hyperion.ng/libsrc/leddevice/LedDeviceWS2812s.h

452 lines
21 KiB
C++

#ifndef LEDDEVICEWS2812S_H_
#define LEDDEVICEWS2812S_H_
#pragma once
// Set tabs to 4 spaces.
// =================================================================================================
//
// __ __ _________________ ______ ____________ ____________________.__
// / \ / \/ _____/\_____ \ / __ \/_ \_____ \ \______ \______ \__|
// \ \/\/ /\_____ \ / ____/ > < | |/ ____/ | _/| ___/ |
// \ / / \/ \/ -- \| / \ | | \| | | |
// \__/\ / /_______ /\_______ \______ /|___\_______ \ |____|_ /|____| |__|
// \/ \/ \/ \/ \/ \/
//
// WS2812 NeoPixel driver
// Based on code by Richard G. Hirst and others
// Adapted for the WS2812 by 626Pilot, April/May 2014
// See: https://github.com/626Pilot/RaspberryPi-NeoPixel-WS2812
// Version: https://github.com/626Pilot/RaspberryPi-NeoPixel-WS2812/blob/1d43407d9e6eba19bff24330bc09a27963b55751/ws2812-RPi.c
// Huge ASCII art section labels are from http://patorjk.com/software/taag/
//
// LED driver adaptation by Kammerjaeger ()
// mostly code removed that was not needed
//
// License: GPL
//
// You are using this at your OWN RISK. I believe this software is reasonably safe to use (aside
// from the intrinsic risk to those who are photosensitive - see below), although I can't be certain
// that it won't trash your hardware or cause property damage.
//
// Speaking of risk, WS2812 pixels are bright enough to cause eye pain and (for all I know) possibly
// retina damage when run at full strength. It's a good idea to set the brightness at 0.2 or so for
// direct viewing (whether you're looking directly at the pixels or not), or to put some diffuse
// material between you and the LEDs.
//
// PHOTOSENSITIVITY WARNING:
// Patterns of light and darkness (stationary or moving), flashing lights, patterns and backgrounds
// on screens, and the like, may cause epilleptic seizures in some people. This is a danger EVEN IF
// THE PERSON (WHICH MAY BE *YOU*) HAS NEVER KNOWINGLY HAD A PHOTOSENSITIVE EPISODE BEFORE. It's up
// to you to learn the warning signs, but symptoms may include dizziness, nausea, vision changes,
// convlusions, disorientation, involuntary movements, and eye twitching. (This list is not
// necessarily exhaustive.)
//
// NEOPIXEL BEST PRACTICES: https://learn.adafruit.com/adafruit-neopixel-uberguide/best-practices
//
// Connections:
// Positive to Raspberry Pi's 3.3v, for better separation connect only ground and data directly
// (5v can be used then without a problem, at least it worked for me, Kammerjaeger)
// Negative to Raspberry Pi's ground
// Data to GPIO18 (Pin 12) (through a resistor, which you should know from the Best
// Practices guide!)
//
// Buy WS2812-based stuff from: http://adafruit.com
//
// To activate: use led device "ws2812s" in the hyperion configuration
// (it needs to be root so it can map the peripherals' registers)
//
// =================================================================================================
// This is for the WS2812 LEDs. It won't work with the older WS2811s, although it could be modified
// for that without too much trouble. Preliminary driver used Frank Buss' servo driver, but I moved
// to Richard Hirst's memory mapping/access model because his code already works with DMA, and has
// what I think is a slightly cleaner way of accessing the registers: register[name] rather than
// *(register + name).
// At the time of writing, there's a lot of confusing "PWM DMA" code revolving around simulating
// an FM signal. Usually this is done without properly initializing certain registers, which is
// OK for their purpose, but I needed to be able to transfer actual coherent data and have it wind
// up in a proper state once it was transferred. This has proven to be a somewhat painful task.
// The PWM controller likes to ignore the RPTL1 bit when the data is in a regular, repeating
// pattern. I'M NOT MAKING IT UP! It really does that. It's bizarre. There are lots of other
// strange irregularities as well, which had to be figured out through trial and error. It doesn't
// help that the BCM2835 ARM Peripherals manual contains outright errors and omissions!
// Many examples of this kind of code have magic numbers in them. If you don't know, a magic number
// is one that either lacks an obvious structure (e.g. 0x2020C000) or purpose. Please don't use
// that stuff in any code you release! All magic numbers found in reference code have been changed
// to DEFINEs. That way, instead of seeing some inscrutable number, you see (e.g.) PWM_CTL.
// References - BCM2835 ARM Peripherals:
// http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
//
// Raspberry Pi low-level peripherals:
// http://elinux.org/RPi_Low-level_peripherals
//
// Richard Hirst's nice, clean code:
// https://github.com/richardghirst/PiBits/blob/master/PiFmDma/PiFmDma.c
//
// PWM clock register:
// http://www.raspberrypi.org/forums/viewtopic.php?t=8467&p=124620
//
// Simple (because it's in assembly) PWM+DMA setup:
// https://github.com/mikedurso/rpi-projects/blob/master/asm-nyancat/rpi-nyancat.s
//
// Adafruit's NeoPixel driver:
// https://github.com/adafruit/Adafruit_NeoPixel/blob/master/Adafruit_NeoPixel.cpp
// =================================================================================================
// .___ .__ .___
// | | ____ ____ | | __ __ __| _/____ ______
// | |/ \_/ ___\| | | | \/ __ |/ __ \ / ___/
// | | | \ \___| |_| | / /_/ \ ___/ \___ \
// |___|___| /\___ >____/____/\____ |\___ >____ >
// \/ \/ \/ \/ \/
// =================================================================================================
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdint.h>
#include <dirent.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <time.h>
#include <signal.h>
// Hyperion includes
#include <leddevice/LedDevice.h>
// =================================================================================================
// ________ _____.__ ____ ____ ____
// \______ \ _____/ ____\__| ____ ____ ______ / _ \ \ \ / /____ _______ ______
// | | \_/ __ \ __\| |/ \_/ __ \ / ___/ > _ </\ \ Y /\__ \\_ __ \/ ___/
// | ` \ ___/| | | | | \ ___/ \___ \ / <_\ \/ \ / / __ \| | \/\___ \
// /_______ /\___ >__| |__|___| /\___ >____ > \_____\ \ \___/ (____ /__| /____ >
// \/ \/ \/ \/ \/ \/ \/ \/
// =================================================================================================
// Base addresses for GPIO, PWM, PWM clock, and DMA controllers (physical, not bus!)
// These will be "memory mapped" into virtual RAM so that they can be written and read directly.
// -------------------------------------------------------------------------------------------------
#define DMA_BASE 0x20007000
#define DMA_LEN 0x24
#define PWM_BASE 0x2020C000
#define PWM_LEN 0x28
#define CLK_BASE 0x20101000
#define CLK_LEN 0xA8
#define GPIO_BASE 0x20200000
#define GPIO_LEN 0xB4
// GPIO
// -------------------------------------------------------------------------------------------------
#define GPFSEL0 0x20200000 // GPIO function select, pins 0-9 (bits 30-31 reserved)
#define GPFSEL1 0x20200004 // Pins 10-19
#define GPFSEL2 0x20200008 // Pins 20-29
#define GPFSEL3 0x2020000C // Pins 30-39
#define GPFSEL4 0x20200010 // Pins 40-49
#define GPFSEL5 0x20200014 // Pins 50-53
#define GPSET0 0x2020001C // Set (turn on) pin
#define GPCLR0 0x20200028 // Clear (turn off) pin
#define GPPUD 0x20200094 // Internal pullup/pulldown resistor control
#define GPPUDCLK0 0x20200098 // PUD clock for pins 0-31
#define GPPUDCLK1 0x2020009C // PUD clock for pins 32-53
// Memory offsets for the PWM clock register, which is undocumented! Please fix that, Broadcom!
// -------------------------------------------------------------------------------------------------
#define PWM_CLK_CNTL 40 // Control (on/off)
#define PWM_CLK_DIV 41 // Divisor (bits 11:0 are *quantized* floating part, 31:12 integer part)
// PWM Register Addresses (page 141)
// These are divided by 4 because the register offsets in the guide are in bytes (8 bits) but
// the pointers we use in this program are in words (32 bits). Buss' original defines are in
// word offsets, e.g. PWM_RNG1 was 4 and PWM_DAT1 was 5. This is functionally the same, but it
// matches the numbers supplied in the guide.
// -------------------------------------------------------------------------------------------------
#define PWM_CTL 0x00 // Control Register
#define PWM_STA (0x04 / 4) // Status Register
#define PWM_DMAC (0x08 / 4) // DMA Control Register
#define PWM_RNG1 (0x10 / 4) // Channel 1 Range
#define PWM_DAT1 (0x14 / 4) // Channel 1 Data
#define PWM_FIF1 (0x18 / 4) // FIFO (for both channels - bytes are interleaved if both active)
#define PWM_RNG2 (0x20 / 4) // Channel 2 Range
#define PWM_DAT2 (0x24 / 4) // Channel 2 Data
// PWM_CTL register bit offsets
// Note: Don't use MSEN1/2 for this purpose. It will screw things up.
// -------------------------------------------------------------------------------------------------
#define PWM_CTL_MSEN2 15 // Channel 2 - 0: Use PWM algorithm. 1: Use M/S (serial) algorithm.
#define PWM_CTL_USEF2 13 // Channel 2 - 0: Use PWM_DAT2. 1: Use FIFO.
#define PWM_CTL_POLA2 12 // Channel 2 - Invert output polarity (if set, 0=high and 1=low)
#define PWM_CTL_SBIT2 11 // Channel 2 - Silence bit (default line state when not transmitting)
#define PWM_CTL_RPTL2 10 // Channel 2 - Repeat last data in FIFO
#define PWM_CTL_MODE2 9 // Channel 2 - Mode. 0=PWM, 1=Serializer
#define PWM_CTL_PWEN2 8 // Channel 2 - Enable PWM
#define PWM_CTL_CLRF1 6 // Clear FIFO
#define PWM_CTL_MSEN1 7 // Channel 1 - 0: Use PWM algorithm. 1: Use M/S (serial) algorithm.
#define PWM_CTL_USEF1 5 // Channel 1 - 0: Use PWM_DAT1. 1: Use FIFO.
#define PWM_CTL_POLA1 4 // Channel 1 - Invert output polarity (if set, 0=high and 1=low)
#define PWM_CTL_SBIT1 3 // Channel 1 - Silence bit (default line state when not transmitting)
#define PWM_CTL_RPTL1 2 // Channel 1 - Repeat last data in FIFO
#define PWM_CTL_MODE1 1 // Channel 1 - Mode. 0=PWM, 1=Serializer
#define PWM_CTL_PWEN1 0 // Channel 1 - Enable PWM
// PWM_STA register bit offsets
// -------------------------------------------------------------------------------------------------
#define PWM_STA_STA4 12 // Channel 4 State
#define PWM_STA_STA3 11 // Channel 3 State
#define PWM_STA_STA2 10 // Channel 2 State
#define PWM_STA_STA1 9 // Channel 1 State
#define PWM_STA_BERR 8 // Bus Error
#define PWM_STA_GAPO4 7 // Gap Occurred on Channel 4
#define PWM_STA_GAPO3 6 // Gap Occurred on Channel 3
#define PWM_STA_GAPO2 5 // Gap Occurred on Channel 2
#define PWM_STA_GAPO1 4 // Gap Occurred on Channel 1
#define PWM_STA_RERR1 3 // FIFO Read Error
#define PWM_STA_WERR1 2 // FIFO Write Error
#define PWM_STA_EMPT1 1 // FIFO Empty
#define PWM_STA_FULL1 0 // FIFO Full
// PWM_DMAC bit offsets
// -------------------------------------------------------------------------------------------------
#define PWM_DMAC_ENAB 31 // 0: DMA Disabled. 1: DMA Enabled.
#define PWM_DMAC_PANIC 8 // Bits 15:8. Threshold for PANIC signal. Default 7.
#define PWM_DMAC_DREQ 0 // Bits 7:0. Threshold for DREQ signal. Default 7.
// PWM_RNG1, PWM_RNG2
// --------------------------------------------------------------------------------------------------
// Defines the transmission range. In PWM mode, evenly spaced pulses are sent within a period
// of length defined in these registers. In serial mode, serialized data is sent within the
// same period. The value is normally 32. If less, data will be truncated. If more, data will
// be padded with zeros.
// DAT1, DAT2
// --------------------------------------------------------------------------------------------------
// NOTE: These registers are not useful for our purposes - we will use the FIFO instead!
// Stores 32 bits of data to be sent when USEF1/USEF2 is 0. In PWM mode, defines how many
// pulses will be sent within the period specified in PWM_RNG1/PWM_RNG2. In serializer mode,
// defines a 32-bit word to be transmitted.
// FIF1
// --------------------------------------------------------------------------------------------------
// 32-bit-wide register used to "stuff" the FIFO, which has 16 32-bit words. (So, if you write
// it 16 times, it will fill the FIFO.)
// See also: PWM_STA_EMPT1 (FIFO empty)
// PWM_STA_FULL1 (FIFO full)
// PWM_CTL_CLRF1 (Clear FIFO)
// DMA
// --------------------------------------------------------------------------------------------------
// DMA registers (divided by four to convert form word to byte offsets, as with the PWM registers)
#define DMA_CS (0x00 / 4) // Control & Status register
#define DMA_CONBLK_AD (0x04 / 4) // Address of Control Block (must be 256-BYTE ALIGNED!!!)
#define DMA_TI (0x08 / 4) // Transfer Information (populated from CB)
#define DMA_SOURCE_AD (0x0C / 4) // Source address, populated from CB. Physical address.
#define DMA_DEST_AD (0x10 / 4) // Destination address, populated from CB. Bus address.
#define DMA_TXFR_LEN (0x14 / 4) // Transfer length, populated from CB
#define DMA_STRIDE (0x18 / 4) // Stride, populated from CB
#define DMA_NEXTCONBK (0x1C / 4) // Next control block address, populated from CB
#define DMA_DEBUG (0x20 / 4) // Debug settings
// DMA Control & Status register bit offsets
#define DMA_CS_RESET 31 // Reset the controller for this channel
#define DMA_CS_ABORT 30 // Set to abort transfer
#define DMA_CS_DISDEBUG 29 // Disable debug pause signal
#define DMA_CS_WAIT_FOR 28 // Wait for outstanding writes
#define DMA_CS_PANIC_PRI 20 // Panic priority (bits 23:20), default 7
#define DMA_CS_PRIORITY 16 // AXI priority level (bits 19:16), default 7
#define DMA_CS_ERROR 8 // Set when there's been an error
#define DMA_CS_WAITING_FOR 6 // Set when the channel's waiting for a write to be accepted
#define DMA_CS_DREQ_STOPS_DMA 5 // Set when the DMA is paused because DREQ is inactive
#define DMA_CS_PAUSED 4 // Set when the DMA is paused (active bit cleared, etc.)
#define DMA_CS_DREQ 3 // Set when DREQ line is high
#define DMA_CS_INT 2 // If INTEN is set, this will be set on CB transfer end
#define DMA_CS_END 1 // Set when the current control block is finished
#define DMA_CS_ACTIVE 0 // Enable DMA (CB_ADDR must not be 0)
// Default CS word
#define DMA_CS_CONFIGWORD (8 << DMA_CS_PANIC_PRI) | \
(8 << DMA_CS_PRIORITY) | \
(1 << DMA_CS_WAIT_FOR)
// DREQ lines (page 61, most DREQs omitted)
#define DMA_DREQ_ALWAYS 0
#define DMA_DREQ_PCM_TX 2
#define DMA_DREQ_PCM_RX 3
#define DMA_DREQ_PWM 5
#define DMA_DREQ_SPI_TX 6
#define DMA_DREQ_SPI_RX 7
#define DMA_DREQ_BSC_TX 8
#define DMA_DREQ_BSC_RX 9
// DMA Transfer Information register bit offsets
// We don't write DMA_TI directly. It's populated from the TI field in a control block.
#define DMA_TI_NO_WIDE_BURSTS 26 // Don't do wide writes in 2-beat bursts
#define DMA_TI_WAITS 21 // Wait this many cycles after end of each read/write
#define DMA_TI_PERMAP 16 // Peripheral # whose ready signal controls xfer rate (pwm=5)
#define DMA_TI_BURST_LENGTH 12 // Length of burst in words (bits 15:12)
#define DMA_TI_SRC_IGNORE 11 // Don't perform source reads (for fast cache fill)
#define DMA_TI_SRC_DREQ 10 // Peripheral in PERMAP gates source reads
#define DMA_TI_SRC_WIDTH 9 // Source transfer width - 0=32 bits, 1=128 bits
#define DMA_TI_SRC_INC 8 // Source address += SRC_WITH after each read
#define DMA_TI_DEST_IGNORE 7 // Don't perform destination writes
#define DMA_TI_DEST_DREQ 6 // Peripheral in PERMAP gates destination writes
#define DMA_TI_DEST_WIDTH 5 // Destination transfer width - 0=32 bits, 1=128 bits
#define DMA_TI_DEST_INC 4 // Dest address += DEST_WIDTH after each read
#define DMA_TI_WAIT_RESP 3 // Wait for write response
#define DMA_TI_TDMODE 1 // 2D striding mode
#define DMA_TI_INTEN 0 // Interrupt enable
// Default TI word
#define DMA_TI_CONFIGWORD (1 << DMA_TI_NO_WIDE_BURSTS) | \
(1 << DMA_TI_SRC_INC) | \
(1 << DMA_TI_DEST_DREQ) | \
(1 << DMA_TI_WAIT_RESP) | \
(1 << DMA_TI_INTEN) | \
(DMA_DREQ_PWM << DMA_TI_PERMAP)
// DMA Debug register bit offsets
#define DMA_DEBUG_LITE 28 // Whether the controller is "Lite"
#define DMA_DEBUG_VERSION 25 // DMA Version (bits 27:25)
#define DMA_DEBUG_DMA_STATE 16 // DMA State (bits 24:16)
#define DMA_DEBUG_DMA_ID 8 // DMA controller's AXI bus ID (bits 15:8)
#define DMA_DEBUG_OUTSTANDING_WRITES 4 // Outstanding writes (bits 7:4)
#define DMA_DEBUG_READ_ERROR 2 // Slave read response error (clear by setting)
#define DMA_DEBUG_FIFO_ERROR 1 // Operational read FIFO error (clear by setting)
#define DMA_DEBUG_READ_LAST_NOT_SET 0 // AXI bus read last signal not set (clear by setting)
// Control Block (CB) - this tells the DMA controller what to do.
typedef struct {
unsigned int
info, // Transfer Information (TI)
src, // Source address (physical)
dst, // Destination address (bus)
length, // Length in bytes (not words!)
stride, // We don't care about this
next, // Pointer to next control block
pad[2]; // These are "reserved" (unused)
} dma_cb_t;
// The page map contains pointers to memory that we will allocate below. It uses two pointers
// per address. This is because the software (this program) deals only in virtual addresses,
// whereas the DMA controller can only access RAM via physical address. (If that's not confusing
// enough, it writes to peripherals by their bus addresses.)
typedef struct {
uint8_t *virtaddr;
uint32_t physaddr;
} page_map_t;
#define PAGE_SIZE 4096 // Size of a RAM page to be allocated
#define PAGE_SHIFT 12 // This is used for address translation
#define NUM_PAGES ((sizeof(struct control_data_s) + PAGE_SIZE - 1) >> PAGE_SHIFT)
#define SETBIT(word, bit) word |= 1<<bit
#define CLRBIT(word, bit) word &= ~(1<<bit)
#define GETBIT(word, bit) word & (1 << bit) ? 1 : 0
#define true 1
#define false 0
// GPIO
#define INP_GPIO(g) *(gpio_reg+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio_reg+((g)/10)) |= (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio_reg+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))
#define GPIO_SET *(gpio_reg+7) // sets bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio_reg+10) // clears bits which are 1 ignores bits which are 0
///
/// Implementation of the LedDevice interface for writing to Ws2801 led device.
///
class LedDeviceWS2812s : public LedDevice
{
public:
///
/// Constructs the LedDevice for a string containing leds of the type WS2812
LedDeviceWS2812s();
~LedDeviceWS2812s();
///
/// Writes the led color values to the led-device
///
/// @param ledValues The color-value per led
/// @return Zero on succes else negative
///
virtual int write(const std::vector<ColorRgb> &ledValues);
/// Switch the leds off
virtual int switchOff();
private:
/// the number of leds (needed when switching off)
size_t mLedCount;
page_map_t *page_map; // This will hold the page map, which we'll allocate below
uint8_t *virtbase; // Pointer to some virtual memory that will be allocated
volatile unsigned int *pwm_reg; // PWM controller register set
volatile unsigned int *clk_reg; // PWM clock manager register set
volatile unsigned int *dma_reg; // DMA controller register set
volatile unsigned int *gpio_reg; // GPIO pin controller register set
// Contains arrays of control blocks and their related samples.
// One pixel needs 72 bits (24 bits for the color * 3 to represent them on the wire).
// 768 words = 341.3 pixels
// 1024 words = 455.1 pixels
// The highest I can make this number is 1016. Any higher, and it will start copying garbage to the
// PWM controller. I think it might be because of the virtual->physical memory mapping not being
// contiguous, so *pointer+1016 isn't "next door" to *pointer+1017 for some weird reason.
// However, that's still enough for 451.5 color instructions! If someone has more pixels than that
// to control, they can figure it out. I tried Hirst's message of having one CB per word, which
// seems like it might fix that, but I couldn't figure it out.
#define NUM_DATA_WORDS 1016
struct control_data_s {
dma_cb_t cb[1];
uint32_t sample[NUM_DATA_WORDS];
};
struct control_data_s *ctl;
// PWM waveform buffer (in words), 16 32-bit words are enough to hold 170 wire bits.
// That's OK if we only transmit from the FIFO, but for DMA, we will use a much larger size.
// 1024 (4096 bytes) should be enough for over 400 elements. It can be bumped up if you need more!
unsigned int PWMWaveform[NUM_DATA_WORDS];
void initHardware();
void startTransfer();
void clearPWMBuffer();
void setPWMBit(unsigned int bitPos, unsigned char bit);
unsigned int mem_phys_to_virt(uint32_t phys);
unsigned int mem_virt_to_phys(void *virt);
void terminate(int dummy);
void fatal(char *fmt, ...);
void * map_peripheral(uint32_t base, uint32_t len);
void printBinary(unsigned int i, unsigned int bits);
};
#endif /* LEDDEVICEWS2812S_H_ */