // pagemap bits: https://www.kernel.org/doc/Documentation/vm/pagemap.txt
|
||||
fatal("Page %d not present (pfn 0x%016llx)\n", i, pfn);
|
||||
}
|
||||
|
||||
page_map[i].physaddr = (unsigned int)pfn << PAGE_SHIFT | 0x40000000;
|
||||
//printf("Page map #%2d: virtual %8p ==> physical 0x%08x [0x%016llx]\n", i, page_map[i].virtaddr, page_map[i].physaddr, pfn);
|
||||
}
|
||||
|
||||
|
||||
// Set up control block
|
||||
// ---------------------------------------------------------------
|
||||
ctl = (struct control_data_s *)virtbase;
|
||||
dma_cb_t *cbp = ctl->cb;
|
||||
// FIXME: Change this to use DEFINEs
|
||||
unsigned int phys_pwm_fifo_addr = 0x7e20c000 + 0x18;
|
||||
|
||||
// No wide bursts, source increment, dest DREQ on line 5, wait for response, enable interrupt
|
||||
cbp->info = DMA_TI_CONFIGWORD;
|
||||
|
||||
// Source is our allocated memory
|
||||
cbp->src = mem_virt_to_phys(ctl->sample);
|
||||
|
||||
// Destination is the PWM controller
|
||||
cbp->dst = phys_pwm_fifo_addr;
|
||||
|
||||
// 72 bits per pixel / 32 bits per word = 2.25 words per pixel
|
||||
// Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes"
|
||||
// Times 4 because DMA works in bytes, not words
|
||||
cbp->length = ((mLedCount * 2.25) + 1) * 4;
|
||||
if(cbp->length > NUM_DATA_WORDS * 4) {
|
||||
cbp->length = NUM_DATA_WORDS * 4;
|
||||
}
|
||||
|
||||
// We don't use striding
|
||||
cbp->stride = 0;
|
||||
|
||||
// These are reserved
|
||||
cbp->pad[0] = 0;
|
||||
cbp->pad[1] = 0;
|
||||
|
||||
// Pointer to next block - 0 shuts down the DMA channel when transfer is complete
|
||||
cbp->next = 0;
|
||||
|
||||
// Testing
|
||||
/*
|
||||
ctl = (struct control_data_s *)virtbase;
|
||||
ctl->sample[0] = 0x00000000;
|
||||
ctl->sample[1] = 0x000000FA;
|
||||
ctl->sample[2] = 0x0000FFFF;
|
||||
ctl->sample[3] = 0xAAAAAAAA;
|
||||
ctl->sample[4] = 0xF0F0F0F0;
|
||||
ctl->sample[5] = 0x0A0A0A0A;
|
||||
ctl->sample[6] = 0xF00F0000;
|
||||
*/
|
||||
|
||||
|
||||
// Stop any existing DMA transfers
|
||||
// ---------------------------------------------------------------
|
||||
dma_reg[DMA_CS] |= (1 << DMA_CS_ABORT);
|
||||
usleep(100);
|
||||
dma_reg[DMA_CS] = (1 << DMA_CS_RESET);
|
||||
usleep(100);
|
||||
|
||||
|
||||
// PWM Clock
|
||||
// ---------------------------------------------------------------
|
||||
// Kill the clock
|
||||
// FIXME: Change this to use a DEFINE
|
||||
clk_reg[PWM_CLK_CNTL] = 0x5A000000 | (1 << 5);
|
||||
usleep(100);
|
||||
|
||||
// Disable DMA requests
|
||||
CLRBIT(pwm_reg[PWM_DMAC], PWM_DMAC_ENAB);
|
||||
usleep(100);
|
||||
|
||||
// The fractional part is quantized to a range of 0-1024, so multiply the decimal part by 1024.
|
||||
// E.g., 0.25 * 1024 = 256.
|
||||
// So, if you want a divisor of 400.5, set idiv to 400 and fdiv to 512.
|
||||
unsigned int idiv = 400;
|
||||
unsigned short fdiv = 0; // Should be 16 bits, but the value must be <= 1024
|
||||
clk_reg[PWM_CLK_DIV] = 0x5A000000 | (idiv << 12) | fdiv; // Set clock multiplier
|
||||
usleep(100);
|
||||
|
||||
// Enable the clock. Next-to-last digit means "enable clock". Last digit is 1 (oscillator),
|
||||
// 4 (PLLA), 5 (PLLC), or 6 (PLLD) (according to the docs) although PLLA doesn't seem to work.
|
||||
// FIXME: Change this to use a DEFINE
|
||||
clk_reg[PWM_CLK_CNTL] = 0x5A000015;
|
||||
usleep(100);
|
||||
|
||||
|
||||
// PWM
|
||||
// ---------------------------------------------------------------
|
||||
// Clear any preexisting crap from the control & status register
|
||||
pwm_reg[PWM_CTL] = 0;
|
||||
|
||||
// Set transmission range (32 bytes, or 1 word)
|
||||
// <32: Truncate. >32: Pad with SBIT1. As it happens, 32 is perfect.
|
||||
pwm_reg[PWM_RNG1] = 32;
|
||||
usleep(100);
|
||||
|
||||
// Send DMA requests to fill the FIFO
|
||||
pwm_reg[PWM_DMAC] =
|
||||
(1 << PWM_DMAC_ENAB) |
|
||||
(8 << PWM_DMAC_PANIC) |
|
||||
(8 << PWM_DMAC_DREQ);
|
||||
usleep(1000);
|
||||
|
||||
// Clear the FIFO
|
||||
SETBIT(pwm_reg[PWM_CTL], PWM_CTL_CLRF1);
|
||||
usleep(100);
|
||||
|
||||
// Don't repeat last FIFO contents if it runs dry
|
||||
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_RPTL1);
|
||||
usleep(100);
|
||||
|
||||
// Silence (default) bit is 0
|
||||
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_SBIT1);
|
||||
usleep(100);
|
||||
|
||||
// Polarity = default (low = 0, high = 1)
|
||||
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_POLA1);
|
||||
usleep(100);
|
||||
|
||||
// Enable serializer mode
|
||||
SETBIT(pwm_reg[PWM_CTL], PWM_CTL_MODE1);
|
||||
usleep(100);
|
||||
|
||||
// Use FIFO rather than DAT1
|
||||
SETBIT(pwm_reg[PWM_CTL], PWM_CTL_USEF1);
|
||||
usleep(100);
|
||||
|
||||
// Disable MSEN1
|
||||
CLRBIT(pwm_reg[PWM_CTL], PWM_CTL_MSEN1);
|
||||
usleep(100);
|
||||
|
||||
|
||||
// DMA
|
||||
// ---------------------------------------------------------------
|
||||
// Raise an interrupt when transfer is complete, which will set the INT flag in the CS register
|
||||
SETBIT(dma_reg[DMA_CS], DMA_CS_INT);
|
||||
usleep(100);
|
||||
|
||||
// Clear the END flag (by setting it - this is a "write 1 to clear", or W1C, bit)
|
||||
SETBIT(dma_reg[DMA_CS], DMA_CS_END);
|
||||
usleep(100);
|
||||
|
||||
// Send the physical address of the control block into the DMA controller
|
||||
dma_reg[DMA_CONBLK_AD] = mem_virt_to_phys(ctl->cb);
|
||||
usleep(100);
|
||||
|
||||
// Clear error flags, if any (these are also W1C bits)
|
||||
// FIXME: Use a define instead of this
|
||||
dma_reg[DMA_DEBUG] = 7;
|
||||
usleep(100);
|
||||
}
|
||||
|
||||
// Begin the transfer
|
||||
void LedDeviceWS2812s::startTransfer() {
|
||||
// Enable DMA
|
||||
dma_reg[DMA_CONBLK_AD] = mem_virt_to_phys(ctl->cb);
|
||||
dma_reg[DMA_CS] = DMA_CS_CONFIGWORD | (1 << DMA_CS_ACTIVE);
|
||||
usleep(100);
|
||||
|
||||
// Enable PWM
|
||||
SETBIT(pwm_reg[PWM_CTL], PWM_CTL_PWEN1);
|
||||
|
||||
// dumpPWM();
|
||||
// dumpDMA();
|
||||
}
|
451
libsrc/leddevice/LedDeviceWS2812s.h
Normal file
451
libsrc/leddevice/LedDeviceWS2812s.h
Normal file
@ -0,0 +1,451 @@
|
||||
#ifndef LEDDEVICEWS2812S_H_
|
||||
#define LEDDEVICEWS2812S_H_
|
||||
|
||||
#pragma once
|
||||
|
||||
|
||||
// Set tabs to 4 spaces.
|
||||
|
||||
// =================================================================================================
|
||||
//
|
||||
// __ __ _________________ ______ ____________ ____________________.__
|
||||
// / \ / \/ _____/\_____ \ / __ \/_ \_____ \ \______ \______ \__|
|
||||
// \ \/\/ /\_____ \ / ____/ > < | |/ ____/ | _/| ___/ |
|
||||
// \ / / \/ \/ -- \| / \ | | \| | | |
|
||||
// \__/\ / /_______ /\_______ \______ /|___\_______ \ |____|_ /|____| |__|
|
||||
// \/ \/ \/ \/ \/ \/
|
||||
//
|
||||
// WS2812 NeoPixel driver
|
||||
// Based on code by Richard G. Hirst and others
|
||||
// Adapted for the WS2812 by 626Pilot, April/May 2014
|
||||
// See: https://github.com/626Pilot/RaspberryPi-NeoPixel-WS2812
|
||||
// Version: https://github.com/626Pilot/RaspberryPi-NeoPixel-WS2812/blob/1d43407d9e6eba19bff24330bc09a27963b55751/ws2812-RPi.c
|
||||
// Huge ASCII art section labels are from http://patorjk.com/software/taag/
|
||||
//
|
||||
// LED driver adaptation by Kammerjaeger ()
|
||||
// mostly code removed that was not needed
|
||||
//
|
||||
// License: GPL
|
||||
//
|
||||
// You are using this at your OWN RISK. I believe this software is reasonably safe to use (aside
|
||||
// from the intrinsic risk to those who are photosensitive - see below), although I can't be certain
|
||||
// that it won't trash your hardware or cause property damage.
|
||||
//
|
||||
// Speaking of risk, WS2812 pixels are bright enough to cause eye pain and (for all I know) possibly
|
||||
// retina damage when run at full strength. It's a good idea to set the brightness at 0.2 or so for
|
||||
// direct viewing (whether you're looking directly at the pixels or not), or to put some diffuse
|
||||
// material between you and the LEDs.
|
||||
//
|
||||
// PHOTOSENSITIVITY WARNING:
|
||||
// Patterns of light and darkness (stationary or moving), flashing lights, patterns and backgrounds
|
||||
// on screens, and the like, may cause epilleptic seizures in some people. This is a danger EVEN IF
|
||||
// THE PERSON (WHICH MAY BE *YOU*) HAS NEVER KNOWINGLY HAD A PHOTOSENSITIVE EPISODE BEFORE. It's up
|
||||
// to you to learn the warning signs, but symptoms may include dizziness, nausea, vision changes,
|
||||
// convlusions, disorientation, involuntary movements, and eye twitching. (This list is not
|
||||
// necessarily exhaustive.)
|
||||
//
|
||||
// NEOPIXEL BEST PRACTICES: https://learn.adafruit.com/adafruit-neopixel-uberguide/best-practices
|
||||
//
|
||||
// Connections:
|
||||
// Positive to Raspberry Pi's 3.3v, for better separation connect only ground and data directly
|
||||
// (5v can be used then without a problem, at least it worked for me, Kammerjaeger)
|
||||
// Negative to Raspberry Pi's ground
|
||||
// Data to GPIO18 (Pin 12) (through a resistor, which you should know from the Best
|
||||
// Practices guide!)
|
||||
//
|
||||
// Buy WS2812-based stuff from: http://adafruit.com
|
||||
//
|
||||
// To activate: use led device "ws2812s" in the hyperion configuration
|
||||
// (it needs to be root so it can map the peripherals' registers)
|
||||
//
|
||||
// =================================================================================================
|
||||
|
||||
// This is for the WS2812 LEDs. It won't work with the older WS2811s, although it could be modified
|
||||
// for that without too much trouble. Preliminary driver used Frank Buss' servo driver, but I moved
|
||||
// to Richard Hirst's memory mapping/access model because his code already works with DMA, and has
|
||||
// what I think is a slightly cleaner way of accessing the registers: register[name] rather than
|
||||
// *(register + name).
|
||||
|
||||
// At the time of writing, there's a lot of confusing "PWM DMA" code revolving around simulating
|
||||
// an FM signal. Usually this is done without properly initializing certain registers, which is
|
||||
// OK for their purpose, but I needed to be able to transfer actual coherent data and have it wind
|
||||
// up in a proper state once it was transferred. This has proven to be a somewhat painful task.
|
||||
// The PWM controller likes to ignore the RPTL1 bit when the data is in a regular, repeating
|
||||
// pattern. I'M NOT MAKING IT UP! It really does that. It's bizarre. There are lots of other
|
||||
// strange irregularities as well, which had to be figured out through trial and error. It doesn't
|
||||
// help that the BCM2835 ARM Peripherals manual contains outright errors and omissions!
|
||||
|
||||
// Many examples of this kind of code have magic numbers in them. If you don't know, a magic number
|
||||
// is one that either lacks an obvious structure (e.g. 0x2020C000) or purpose. Please don't use
|
||||
// that stuff in any code you release! All magic numbers found in reference code have been changed
|
||||
// to DEFINEs. That way, instead of seeing some inscrutable number, you see (e.g.) PWM_CTL.
|
||||
|
||||
// References - BCM2835 ARM Peripherals:
|
||||
// http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
|
||||
//
|
||||
// Raspberry Pi low-level peripherals:
|
||||
// http://elinux.org/RPi_Low-level_peripherals
|
||||
//
|
||||
// Richard Hirst's nice, clean code:
|
||||
// https://github.com/richardghirst/PiBits/blob/master/PiFmDma/PiFmDma.c
|
||||
//
|
||||
// PWM clock register:
|
||||
// http://www.raspberrypi.org/forums/viewtopic.php?t=8467&p=124620
|
||||
//
|
||||
// Simple (because it's in assembly) PWM+DMA setup:
|
||||
// https://github.com/mikedurso/rpi-projects/blob/master/asm-nyancat/rpi-nyancat.s
|
||||
//
|
||||
// Adafruit's NeoPixel driver:
|
||||
// https://github.com/adafruit/Adafruit_NeoPixel/blob/master/Adafruit_NeoPixel.cpp
|
||||
|
||||
|
||||
// =================================================================================================
|
||||
// .___ .__ .___
|
||||
// | | ____ ____ | | __ __ __| _/____ ______
|
||||
// | |/ \_/ ___\| | | | \/ __ |/ __ \ / ___/
|
||||
// | | | \ \___| |_| | / /_/ \ ___/ \___ \
|
||||
// |___|___| /\___ >____/____/\____ |\___ >____ >
|
||||
// \/ \/ \/ \/ \/
|
||||
// =================================================================================================
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdint.h>
|
||||
#include <dirent.h>
|
||||
#include <fcntl.h>
|
||||
#include <assert.h>
|
||||
#include <sys/mman.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
#include <string.h>
|
||||
#include <errno.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
#include <signal.h>
|
||||
|
||||
// Hyperion includes
|
||||
#include <leddevice/LedDevice.h>
|
||||
|
||||
|
||||
// =================================================================================================
|
||||
// ________ _____.__ ____ ____ ____
|
||||
// \______ \ _____/ ____\__| ____ ____ ______ / _ \ \ \ / /____ _______ ______
|
||||
// | | \_/ __ \ __\| |/ \_/ __ \ / ___/ > _ </\ \ Y /\__ \\_ __ \/ ___/
|
||||
// | ` \ ___/| | | | | \ ___/ \___ \ / <_\ \/ \ / / __ \| | \/\___ \
|
||||
// /_______ /\___ >__| |__|___| /\___ >____ > \_____\ \ \___/ (____ /__| /____ >
|
||||
// \/ \/ \/ \/ \/ \/ \/ \/
|
||||
// =================================================================================================
|
||||
|
||||
// Base addresses for GPIO, PWM, PWM clock, and DMA controllers (physical, not bus!)
|
||||
// These will be "memory mapped" into virtual RAM so that they can be written and read directly.
|
||||
// -------------------------------------------------------------------------------------------------
|
||||
#define DMA_BASE 0x20007000
|
||||
#define DMA_LEN 0x24
|
||||
#define PWM_BASE 0x2020C000
|
||||
#define PWM_LEN 0x28
|
||||
#define CLK_BASE 0x20101000
|
||||
#define CLK_LEN 0xA8
|
||||
#define GPIO_BASE 0x20200000
|
||||
#define GPIO_LEN 0xB4
|
||||
|
||||
// GPIO
|
||||
// -------------------------------------------------------------------------------------------------
|
||||
#define GPFSEL0 0x20200000 // GPIO function select, pins 0-9 (bits 30-31 reserved)
|
||||
#define GPFSEL1 0x20200004 // Pins 10-19
|
||||
#define GPFSEL2 0x20200008 // Pins 20-29
|
||||
#define GPFSEL3 0x2020000C // Pins 30-39
|
||||
#define GPFSEL4 0x20200010 // Pins 40-49
|
||||
#define GPFSEL5 0x20200014 // Pins 50-53
|
||||
#define GPSET0 0x2020001C // Set (turn on) pin
|
||||
#define GPCLR0 0x20200028 // Clear (turn off) pin
|
||||
#define GPPUD 0x20200094 // Internal pullup/pulldown resistor control
|
||||
#define GPPUDCLK0 0x20200098 // PUD clock for pins 0-31
|
||||
#define GPPUDCLK1 0x2020009C // PUD clock for pins 32-53
|
||||
|
||||
// Memory offsets for the PWM clock register, which is undocumented! Please fix that, Broadcom!
|
||||
// -------------------------------------------------------------------------------------------------
|
||||
#define PWM_CLK_CNTL 40 // Control (on/off)
|
||||
#define PWM_CLK_DIV 41 // Divisor (bits 11:0 are *quantized* floating part, 31:12 integer part)
|
||||
|
||||
// PWM Register Addresses (page 141)
|
||||
// These are divided by 4 because the register offsets in the guide are in bytes (8 bits) but
|
||||
// the pointers we use in this program are in words (32 bits). Buss' original defines are in
|
||||
// word offsets, e.g. PWM_RNG1 was 4 and PWM_DAT1 was 5. This is functionally the same, but it
|
||||
// matches the numbers supplied in the guide.
|
||||
// -------------------------------------------------------------------------------------------------
|
||||
#define PWM_CTL 0x00 // Control Register
|
||||
#define PWM_STA (0x04 / 4) // Status Register
|
||||
#define PWM_DMAC (0x08 / 4) // DMA Control Register
|
||||
#define PWM_RNG1 (0x10 / 4) // Channel 1 Range
|
||||
#define PWM_DAT1 (0x14 / 4) // Channel 1 Data
|
||||
#define PWM_FIF1 (0x18 / 4) // FIFO (for both channels - bytes are interleaved if both active)
|
||||
#define PWM_RNG2 (0x20 / 4) // Channel 2 Range
|
||||
#define PWM_DAT2 (0x24 / 4) // Channel 2 Data
|
||||
|
||||
// PWM_CTL register bit offsets
|
||||
// Note: Don't use MSEN1/2 for this purpose. It will screw things up.
|
||||
// -------------------------------------------------------------------------------------------------
|
||||
#define PWM_CTL_MSEN2 15 // Channel 2 - 0: Use PWM algorithm. 1: Use M/S (serial) algorithm.
|
||||
#define PWM_CTL_USEF2 13 // Channel 2 - 0: Use PWM_DAT2. 1: Use FIFO.
|
||||
#define PWM_CTL_POLA2 12 // Channel 2 - Invert output polarity (if set, 0=high and 1=low)
|
||||
#define PWM_CTL_SBIT2 11 // Channel 2 - Silence bit (default line state when not transmitting)
|
||||
#define PWM_CTL_RPTL2 10 // Channel 2 - Repeat last data in FIFO
|
||||
#define PWM_CTL_MODE2 9 // Channel 2 - Mode. 0=PWM, 1=Serializer
|
||||
#define PWM_CTL_PWEN2 8 // Channel 2 - Enable PWM
|
||||
#define PWM_CTL_CLRF1 6 // Clear FIFO
|
||||
#define PWM_CTL_MSEN1 7 // Channel 1 - 0: Use PWM algorithm. 1: Use M/S (serial) algorithm.
|
||||
#define PWM_CTL_USEF1 5 // Channel 1 - 0: Use PWM_DAT1. 1: Use FIFO.
|
||||
#define PWM_CTL_POLA1 4 // Channel 1 - Invert output polarity (if set, 0=high and 1=low)
|
||||
#define PWM_CTL_SBIT1 3 // Channel 1 - Silence bit (default line state when not transmitting)
|
||||
#define PWM_CTL_RPTL1 2 // Channel 1 - Repeat last data in FIFO
|
||||
#define PWM_CTL_MODE1 1 // Channel 1 - Mode. 0=PWM, 1=Serializer
|
||||
#define PWM_CTL_PWEN1 0 // Channel 1 - Enable PWM
|
||||
|
||||
// PWM_STA register bit offsets
|
||||
// -------------------------------------------------------------------------------------------------
|
||||
#define PWM_STA_STA4 12 // Channel 4 State
|
||||
#define PWM_STA_STA3 11 // Channel 3 State
|
||||
#define PWM_STA_STA2 10 // Channel 2 State
|
||||
#define PWM_STA_STA1 9 // Channel 1 State
|
||||
#define PWM_STA_BERR 8 // Bus Error
|
||||
#define PWM_STA_GAPO4 7 // Gap Occurred on Channel 4
|
||||
#define PWM_STA_GAPO3 6 // Gap Occurred on Channel 3
|
||||
#define PWM_STA_GAPO2 5 // Gap Occurred on Channel 2
|
||||
#define PWM_STA_GAPO1 4 // Gap Occurred on Channel 1
|
||||
#define PWM_STA_RERR1 3 // FIFO Read Error
|
||||
#define PWM_STA_WERR1 2 // FIFO Write Error
|
||||
#define PWM_STA_EMPT1 1 // FIFO Empty
|
||||
#define PWM_STA_FULL1 0 // FIFO Full
|
||||
|
||||
// PWM_DMAC bit offsets
|
||||
// -------------------------------------------------------------------------------------------------
|
||||
#define PWM_DMAC_ENAB 31 // 0: DMA Disabled. 1: DMA Enabled.
|
||||
#define PWM_DMAC_PANIC 8 // Bits 15:8. Threshold for PANIC signal. Default 7.
|
||||
#define PWM_DMAC_DREQ 0 // Bits 7:0. Threshold for DREQ signal. Default 7.
|
||||
|
||||
// PWM_RNG1, PWM_RNG2
|
||||
// --------------------------------------------------------------------------------------------------
|
||||
// Defines the transmission range. In PWM mode, evenly spaced pulses are sent within a period
|
||||
// of length defined in these registers. In serial mode, serialized data is sent within the
|
||||
// same period. The value is normally 32. If less, data will be truncated. If more, data will
|
||||
// be padded with zeros.
|
||||
|
||||
// DAT1, DAT2
|
||||
// --------------------------------------------------------------------------------------------------
|
||||
// NOTE: These registers are not useful for our purposes - we will use the FIFO instead!
|
||||
// Stores 32 bits of data to be sent when USEF1/USEF2 is 0. In PWM mode, defines how many
|
||||
// pulses will be sent within the period specified in PWM_RNG1/PWM_RNG2. In serializer mode,
|
||||
// defines a 32-bit word to be transmitted.
|
||||
|
||||
// FIF1
|
||||
// --------------------------------------------------------------------------------------------------
|
||||
// 32-bit-wide register used to "stuff" the FIFO, which has 16 32-bit words. (So, if you write
|
||||
// it 16 times, it will fill the FIFO.)
|
||||
// See also: PWM_STA_EMPT1 (FIFO empty)
|
||||
// PWM_STA_FULL1 (FIFO full)
|
||||
// PWM_CTL_CLRF1 (Clear FIFO)
|
||||
|
||||
// DMA
|
||||
// --------------------------------------------------------------------------------------------------
|
||||
// DMA registers (divided by four to convert form word to byte offsets, as with the PWM registers)
|
||||
#define DMA_CS (0x00 / 4) // Control & Status register
|
||||
#define DMA_CONBLK_AD (0x04 / 4) // Address of Control Block (must be 256-BYTE ALIGNED!!!)
|
||||
#define DMA_TI (0x08 / 4) // Transfer Information (populated from CB)
|
||||
#define DMA_SOURCE_AD (0x0C / 4) // Source address, populated from CB. Physical address.
|
||||
#define DMA_DEST_AD (0x10 / 4) // Destination address, populated from CB. Bus address.
|
||||
#define DMA_TXFR_LEN (0x14 / 4) // Transfer length, populated from CB
|
||||
#define DMA_STRIDE (0x18 / 4) // Stride, populated from CB
|
||||
#define DMA_NEXTCONBK (0x1C / 4) // Next control block address, populated from CB
|
||||
#define DMA_DEBUG (0x20 / 4) // Debug settings
|
||||
|
||||
// DMA Control & Status register bit offsets
|
||||
#define DMA_CS_RESET 31 // Reset the controller for this channel
|
||||
#define DMA_CS_ABORT 30 // Set to abort transfer
|
||||
#define DMA_CS_DISDEBUG 29 // Disable debug pause signal
|
||||
#define DMA_CS_WAIT_FOR 28 // Wait for outstanding writes
|
||||
#define DMA_CS_PANIC_PRI 20 // Panic priority (bits 23:20), default 7
|
||||
#define DMA_CS_PRIORITY 16 // AXI priority level (bits 19:16), default 7
|
||||
#define DMA_CS_ERROR 8 // Set when there's been an error
|
||||
#define DMA_CS_WAITING_FOR 6 // Set when the channel's waiting for a write to be accepted
|
||||
#define DMA_CS_DREQ_STOPS_DMA 5 // Set when the DMA is paused because DREQ is inactive
|
||||
#define DMA_CS_PAUSED 4 // Set when the DMA is paused (active bit cleared, etc.)
|
||||
#define DMA_CS_DREQ 3 // Set when DREQ line is high
|
||||
#define DMA_CS_INT 2 // If INTEN is set, this will be set on CB transfer end
|
||||
#define DMA_CS_END 1 // Set when the current control block is finished
|
||||
#define DMA_CS_ACTIVE 0 // Enable DMA (CB_ADDR must not be 0)
|
||||
// Default CS word
|
||||
#define DMA_CS_CONFIGWORD (8 << DMA_CS_PANIC_PRI) | \
|
||||
(8 << DMA_CS_PRIORITY) | \
|
||||
(1 << DMA_CS_WAIT_FOR)
|
||||
|
||||
// DREQ lines (page 61, most DREQs omitted)
|
||||
#define DMA_DREQ_ALWAYS 0
|
||||
#define DMA_DREQ_PCM_TX 2
|
||||
#define DMA_DREQ_PCM_RX 3
|
||||
#define DMA_DREQ_PWM 5
|
||||
#define DMA_DREQ_SPI_TX 6
|
||||
#define DMA_DREQ_SPI_RX 7
|
||||
#define DMA_DREQ_BSC_TX 8
|
||||
#define DMA_DREQ_BSC_RX 9
|
||||
|
||||
// DMA Transfer Information register bit offsets
|
||||
// We don't write DMA_TI directly. It's populated from the TI field in a control block.
|
||||
#define DMA_TI_NO_WIDE_BURSTS 26 // Don't do wide writes in 2-beat bursts
|
||||
#define DMA_TI_WAITS 21 // Wait this many cycles after end of each read/write
|
||||
#define DMA_TI_PERMAP 16 // Peripheral # whose ready signal controls xfer rate (pwm=5)
|
||||
#define DMA_TI_BURST_LENGTH 12 // Length of burst in words (bits 15:12)
|
||||
#define DMA_TI_SRC_IGNORE 11 // Don't perform source reads (for fast cache fill)
|
||||
#define DMA_TI_SRC_DREQ 10 // Peripheral in PERMAP gates source reads
|
||||
#define DMA_TI_SRC_WIDTH 9 // Source transfer width - 0=32 bits, 1=128 bits
|
||||
#define DMA_TI_SRC_INC 8 // Source address += SRC_WITH after each read
|
||||
#define DMA_TI_DEST_IGNORE 7 // Don't perform destination writes
|
||||
#define DMA_TI_DEST_DREQ 6 // Peripheral in PERMAP gates destination writes
|
||||
#define DMA_TI_DEST_WIDTH 5 // Destination transfer width - 0=32 bits, 1=128 bits
|
||||
#define DMA_TI_DEST_INC 4 // Dest address += DEST_WIDTH after each read
|
||||
#define DMA_TI_WAIT_RESP 3 // Wait for write response
|
||||
#define DMA_TI_TDMODE 1 // 2D striding mode
|
||||
#define DMA_TI_INTEN 0 // Interrupt enable
|
||||
// Default TI word
|
||||
#define DMA_TI_CONFIGWORD (1 << DMA_TI_NO_WIDE_BURSTS) | \
|
||||
(1 << DMA_TI_SRC_INC) | \
|
||||
(1 << DMA_TI_DEST_DREQ) | \
|
||||
(1 << DMA_TI_WAIT_RESP) | \
|
||||
(1 << DMA_TI_INTEN) | \
|
||||
(DMA_DREQ_PWM << DMA_TI_PERMAP)
|
||||
|
||||
// DMA Debug register bit offsets
|
||||
#define DMA_DEBUG_LITE 28 // Whether the controller is "Lite"
|
||||
#define DMA_DEBUG_VERSION 25 // DMA Version (bits 27:25)
|
||||
#define DMA_DEBUG_DMA_STATE 16 // DMA State (bits 24:16)
|
||||
#define DMA_DEBUG_DMA_ID 8 // DMA controller's AXI bus ID (bits 15:8)
|
||||
#define DMA_DEBUG_OUTSTANDING_WRITES 4 // Outstanding writes (bits 7:4)
|
||||
#define DMA_DEBUG_READ_ERROR 2 // Slave read response error (clear by setting)
|
||||
#define DMA_DEBUG_FIFO_ERROR 1 // Operational read FIFO error (clear by setting)
|
||||
#define DMA_DEBUG_READ_LAST_NOT_SET 0 // AXI bus read last signal not set (clear by setting)
|
||||
|
||||
// Control Block (CB) - this tells the DMA controller what to do.
|
||||
typedef struct {
|
||||
unsigned int
|
||||
info, // Transfer Information (TI)
|
||||
src, // Source address (physical)
|
||||
dst, // Destination address (bus)
|
||||
length, // Length in bytes (not words!)
|
||||
stride, // We don't care about this
|
||||
next, // Pointer to next control block
|
||||
pad[2]; // These are "reserved" (unused)
|
||||
} dma_cb_t;
|
||||
|
||||
// The page map contains pointers to memory that we will allocate below. It uses two pointers
|
||||
// per address. This is because the software (this program) deals only in virtual addresses,
|
||||
// whereas the DMA controller can only access RAM via physical address. (If that's not confusing
|
||||
// enough, it writes to peripherals by their bus addresses.)
|
||||
typedef struct {
|
||||
uint8_t *virtaddr;
|
||||
uint32_t physaddr;
|
||||
} page_map_t;
|
||||
|
||||
|
||||
#define PAGE_SIZE 4096 // Size of a RAM page to be allocated
|
||||
#define PAGE_SHIFT 12 // This is used for address translation
|
||||
#define NUM_PAGES ((sizeof(struct control_data_s) + PAGE_SIZE - 1) >> PAGE_SHIFT)
|
||||
|
||||
#define SETBIT(word, bit) word |= 1<<bit
|
||||
#define CLRBIT(word, bit) word &= ~(1<<bit)
|
||||
#define GETBIT(word, bit) word & (1 << bit) ? 1 : 0
|
||||
#define true 1
|
||||
#define false 0
|
||||
|
||||
// GPIO
|
||||
#define INP_GPIO(g) *(gpio_reg+((g)/10)) &= ~(7<<(((g)%10)*3))
|
||||
#define OUT_GPIO(g) *(gpio_reg+((g)/10)) |= (1<<(((g)%10)*3))
|
||||
#define SET_GPIO_ALT(g,a) *(gpio_reg+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))
|
||||
#define GPIO_SET *(gpio_reg+7) // sets bits which are 1 ignores bits which are 0
|
||||
#define GPIO_CLR *(gpio_reg+10) // clears bits which are 1 ignores bits which are 0
|
||||
|
||||
///
|
||||
/// Implementation of the LedDevice interface for writing to Ws2801 led device.
|
||||
///
|
||||
class LedDeviceWS2812s : public LedDevice
|
||||
{
|
||||
public:
|
||||
///
|
||||
/// Constructs the LedDevice for a string containing leds of the type WS2812
|
||||
LedDeviceWS2812s();
|
||||
|
||||
~LedDeviceWS2812s();
|
||||
///
|
||||
/// Writes the led color values to the led-device
|
||||
///
|
||||
/// @param ledValues The color-value per led
|
||||
/// @return Zero on succes else negative
|
||||
///
|
||||
virtual int write(const std::vector<ColorRgb> &ledValues);
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
|
||||
/// the number of leds (needed when switching off)
|
||||
size_t mLedCount;
|
||||
|
||||
page_map_t *page_map; // This will hold the page map, which we'll allocate below
|
||||
uint8_t *virtbase; // Pointer to some virtual memory that will be allocated
|
||||
|
||||
volatile unsigned int *pwm_reg; // PWM controller register set
|
||||
volatile unsigned int *clk_reg; // PWM clock manager register set
|
||||
volatile unsigned int *dma_reg; // DMA controller register set
|
||||
volatile unsigned int *gpio_reg; // GPIO pin controller register set
|
||||
|
||||
// Contains arrays of control blocks and their related samples.
|
||||
// One pixel needs 72 bits (24 bits for the color * 3 to represent them on the wire).
|
||||
// 768 words = 341.3 pixels
|
||||
// 1024 words = 455.1 pixels
|
||||
// The highest I can make this number is 1016. Any higher, and it will start copying garbage to the
|
||||
// PWM controller. I think it might be because of the virtual->physical memory mapping not being
|
||||
// contiguous, so *pointer+1016 isn't "next door" to *pointer+1017 for some weird reason.
|
||||
// However, that's still enough for 451.5 color instructions! If someone has more pixels than that
|
||||
// to control, they can figure it out. I tried Hirst's message of having one CB per word, which
|
||||
// seems like it might fix that, but I couldn't figure it out.
|
||||
#define NUM_DATA_WORDS 1016
|
||||
struct control_data_s {
|
||||
dma_cb_t cb[1];
|
||||
uint32_t sample[NUM_DATA_WORDS];
|
||||
};
|
||||
|
||||
struct control_data_s *ctl;
|
||||
|
||||
// PWM waveform buffer (in words), 16 32-bit words are enough to hold 170 wire bits.
|
||||
// That's OK if we only transmit from the FIFO, but for DMA, we will use a much larger size.
|
||||
// 1024 (4096 bytes) should be enough for over 400 elements. It can be bumped up if you need more!
|
||||
unsigned int PWMWaveform[NUM_DATA_WORDS];
|
||||
|
||||
void initHardware();
|
||||
void startTransfer();
|
||||
|
||||
void clearPWMBuffer();
|
||||
void setPWMBit(unsigned int bitPos, unsigned char bit);
|
||||
|
||||
unsigned int mem_phys_to_virt(uint32_t phys);
|
||||
unsigned int mem_virt_to_phys(void *virt);
|
||||
void terminate(int dummy);
|
||||
void fatal(char *fmt, ...);
|
||||
void * map_peripheral(uint32_t base, uint32_t len);
|
||||
void printBinary(unsigned int i, unsigned int bits);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif /* LEDDEVICEWS2812S_H_ */
|
Loading…
Reference in New Issue
Block a user