hyperion.ng/include/hyperion/ImageToLedsMap.h

659 lines
20 KiB
C
Raw Normal View History

#ifndef IMAGETOLEDSMAP_H
#define IMAGETOLEDSMAP_H
// STL includes
#include <cassert>
#include <memory>
#include <sstream>
#include <cmath>
// hyperion-utils includes
#include <utils/Image.h>
2018-12-27 23:11:32 +01:00
#include <utils/Logger.h>
#include <utils/ColorRgbScalar.h>
#include <utils/ColorSys.h>
// hyperion includes
#include <hyperion/LedString.h>
namespace hyperion
{
///
/// The ImageToLedsMap holds a mapping of indices into an image to LEDs. It can be used to
/// calculate the average (aka mean) or dominant color per LED for a given region.
///
class ImageToLedsMap : public QObject
{
Q_OBJECT
public:
///
/// Constructs an mapping from the absolute indices in an image to each LED based on the border
/// definition given in the list of LEDs. The map holds absolute indices to any given image,
/// provided that it is row-oriented.
/// The mapping is created purely on size (width and height). The given borders are excluded
/// from indexing.
///
/// @param[in] log Logger
/// @param[in] width The width of the indexed image
/// @param[in] height The width of the indexed image
/// @param[in] horizontalBorder The size of the horizontal border (0=no border)
/// @param[in] verticalBorder The size of the vertical border (0=no border)
/// @param[in] leds The list with led specifications
/// @param[in] reducedProcessingFactor Factor to reduce the number of pixels evaluated during processing
/// @param[in] accuraryLevel The accuracy used during processing (only for selected types)
///
ImageToLedsMap(
Logger* log,
int width,
int height,
int horizontalBorder,
int verticalBorder,
const std::vector<Led> & leds,
int reducedProcessingFactor = 0,
int accuraryLevel = 0);
///
/// Returns the width of the indexed image
///
/// @return The width of the indexed image [pixels]
///
int width() const;
///
/// Returns the height of the indexed image
///
/// @return The height of the indexed image [pixels]
///
int height() const;
int horizontalBorder() const { return _horizontalBorder; }
int verticalBorder() const { return _verticalBorder; }
2018-12-27 23:11:32 +01:00
///
/// Set the accuracy used during processing
/// (only for selected types)
///
/// @param[in] level The accuracy level (0-4)
void setAccuracyLevel (int level);
///
/// Determines the mean color for each LED using the LED area mapping given
/// at construction.
///
2013-09-09 20:35:28 +00:00
/// @param[in] image The image from which to extract the led colors
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getMeanLedColor(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getMeanLedColor(image, colors);
return colors;
}
///
/// Determines the mean color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getMeanLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
2018-12-27 23:11:32 +01:00
if(_colorsMap.size() != ledColors.size())
{
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
2018-12-27 23:11:32 +01:00
return;
}
// Iterate each led and compute the mean
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calcMeanColor(image, *colors);
*led = color;
}
}
2018-12-27 23:11:32 +01:00
///
/// Determines the mean color squared for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getMeanLedColorSqrt(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getMeanLedColorSqrt(image, colors);
return colors;
}
///
/// Determines the mean color squared for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getMeanLedColorSqrt(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
if(_colorsMap.size() != ledColors.size())
{
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// Iterate each led and compute the mean
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calcMeanColorSqrt(image, *colors);
*led = color;
}
}
///
/// Determines the mean color of the image and assigns it to all LEDs
///
/// @param[in] image The image from which to extract the led color
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getUniLedColor(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getUniLedColor(image, colors);
return colors;
}
///
/// Determines the mean color of the image and assigns it to all LEDs
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getUniLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
2018-12-27 23:11:32 +01:00
if(_colorsMap.size() != ledColors.size())
{
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
2018-12-27 23:11:32 +01:00
return;
}
// calculate uni color
const ColorRgb color = calcMeanColor(image);
//Update all LEDs with same color
std::fill(ledColors.begin(),ledColors.end(), color);
}
///
/// Determines the dominant color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED color
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getDominantLedColor(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getDominantLedColor(image, colors);
return colors;
}
///
/// Determines the dominant color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getDominantLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of LEDs
if(_colorsMap.size() != ledColors.size())
{
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// Iterate each led and compute the dominant color
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calculateDominantColor(image, *colors);
*led = color;
}
}
///
/// Determines the dominant color using a k-means algorithm for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED color
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getDominantLedColorAdv(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getDominantLedColorAdv(image, colors);
return colors;
}
///
/// Determines the dominant color using a k-means algorithm for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getDominantLedColorAdv(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of LEDs
if(_colorsMap.size() != ledColors.size())
{
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// Iterate each led and compute the dominant color
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calculateDominantColorAdv(image, *colors);
*led = color;
}
}
private:
Logger* _log;
/// The width of the indexed image
const int _width;
/// The height of the indexed image
const int _height;
const int _horizontalBorder;
const int _verticalBorder;
2018-12-27 23:11:32 +01:00
/// Evaluate every "count" pixel
int _nextPixelCount;
2018-12-27 23:11:32 +01:00
/// Number of clusters used during dominant color advanced processing (k-means)
int _clusterCount;
2018-12-27 23:11:32 +01:00
/// The absolute indices into the image for each led
std::vector<std::vector<int>> _colorsMap;
///
/// Calculates the 'mean color' over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
2013-09-09 20:35:28 +00:00
/// @param[in] image The image a section from which an average color must be computed
/// @param[in] pixels The list of pixel indices for the given image to be evaluated///
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
{
const auto pixelNum = pixels.size();
if (pixelNum == 0)
{
return ColorRgb::BLACK;
}
Various Cleanups (#1075) * LedDevice - Address clang findings * Fix Windows Warnings * Ensure newInput is initialised * Clean-up unused elements for Plaform Capture * Fix initialization problem and spellings * Address clang findings and spelling corrections * LedDevice clean-ups * Cleanups * Align that getLedCount is int * Have "display" as default for Grabbers * Fix config during start-up for missing elements * Framegrabber Clean-up - Remove non supported grabbers from selection, filter valid options * Typo * Framegrabber.json - Fix property numbering * Preselect active Grabbertype * Sort Grabbernames * Align options with selected element * Fix deletion of pointer to incomplete type 'BonjourBrowserWrapper' * Address macOS compile warnings * Have default layout = 1 LED only to avoid errors as in #673 * Address lgtm findings * Address finding that params passed to LedDevice discovery were not considered * Cleanups after merging with latest master * Update Changelog * Address lgtm findings * Fix comment * Test Fix * Fix Python Warning * Handle Dummy Device assignment correctly * Address delete called on non-final 'commandline::Option' that has virtual functions but non-virtual destructor * Correct that QTimer.start accepts only int * Have Release Python GIL & reset threat state chnage downward compatible * Correct format specifier * LedDevice - add assertions * Readonly DB - Fix merge issue * Smoothing - Fix wrong defaults * LedDevice - correct assertion * Show smoothing config set# in debug and related values. * Suppress error on windows, if default file is "/dev/null" * CMAKE - Allow to define QT_BASE_DIR dynamically via environment-variable * Ignore Visual Studio specific files Co-authored-by: Paulchen Panther <16664240+Paulchen-Panther@users.noreply.github.com>
2020-11-14 17:58:56 +01:00
// Accumulate the sum of each separate color channel
2020-08-08 00:21:19 +02:00
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const auto& imgData = image.memptr();
for (const int pixelOffset : pixels)
{
const auto& pixel = imgData[pixelOffset];
cummRed += pixel.red;
cummGreen += pixel.green;
cummBlue += pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'mean color' over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColor(const Image<Pixel_T> & image) const
{
Various Cleanups (#1075) * LedDevice - Address clang findings * Fix Windows Warnings * Ensure newInput is initialised * Clean-up unused elements for Plaform Capture * Fix initialization problem and spellings * Address clang findings and spelling corrections * LedDevice clean-ups * Cleanups * Align that getLedCount is int * Have "display" as default for Grabbers * Fix config during start-up for missing elements * Framegrabber Clean-up - Remove non supported grabbers from selection, filter valid options * Typo * Framegrabber.json - Fix property numbering * Preselect active Grabbertype * Sort Grabbernames * Align options with selected element * Fix deletion of pointer to incomplete type 'BonjourBrowserWrapper' * Address macOS compile warnings * Have default layout = 1 LED only to avoid errors as in #673 * Address lgtm findings * Address finding that params passed to LedDevice discovery were not considered * Cleanups after merging with latest master * Update Changelog * Address lgtm findings * Fix comment * Test Fix * Fix Python Warning * Handle Dummy Device assignment correctly * Address delete called on non-final 'commandline::Option' that has virtual functions but non-virtual destructor * Correct that QTimer.start accepts only int * Have Release Python GIL & reset threat state chnage downward compatible * Correct format specifier * LedDevice - add assertions * Readonly DB - Fix merge issue * Smoothing - Fix wrong defaults * LedDevice - correct assertion * Show smoothing config set# in debug and related values. * Suppress error on windows, if default file is "/dev/null" * CMAKE - Allow to define QT_BASE_DIR dynamically via environment-variable * Ignore Visual Studio specific files Co-authored-by: Paulchen Panther <16664240+Paulchen-Panther@users.noreply.github.com>
2020-11-14 17:58:56 +01:00
// Accumulate the sum of each separate color channel
2020-08-08 00:21:19 +02:00
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const unsigned pixelNum = image.width() * image.height();
const auto& imgData = image.memptr();
for (unsigned idx=0; idx<pixelNum; idx++)
{
const auto& pixel = imgData[idx];
cummRed += pixel.red;
cummGreen += pixel.green;
cummBlue += pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
{
const auto pixelNum = pixels.size();
if (pixelNum == 0)
{
return ColorRgb::BLACK;
}
// Accumulate the squared sum of each separate color channel
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const auto& imgData = image.memptr();
for (const int colorOffset : pixels)
{
const auto& pixel = imgData[colorOffset];
cummRed += pixel.red * pixel.red;
cummGreen += pixel.green * pixel.green;
cummBlue += pixel.blue * pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))), 255L));
const uint8_t avgGreen = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))), 255L));
const uint8_t avgBlue = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))), 255L));
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image) const
{
// Accumulate the squared sum of each separate color channel
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const unsigned pixelNum = image.width() * image.height();
const auto& imgData = image.memptr();
for (int idx=0; idx<pixelNum; ++idx)
{
const auto& pixel = imgData[idx];
cummRed += pixel.red * pixel.red;
cummGreen += pixel.green * pixel.green;
cummBlue += pixel.blue * pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))));
const uint8_t avgGreen = uint8_t(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))));
const uint8_t avgBlue = uint8_t(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))));
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
///
/// @param[in] image The image for which a dominant color is to be computed
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
///
/// @return The image area's dominant color or black, if no pixel indices provided
///
template <typename Pixel_T>
ColorRgb calculateDominantColor(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
{
ColorRgb dominantColor {ColorRgb::BLACK};
const auto pixelNum = pixels.size();
if (pixelNum > 0)
{
const auto& imgData = image.memptr();
QMap<QRgb,int> colorDistributionMap;
int count = 0;
for (const int pixelOffset : pixels)
{
QRgb color = imgData[pixelOffset].rgb();
if (colorDistributionMap.contains(color)) {
colorDistributionMap[color] = colorDistributionMap[color] + 1;
}
else {
colorDistributionMap[color] = 1;
}
int colorsFound = colorDistributionMap[color];
if (colorsFound > count) {
dominantColor.setRgb(color);
count = colorsFound;
}
}
}
return dominantColor;
}
///
/// Calculates the 'dominant color' of an image
///
/// @param[in] image The image for which a dominant color is to be computed
///
/// @return The image's dominant color
///
template <typename Pixel_T>
ColorRgb calculateDominantColor(const Image<Pixel_T> & image) const
{
const unsigned pixelNum = image.width() * image.height();
std::vector<int> pixels(pixelNum);
std::iota(pixels.begin(), pixels.end(), 0);
return calculateDominantColor(image, pixels);
}
template <typename Pixel_T>
struct ColorCluster {
ColorCluster():count(0) {}
ColorCluster(Pixel_T color):count(0),color(color) {}
Pixel_T color;
Pixel_T newColor;
int count;
};
const ColorRgb DEFAULT_CLUSTER_COLORS[5] {
{ColorRgb::BLACK},
{ColorRgb::GREEN},
{ColorRgb::WHITE},
{ColorRgb::RED},
{ColorRgb::YELLOW}
};
///
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
///
/// @param[in] image The image for which a dominant color is to be computed
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
///
/// @return The image area's dominant color or black, if no pixel indices provided
///
template <typename Pixel_T>
ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
{
ColorRgb dominantColor {ColorRgb::BLACK};
const auto pixelNum = pixels.size();
if (pixelNum > 0)
{
// initial cluster with different colors
auto clusters = std::unique_ptr< ColorCluster<ColorRgbScalar> >(new ColorCluster<ColorRgbScalar>[_clusterCount]);
for(int k = 0; k < _clusterCount; ++k)
{
clusters.get()[k].newColor = DEFAULT_CLUSTER_COLORS[k];
}
// k-means
double min_rgb_euclidean {0};
double old_rgb_euclidean {0};
while(1)
{
for(int k = 0; k < _clusterCount; ++k)
{
clusters.get()[k].count = 0;
clusters.get()[k].color = clusters.get()[k].newColor;
clusters.get()[k].newColor.setRgb(ColorRgb::BLACK);
}
const auto& imgData = image.memptr();
for (const int pixelOffset : pixels)
{
const auto& pixel = imgData[pixelOffset];
min_rgb_euclidean = 255 * 255 * 255;
int clusterIndex = -1;
for(int k = 0; k < _clusterCount; ++k)
{
double euclid = ColorSys::rgb_euclidean(ColorRgbScalar(pixel), clusters.get()[k].color);
if( euclid < min_rgb_euclidean ) {
min_rgb_euclidean = euclid;
clusterIndex = k;
}
}
clusters.get()[clusterIndex].count++;
clusters.get()[clusterIndex].newColor += ColorRgbScalar(pixel);
}
min_rgb_euclidean = 0;
for(int k = 0; k < _clusterCount; ++k)
{
if (clusters.get()[k].count > 0)
{
// new color
clusters.get()[k].newColor /= clusters.get()[k].count;
double ecli = ColorSys::rgb_euclidean(clusters.get()[k].newColor, clusters.get()[k].color);
if(ecli > min_rgb_euclidean)
{
min_rgb_euclidean = ecli;
}
}
}
if( fabs(min_rgb_euclidean - old_rgb_euclidean) < 1)
{
break;
}
old_rgb_euclidean = min_rgb_euclidean;
}
int colorsFoundMax = 0;
int dominantClusterIdx {0};
for(int clusterIdx=0; clusterIdx < _clusterCount; ++clusterIdx){
int colorsFoundinCluster = clusters.get()[clusterIdx].count;
if (colorsFoundinCluster > colorsFoundMax) {
colorsFoundMax = colorsFoundinCluster;
dominantClusterIdx = clusterIdx;
}
}
dominantColor.red = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.red);
dominantColor.green = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.green);
dominantColor.blue = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.blue);
}
return dominantColor;
}
///
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
///
/// @param[in] image The image for which a dominant color is to be computed
///
/// @return The image's dominant color
///
template <typename Pixel_T>
ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image) const
{
const unsigned pixelNum = image.width() * image.height();
std::vector<int> pixels(pixelNum);
std::iota(pixels.begin(), pixels.end(), 0);
return calculateDominantColorAdv(image, pixels);
}
};
} // end namespace hyperion
#endif // IMAGETOLEDSMAP_H