mirror of
https://github.com/hyperion-project/hyperion.ng.git
synced 2025-03-01 10:33:28 +00:00
Dominant Color support (#1569)
* Dominant Color and Mean Color Squared * Workaround - Suppress empty LED updates * Add missing text * Dominant Colors advanced * Test with fixed initial colors * Test with fixed initial colors * Support new processing values via API * ImageToLED - Add reduced pixel processing, make dominant color advanced configurable * Updates on Grabber fps setting * ImageToLedMap - Remove maptype and update test * Update dynamic cluster array allocation
This commit is contained in:
@@ -147,10 +147,7 @@ private slots:
|
||||
void handleSourceRequest(hyperion::Components component, int hyperionInd, bool listen);
|
||||
|
||||
///
|
||||
/// @brief Update Update capture rate
|
||||
/// @param type interval between frames in milliseconds
|
||||
///
|
||||
void updateTimer(int interval);
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
@@ -168,6 +165,11 @@ protected:
|
||||
///
|
||||
virtual bool close() { return true; }
|
||||
|
||||
/// @brief Update Update capture rate
|
||||
/// @param type interval between frames in milliseconds
|
||||
///
|
||||
void updateTimer(int interval);
|
||||
|
||||
|
||||
QString _grabberName;
|
||||
|
||||
|
@@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include <QString>
|
||||
#include <QSharedPointer>
|
||||
|
||||
// Utils includes
|
||||
#include <utils/Image.h>
|
||||
@@ -46,7 +47,7 @@ public:
|
||||
/// @param[in] width The new width of the buffer-image
|
||||
/// @param[in] height The new height of the buffer-image
|
||||
///
|
||||
void setSize(unsigned width, unsigned height);
|
||||
void setSize(int width, int height);
|
||||
|
||||
///
|
||||
/// @brief Update the led string (eg on settings change)
|
||||
@@ -56,6 +57,19 @@ public:
|
||||
/// Returns state of black border detector
|
||||
bool blackBorderDetectorEnabled() const;
|
||||
|
||||
///
|
||||
/// Factor to reduce the number of pixels evaluated during processing
|
||||
///
|
||||
/// @param[in] count Use every "count" pixel
|
||||
void setReducedPixelSetFactorFactor(int count);
|
||||
|
||||
///
|
||||
/// Set the accuracy used during processing
|
||||
/// (only for selected types)
|
||||
///
|
||||
/// @param[in] level The accuracy level (0-4)
|
||||
void setAccuracyLevel(int level);
|
||||
|
||||
/// Returns the current _userMappingType, this may not be the current applied type!
|
||||
int getUserLedMappingType() const { return _userMappingType; }
|
||||
|
||||
@@ -98,30 +112,45 @@ public:
|
||||
}
|
||||
|
||||
///
|
||||
/// Processes the image to a list of led colors. This will update the size of the buffer-image
|
||||
/// if required and call the image-to-leds mapping to determine the mean color per led.
|
||||
/// Processes the image to a list of LED colors. This will update the size of the buffer-image
|
||||
/// if required and call the image-to-LEDs mapping to determine the color per LED.
|
||||
///
|
||||
/// @param[in] image The image to translate to led values
|
||||
/// @param[in] image The image to translate to LED values
|
||||
///
|
||||
/// @return The color value per led
|
||||
/// @return The color value per LED
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> process(const Image<Pixel_T>& image)
|
||||
{
|
||||
std::vector<ColorRgb> colors;
|
||||
|
||||
if (image.width()>0 && image.height()>0)
|
||||
{
|
||||
// Ensure that the buffer-image is the proper size
|
||||
setSize(image);
|
||||
|
||||
assert(!_imageToLedColors.isNull());
|
||||
|
||||
// Check black border detection
|
||||
verifyBorder(image);
|
||||
|
||||
// Create a result vector and call the 'in place' function
|
||||
switch (_mappingType)
|
||||
{
|
||||
case 1: colors = _imageToLeds->getUniLedColor(image); break;
|
||||
default: colors = _imageToLeds->getMeanLedColor(image);
|
||||
case 1:
|
||||
colors = _imageToLedColors->getUniLedColor(image);
|
||||
break;
|
||||
case 2:
|
||||
colors = _imageToLedColors->getMeanLedColorSqrt(image);
|
||||
break;
|
||||
case 3:
|
||||
colors = _imageToLedColors->getDominantLedColor(image);
|
||||
break;
|
||||
case 4:
|
||||
colors = _imageToLedColors->getDominantLedColorAdv(image);
|
||||
break;
|
||||
default:
|
||||
colors = _imageToLedColors->getMeanLedColor(image);
|
||||
}
|
||||
}
|
||||
else
|
||||
@@ -136,8 +165,8 @@ public:
|
||||
///
|
||||
/// Determines the led colors of the image in the buffer.
|
||||
///
|
||||
/// @param[in] image The image to translate to led values
|
||||
/// @param[out] ledColors The color value per led
|
||||
/// @param[in] image The image to translate to LED values
|
||||
/// @param[out] ledColors The color value per LED
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void process(const Image<Pixel_T>& image, std::vector<ColorRgb>& ledColors)
|
||||
@@ -153,8 +182,20 @@ public:
|
||||
// Determine the mean or uni colors of each led (using the existing mapping)
|
||||
switch (_mappingType)
|
||||
{
|
||||
case 1: _imageToLeds->getUniLedColor(image, ledColors); break;
|
||||
default: _imageToLeds->getMeanLedColor(image, ledColors);
|
||||
case 1:
|
||||
_imageToLedColors->getUniLedColor(image, ledColors);
|
||||
break;
|
||||
case 2:
|
||||
_imageToLedColors->getMeanLedColorSqrt(image, ledColors);
|
||||
break;
|
||||
case 3:
|
||||
_imageToLedColors->getDominantLedColor(image, ledColors);
|
||||
break;
|
||||
case 4:
|
||||
_imageToLedColors->getDominantLedColorAdv(image, ledColors);
|
||||
break;
|
||||
default:
|
||||
_imageToLedColors->getMeanLedColor(image, ledColors);
|
||||
}
|
||||
}
|
||||
else
|
||||
@@ -164,9 +205,9 @@ public:
|
||||
}
|
||||
|
||||
///
|
||||
/// Get the hscan and vscan parameters for a single led
|
||||
/// Get the hscan and vscan parameters for a single LED
|
||||
///
|
||||
/// @param[in] led Index of the led
|
||||
/// @param[in] led Index of the LED
|
||||
/// @param[out] hscanBegin begin of the hscan
|
||||
/// @param[out] hscanEnd end of the hscan
|
||||
/// @param[out] vscanBegin begin of the hscan
|
||||
@@ -175,6 +216,13 @@ public:
|
||||
bool getScanParameters(size_t led, double & hscanBegin, double & hscanEnd, double & vscanBegin, double & vscanEnd) const;
|
||||
|
||||
private:
|
||||
|
||||
void registerProcessingUnit(
|
||||
int width,
|
||||
int height,
|
||||
int horizontalBorder,
|
||||
int verticalBorder);
|
||||
|
||||
///
|
||||
/// Performs black-border detection (if enabled) on the given image
|
||||
///
|
||||
@@ -183,34 +231,25 @@ private:
|
||||
template <typename Pixel_T>
|
||||
void verifyBorder(const Image<Pixel_T> & image)
|
||||
{
|
||||
if (!_borderProcessor->enabled() && ( _imageToLeds->horizontalBorder()!=0 || _imageToLeds->verticalBorder()!=0 ))
|
||||
if (!_borderProcessor->enabled() && ( _imageToLedColors->horizontalBorder()!=0 || _imageToLedColors->verticalBorder()!=0 ))
|
||||
{
|
||||
Debug(_log, "Reset border");
|
||||
_borderProcessor->process(image);
|
||||
delete _imageToLeds;
|
||||
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), 0, 0, _ledString.leds());
|
||||
registerProcessingUnit(image.width(), image.height(), 0, 0);
|
||||
}
|
||||
|
||||
if(_borderProcessor->enabled() && _borderProcessor->process(image))
|
||||
{
|
||||
const hyperion::BlackBorder border = _borderProcessor->getCurrentBorder();
|
||||
|
||||
// Clean up the old mapping
|
||||
delete _imageToLeds;
|
||||
|
||||
if (border.unknown)
|
||||
{
|
||||
// Construct a new buffer and mapping
|
||||
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), 0, 0, _ledString.leds());
|
||||
registerProcessingUnit(image.width(), image.height(), 0, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Construct a new buffer and mapping
|
||||
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), border.horizontalSize, border.verticalSize, _ledString.leds());
|
||||
registerProcessingUnit(image.width(), image.height(), border.horizontalSize, border.verticalSize);
|
||||
}
|
||||
|
||||
//Debug(Logger::getInstance("BLACKBORDER"), "CURRENT BORDER TYPE: unknown=%d hor.size=%d vert.size=%d",
|
||||
// border.unknown, border.horizontalSize, border.verticalSize );
|
||||
}
|
||||
}
|
||||
|
||||
@@ -218,6 +257,7 @@ private slots:
|
||||
void handleSettingsUpdate(settings::type type, const QJsonDocument& config);
|
||||
|
||||
private:
|
||||
|
||||
Logger * _log;
|
||||
/// The Led-string specification
|
||||
LedString _ledString;
|
||||
@@ -226,15 +266,18 @@ private:
|
||||
hyperion::BlackBorderProcessor * _borderProcessor;
|
||||
|
||||
/// The mapping of image-pixels to LEDs
|
||||
hyperion::ImageToLedsMap* _imageToLeds;
|
||||
QSharedPointer<hyperion::ImageToLedsMap> _imageToLedColors;
|
||||
|
||||
/// Type of image 2 led mapping
|
||||
/// Type of image to LED mapping
|
||||
int _mappingType;
|
||||
/// Type of last requested user type
|
||||
int _userMappingType;
|
||||
/// Type of last requested hard type
|
||||
int _hardMappingType;
|
||||
|
||||
int _accuraryLevel;
|
||||
int _reducedPixelSetFactorFactor;
|
||||
|
||||
/// Hyperion instance pointer
|
||||
Hyperion* _hyperion;
|
||||
};
|
||||
|
@@ -1,72 +1,90 @@
|
||||
|
||||
#pragma once
|
||||
#ifndef IMAGETOLEDSMAP_H
|
||||
#define IMAGETOLEDSMAP_H
|
||||
|
||||
// STL includes
|
||||
#include <cassert>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <cmath>
|
||||
|
||||
// hyperion-utils includes
|
||||
#include <utils/Image.h>
|
||||
#include <utils/Logger.h>
|
||||
#include <utils/ColorRgbScalar.h>
|
||||
#include <utils/ColorSys.h>
|
||||
|
||||
// hyperion includes
|
||||
#include <hyperion/LedString.h>
|
||||
|
||||
namespace hyperion
|
||||
{
|
||||
|
||||
///
|
||||
/// The ImageToLedsMap holds a mapping of indices into an image to leds. It can be used to
|
||||
/// calculate the average (or mean) color per led for a specific region.
|
||||
/// The ImageToLedsMap holds a mapping of indices into an image to LEDs. It can be used to
|
||||
/// calculate the average (aka mean) or dominant color per LED for a given region.
|
||||
///
|
||||
class ImageToLedsMap
|
||||
class ImageToLedsMap : public QObject
|
||||
{
|
||||
Q_OBJECT
|
||||
|
||||
public:
|
||||
|
||||
///
|
||||
/// Constructs an mapping from the absolute indices in an image to each led based on the border
|
||||
/// definition given in the list of leds. The map holds absolute indices to any given image,
|
||||
/// Constructs an mapping from the absolute indices in an image to each LED based on the border
|
||||
/// definition given in the list of LEDs. The map holds absolute indices to any given image,
|
||||
/// provided that it is row-oriented.
|
||||
/// The mapping is created purely on size (width and height). The given borders are excluded
|
||||
/// from indexing.
|
||||
///
|
||||
/// @param[in] log Logger
|
||||
/// @param[in] width The width of the indexed image
|
||||
/// @param[in] height The width of the indexed image
|
||||
/// @param[in] horizontalBorder The size of the horizontal border (0=no border)
|
||||
/// @param[in] verticalBorder The size of the vertical border (0=no border)
|
||||
/// @param[in] leds The list with led specifications
|
||||
/// @param[in] reducedProcessingFactor Factor to reduce the number of pixels evaluated during processing
|
||||
/// @param[in] accuraryLevel The accuracy used during processing (only for selected types)
|
||||
///
|
||||
ImageToLedsMap(
|
||||
const unsigned width,
|
||||
const unsigned height,
|
||||
const unsigned horizontalBorder,
|
||||
const unsigned verticalBorder,
|
||||
const std::vector<Led> & leds);
|
||||
Logger* log,
|
||||
int width,
|
||||
int height,
|
||||
int horizontalBorder,
|
||||
int verticalBorder,
|
||||
const std::vector<Led> & leds,
|
||||
int reducedProcessingFactor = 0,
|
||||
int accuraryLevel = 0);
|
||||
|
||||
///
|
||||
/// Returns the width of the indexed image
|
||||
///
|
||||
/// @return The width of the indexed image [pixels]
|
||||
///
|
||||
unsigned width() const;
|
||||
int width() const;
|
||||
|
||||
///
|
||||
/// Returns the height of the indexed image
|
||||
///
|
||||
/// @return The height of the indexed image [pixels]
|
||||
///
|
||||
unsigned height() const;
|
||||
int height() const;
|
||||
|
||||
unsigned horizontalBorder() const { return _horizontalBorder; }
|
||||
unsigned verticalBorder() const { return _verticalBorder; }
|
||||
int horizontalBorder() const { return _horizontalBorder; }
|
||||
int verticalBorder() const { return _verticalBorder; }
|
||||
|
||||
///
|
||||
/// Determines the mean color for each led using the mapping the image given
|
||||
/// Set the accuracy used during processing
|
||||
/// (only for selected types)
|
||||
///
|
||||
/// @param[in] level The accuracy level (0-4)
|
||||
void setAccuracyLevel (int level);
|
||||
|
||||
///
|
||||
/// Determines the mean color for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led colors
|
||||
///
|
||||
/// @return ledColors The vector containing the output
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getMeanLedColor(const Image<Pixel_T> & image) const
|
||||
@@ -77,20 +95,18 @@ namespace hyperion
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the mean color for each led using the mapping the image given
|
||||
/// Determines the mean color for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led colors
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getMeanLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
// Sanity check for the number of leds
|
||||
//assert(_colorsMap.size() == ledColors.size());
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -104,12 +120,52 @@ namespace hyperion
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the uni color for each led using the mapping the image given
|
||||
/// Determines the mean color squared for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led colors
|
||||
///
|
||||
/// @return ledColors The vector containing the output
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getMeanLedColorSqrt(const Image<Pixel_T> & image) const
|
||||
{
|
||||
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
|
||||
getMeanLedColorSqrt(image, colors);
|
||||
return colors;
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the mean color squared for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getMeanLedColorSqrt(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
// Iterate each led and compute the mean
|
||||
auto led = ledColors.begin();
|
||||
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
|
||||
{
|
||||
const ColorRgb color = calcMeanColorSqrt(image, *colors);
|
||||
*led = color;
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the mean color of the image and assigns it to all LEDs
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led color
|
||||
///
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getUniLedColor(const Image<Pixel_T> & image) const
|
||||
@@ -120,57 +176,145 @@ namespace hyperion
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the uni color for each led using the mapping the image given
|
||||
/// at construction.
|
||||
/// Determines the mean color of the image and assigns it to all LEDs
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led colors
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getUniLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
// Sanity check for the number of leds
|
||||
// assert(_colorsMap.size() == ledColors.size());
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// calculate uni color
|
||||
const ColorRgb color = calcMeanColor(image);
|
||||
//Update all LEDs with same color
|
||||
std::fill(ledColors.begin(),ledColors.end(), color);
|
||||
}
|
||||
|
||||
private:
|
||||
/// The width of the indexed image
|
||||
const unsigned _width;
|
||||
/// The height of the indexed image
|
||||
const unsigned _height;
|
||||
|
||||
const unsigned _horizontalBorder;
|
||||
|
||||
const unsigned _verticalBorder;
|
||||
|
||||
/// The absolute indices into the image for each led
|
||||
std::vector<std::vector<int32_t>> _colorsMap;
|
||||
///
|
||||
/// Determines the dominant color for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED color
|
||||
///
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getDominantLedColor(const Image<Pixel_T> & image) const
|
||||
{
|
||||
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
|
||||
getDominantLedColor(image, colors);
|
||||
return colors;
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'mean color' of the given list. This is the mean over each color-channel
|
||||
/// Determines the dominant color for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getDominantLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
// Sanity check for the number of LEDs
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
// Iterate each led and compute the dominant color
|
||||
auto led = ledColors.begin();
|
||||
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
|
||||
{
|
||||
const ColorRgb color = calculateDominantColor(image, *colors);
|
||||
*led = color;
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the dominant color using a k-means algorithm for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED color
|
||||
///
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getDominantLedColorAdv(const Image<Pixel_T> & image) const
|
||||
{
|
||||
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
|
||||
getDominantLedColorAdv(image, colors);
|
||||
return colors;
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the dominant color using a k-means algorithm for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getDominantLedColorAdv(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
// Sanity check for the number of LEDs
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
// Iterate each led and compute the dominant color
|
||||
auto led = ledColors.begin();
|
||||
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
|
||||
{
|
||||
const ColorRgb color = calculateDominantColorAdv(image, *colors);
|
||||
*led = color;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
Logger* _log;
|
||||
|
||||
/// The width of the indexed image
|
||||
const int _width;
|
||||
/// The height of the indexed image
|
||||
const int _height;
|
||||
|
||||
const int _horizontalBorder;
|
||||
const int _verticalBorder;
|
||||
|
||||
/// Evaluate every "count" pixel
|
||||
int _nextPixelCount;
|
||||
|
||||
/// Number of clusters used during dominant color advanced processing (k-means)
|
||||
int _clusterCount;
|
||||
|
||||
/// The absolute indices into the image for each led
|
||||
std::vector<std::vector<int>> _colorsMap;
|
||||
|
||||
///
|
||||
/// Calculates the 'mean color' over the given image. This is the mean over each color-channel
|
||||
/// (red, green, blue)
|
||||
///
|
||||
/// @param[in] image The image a section from which an average color must be computed
|
||||
/// @param[in] colors The list with colors
|
||||
/// @param[in] pixels The list of pixel indices for the given image to be evaluated///
|
||||
///
|
||||
/// @return The mean of the given list of colors (or black when empty)
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & colors) const
|
||||
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
|
||||
{
|
||||
const auto colorVecSize = colors.size();
|
||||
|
||||
if (colorVecSize == 0)
|
||||
const auto pixelNum = pixels.size();
|
||||
if (pixelNum == 0)
|
||||
{
|
||||
return ColorRgb::BLACK;
|
||||
}
|
||||
@@ -179,20 +323,20 @@ namespace hyperion
|
||||
uint_fast32_t cummRed = 0;
|
||||
uint_fast32_t cummGreen = 0;
|
||||
uint_fast32_t cummBlue = 0;
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
for (const unsigned colorOffset : colors)
|
||||
const auto& imgData = image.memptr();
|
||||
for (const int pixelOffset : pixels)
|
||||
{
|
||||
const auto& pixel = imgData[colorOffset];
|
||||
const auto& pixel = imgData[pixelOffset];
|
||||
cummRed += pixel.red;
|
||||
cummGreen += pixel.green;
|
||||
cummBlue += pixel.blue;
|
||||
}
|
||||
|
||||
// Compute the average of each color channel
|
||||
const uint8_t avgRed = uint8_t(cummRed/colorVecSize);
|
||||
const uint8_t avgGreen = uint8_t(cummGreen/colorVecSize);
|
||||
const uint8_t avgBlue = uint8_t(cummBlue/colorVecSize);
|
||||
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
|
||||
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
|
||||
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
|
||||
|
||||
// Return the computed color
|
||||
return {avgRed, avgGreen, avgBlue};
|
||||
@@ -213,11 +357,11 @@ namespace hyperion
|
||||
uint_fast32_t cummRed = 0;
|
||||
uint_fast32_t cummGreen = 0;
|
||||
uint_fast32_t cummBlue = 0;
|
||||
const unsigned imageSize = image.width() * image.height();
|
||||
|
||||
const unsigned pixelNum = image.width() * image.height();
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
for (unsigned idx=0; idx<imageSize; idx++)
|
||||
for (unsigned idx=0; idx<pixelNum; idx++)
|
||||
{
|
||||
const auto& pixel = imgData[idx];
|
||||
cummRed += pixel.red;
|
||||
@@ -226,13 +370,289 @@ namespace hyperion
|
||||
}
|
||||
|
||||
// Compute the average of each color channel
|
||||
const uint8_t avgRed = uint8_t(cummRed/imageSize);
|
||||
const uint8_t avgGreen = uint8_t(cummGreen/imageSize);
|
||||
const uint8_t avgBlue = uint8_t(cummBlue/imageSize);
|
||||
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
|
||||
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
|
||||
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
|
||||
|
||||
// Return the computed color
|
||||
return {avgRed, avgGreen, avgBlue};
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
|
||||
/// (red, green, blue)
|
||||
///
|
||||
/// @param[in] image The image a section from which an average color must be computed
|
||||
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
|
||||
///
|
||||
/// @return The mean of the given list of colors (or black when empty)
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
|
||||
{
|
||||
const auto pixelNum = pixels.size();
|
||||
if (pixelNum == 0)
|
||||
{
|
||||
return ColorRgb::BLACK;
|
||||
}
|
||||
|
||||
// Accumulate the squared sum of each separate color channel
|
||||
uint_fast32_t cummRed = 0;
|
||||
uint_fast32_t cummGreen = 0;
|
||||
uint_fast32_t cummBlue = 0;
|
||||
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
for (const int colorOffset : pixels)
|
||||
{
|
||||
const auto& pixel = imgData[colorOffset];
|
||||
|
||||
cummRed += pixel.red * pixel.red;
|
||||
cummGreen += pixel.green * pixel.green;
|
||||
cummBlue += pixel.blue * pixel.blue;
|
||||
}
|
||||
|
||||
// Compute the average of each color channel
|
||||
const uint8_t avgRed = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))), 255L));
|
||||
const uint8_t avgGreen = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))), 255L));
|
||||
const uint8_t avgBlue = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))), 255L));
|
||||
|
||||
// Return the computed color
|
||||
return {avgRed, avgGreen, avgBlue};
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
|
||||
/// (red, green, blue)
|
||||
///
|
||||
/// @param[in] image The image a section from which an average color must be computed
|
||||
///
|
||||
/// @return The mean of the given list of colors (or black when empty)
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image) const
|
||||
{
|
||||
// Accumulate the squared sum of each separate color channel
|
||||
uint_fast32_t cummRed = 0;
|
||||
uint_fast32_t cummGreen = 0;
|
||||
uint_fast32_t cummBlue = 0;
|
||||
|
||||
const unsigned pixelNum = image.width() * image.height();
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
for (int idx=0; idx<pixelNum; ++idx)
|
||||
{
|
||||
const auto& pixel = imgData[idx];
|
||||
cummRed += pixel.red * pixel.red;
|
||||
cummGreen += pixel.green * pixel.green;
|
||||
cummBlue += pixel.blue * pixel.blue;
|
||||
}
|
||||
|
||||
// Compute the average of each color channel
|
||||
const uint8_t avgRed = uint8_t(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))));
|
||||
const uint8_t avgGreen = uint8_t(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))));
|
||||
const uint8_t avgBlue = uint8_t(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))));
|
||||
|
||||
// Return the computed color
|
||||
return {avgRed, avgGreen, avgBlue};
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
|
||||
///
|
||||
/// @param[in] image The image for which a dominant color is to be computed
|
||||
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
|
||||
///
|
||||
/// @return The image area's dominant color or black, if no pixel indices provided
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calculateDominantColor(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
|
||||
{
|
||||
ColorRgb dominantColor {ColorRgb::BLACK};
|
||||
|
||||
const auto pixelNum = pixels.size();
|
||||
if (pixelNum > 0)
|
||||
{
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
QMap<QRgb,int> colorDistributionMap;
|
||||
int count = 0;
|
||||
for (const int pixelOffset : pixels)
|
||||
{
|
||||
QRgb color = imgData[pixelOffset].rgb();
|
||||
if (colorDistributionMap.contains(color)) {
|
||||
colorDistributionMap[color] = colorDistributionMap[color] + 1;
|
||||
}
|
||||
else {
|
||||
colorDistributionMap[color] = 1;
|
||||
}
|
||||
|
||||
int colorsFound = colorDistributionMap[color];
|
||||
if (colorsFound > count) {
|
||||
dominantColor.setRgb(color);
|
||||
count = colorsFound;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dominantColor;
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'dominant color' of an image
|
||||
///
|
||||
/// @param[in] image The image for which a dominant color is to be computed
|
||||
///
|
||||
/// @return The image's dominant color
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calculateDominantColor(const Image<Pixel_T> & image) const
|
||||
{
|
||||
const unsigned pixelNum = image.width() * image.height();
|
||||
|
||||
std::vector<int> pixels(pixelNum);
|
||||
std::iota(pixels.begin(), pixels.end(), 0);
|
||||
|
||||
return calculateDominantColor(image, pixels);
|
||||
}
|
||||
|
||||
template <typename Pixel_T>
|
||||
struct ColorCluster {
|
||||
|
||||
ColorCluster():count(0) {}
|
||||
ColorCluster(Pixel_T color):count(0),color(color) {}
|
||||
|
||||
Pixel_T color;
|
||||
Pixel_T newColor;
|
||||
int count;
|
||||
};
|
||||
|
||||
const ColorRgb DEFAULT_CLUSTER_COLORS[5] {
|
||||
{ColorRgb::BLACK},
|
||||
{ColorRgb::GREEN},
|
||||
{ColorRgb::WHITE},
|
||||
{ColorRgb::RED},
|
||||
{ColorRgb::YELLOW}
|
||||
};
|
||||
|
||||
///
|
||||
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
|
||||
/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
|
||||
///
|
||||
/// @param[in] image The image for which a dominant color is to be computed
|
||||
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
|
||||
///
|
||||
/// @return The image area's dominant color or black, if no pixel indices provided
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
|
||||
{
|
||||
ColorRgb dominantColor {ColorRgb::BLACK};
|
||||
const auto pixelNum = pixels.size();
|
||||
if (pixelNum > 0)
|
||||
{
|
||||
// initial cluster with different colors
|
||||
auto clusters = std::unique_ptr< ColorCluster<ColorRgbScalar> >(new ColorCluster<ColorRgbScalar>[_clusterCount]);
|
||||
for(int k = 0; k < _clusterCount; ++k)
|
||||
{
|
||||
clusters.get()[k].newColor = DEFAULT_CLUSTER_COLORS[k];
|
||||
}
|
||||
|
||||
// k-means
|
||||
double min_rgb_euclidean {0};
|
||||
double old_rgb_euclidean {0};
|
||||
|
||||
while(1)
|
||||
{
|
||||
for(int k = 0; k < _clusterCount; ++k)
|
||||
{
|
||||
clusters.get()[k].count = 0;
|
||||
clusters.get()[k].color = clusters.get()[k].newColor;
|
||||
clusters.get()[k].newColor.setRgb(ColorRgb::BLACK);
|
||||
}
|
||||
|
||||
const auto& imgData = image.memptr();
|
||||
for (const int pixelOffset : pixels)
|
||||
{
|
||||
const auto& pixel = imgData[pixelOffset];
|
||||
|
||||
min_rgb_euclidean = 255 * 255 * 255;
|
||||
int clusterIndex = -1;
|
||||
for(int k = 0; k < _clusterCount; ++k)
|
||||
{
|
||||
double euclid = ColorSys::rgb_euclidean(ColorRgbScalar(pixel), clusters.get()[k].color);
|
||||
|
||||
if( euclid < min_rgb_euclidean ) {
|
||||
min_rgb_euclidean = euclid;
|
||||
clusterIndex = k;
|
||||
}
|
||||
}
|
||||
|
||||
clusters.get()[clusterIndex].count++;
|
||||
clusters.get()[clusterIndex].newColor += ColorRgbScalar(pixel);
|
||||
}
|
||||
|
||||
min_rgb_euclidean = 0;
|
||||
for(int k = 0; k < _clusterCount; ++k)
|
||||
{
|
||||
if (clusters.get()[k].count > 0)
|
||||
{
|
||||
// new color
|
||||
clusters.get()[k].newColor /= clusters.get()[k].count;
|
||||
double ecli = ColorSys::rgb_euclidean(clusters.get()[k].newColor, clusters.get()[k].color);
|
||||
if(ecli > min_rgb_euclidean)
|
||||
{
|
||||
min_rgb_euclidean = ecli;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( fabs(min_rgb_euclidean - old_rgb_euclidean) < 1)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
old_rgb_euclidean = min_rgb_euclidean;
|
||||
}
|
||||
|
||||
int colorsFoundMax = 0;
|
||||
int dominantClusterIdx {0};
|
||||
|
||||
for(int clusterIdx=0; clusterIdx < _clusterCount; ++clusterIdx){
|
||||
int colorsFoundinCluster = clusters.get()[clusterIdx].count;
|
||||
if (colorsFoundinCluster > colorsFoundMax) {
|
||||
colorsFoundMax = colorsFoundinCluster;
|
||||
dominantClusterIdx = clusterIdx;
|
||||
}
|
||||
}
|
||||
|
||||
dominantColor.red = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.red);
|
||||
dominantColor.green = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.green);
|
||||
dominantColor.blue = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.blue);
|
||||
}
|
||||
|
||||
return dominantColor;
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
|
||||
/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
|
||||
///
|
||||
/// @param[in] image The image for which a dominant color is to be computed
|
||||
///
|
||||
/// @return The image's dominant color
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image) const
|
||||
{
|
||||
const unsigned pixelNum = image.width() * image.height();
|
||||
|
||||
std::vector<int> pixels(pixelNum);
|
||||
std::iota(pixels.begin(), pixels.end(), 0);
|
||||
|
||||
return calculateDominantColorAdv(image, pixels);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace hyperion
|
||||
|
||||
#endif // IMAGETOLEDSMAP_H
|
||||
|
Reference in New Issue
Block a user