Dominant Color support (#1569)

* Dominant Color and Mean Color Squared

* Workaround - Suppress empty LED updates

* Add missing text

* Dominant Colors advanced

* Test with fixed initial colors

* Test with fixed initial colors

* Support new processing values via API

* ImageToLED - Add reduced pixel processing, make dominant color advanced configurable

* Updates on Grabber fps setting

* ImageToLedMap - Remove maptype and update test

* Update dynamic cluster array allocation
This commit is contained in:
LordGrey
2023-02-17 16:02:51 +01:00
committed by GitHub
parent 093361d3e4
commit 1ae37d151e
16 changed files with 1048 additions and 155 deletions

View File

@@ -3,17 +3,26 @@
using namespace hyperion;
ImageToLedsMap::ImageToLedsMap(
unsigned width,
unsigned height,
unsigned horizontalBorder,
unsigned verticalBorder,
const std::vector<Led>& leds)
: _width(width)
Logger* log,
int width,
int height,
int horizontalBorder,
int verticalBorder,
const std::vector<Led>& leds,
int reducedPixelSetFactor,
int accuracyLevel)
: _log(log)
, _width(width)
, _height(height)
, _horizontalBorder(horizontalBorder)
, _verticalBorder(verticalBorder)
, _nextPixelCount(reducedPixelSetFactor)
, _clusterCount()
, _colorsMap()
{
_nextPixelCount = reducedPixelSetFactor + 1;
setAccuracyLevel(accuracyLevel);
// Sanity check of the size of the borders (and width and height)
Q_ASSERT(_width > 2*_verticalBorder);
Q_ASSERT(_height > 2*_horizontalBorder);
@@ -23,10 +32,14 @@ ImageToLedsMap::ImageToLedsMap(
// Reserve enough space in the map for the leds
_colorsMap.reserve(leds.size());
const unsigned xOffset = _verticalBorder;
const unsigned actualWidth = _width - 2 * _verticalBorder;
const unsigned yOffset = _horizontalBorder;
const unsigned actualHeight = _height - 2 * _horizontalBorder;
const int xOffset = _verticalBorder;
const int actualWidth = _width - 2 * _verticalBorder;
const int yOffset = _horizontalBorder;
const int actualHeight = _height - 2 * _horizontalBorder;
size_t totalCount = 0;
size_t totalCapacity = 0;
int ledCounter = 0;
for (const Led& led : leds)
{
@@ -38,10 +51,10 @@ ImageToLedsMap::ImageToLedsMap(
}
// Compute the index boundaries for this led
unsigned minX_idx = xOffset + unsigned(qRound(actualWidth * led.minX_frac));
unsigned maxX_idx = xOffset + unsigned(qRound(actualWidth * led.maxX_frac));
unsigned minY_idx = yOffset + unsigned(qRound(actualHeight * led.minY_frac));
unsigned maxY_idx = yOffset + unsigned(qRound(actualHeight * led.maxY_frac));
int minX_idx = xOffset + int32_t(qRound(actualWidth * led.minX_frac));
int maxX_idx = xOffset + int32_t(qRound(actualWidth * led.maxX_frac));
int minY_idx = yOffset + int32_t(qRound(actualHeight * led.minY_frac));
int maxY_idx = yOffset + int32_t(qRound(actualHeight * led.maxY_frac));
// make sure that the area is at least a single led large
minX_idx = qMin(minX_idx, xOffset + actualWidth - 1);
@@ -56,31 +69,70 @@ ImageToLedsMap::ImageToLedsMap(
}
// Add all the indices in the above defined rectangle to the indices for this led
const auto maxYLedCount = qMin(maxY_idx, yOffset+actualHeight);
const auto maxXLedCount = qMin(maxX_idx, xOffset+actualWidth);
const int maxYLedCount = qMin(maxY_idx, yOffset+actualHeight);
const int maxXLedCount = qMin(maxX_idx, xOffset+actualWidth);
std::vector<int32_t> ledColors;
ledColors.reserve((size_t) maxXLedCount*maxYLedCount);
const int realYLedCount = qAbs(maxYLedCount - minY_idx);
const int realXLedCount = qAbs(maxXLedCount - minX_idx);
for (unsigned y = minY_idx; y < maxYLedCount; ++y)
bool skipPixelProcessing {false};
if (_nextPixelCount > 1)
{
for (unsigned x = minX_idx; x < maxXLedCount; ++x)
skipPixelProcessing = true;
}
size_t totalSize = static_cast<size_t>(realYLedCount * realXLedCount);
if (!skipPixelProcessing && totalSize > 1600)
{
skipPixelProcessing = true;
_nextPixelCount = 2;
Warning(_log, "Mapping LED/light [%d]. The current mapping area contains %d pixels which is huge. Therefore every %d pixels will be skipped. You can enable reduced processing to hide that warning.", ledCounter, totalSize, _nextPixelCount);
}
std::vector<int> ledColors;
ledColors.reserve(totalSize);
for (int y = minY_idx; y < maxYLedCount; y += _nextPixelCount)
{
for (int x = minX_idx; x < maxXLedCount; x += _nextPixelCount)
{
ledColors.push_back(y*width + x);
ledColors.push_back( y * width + x);
}
}
// Add the constructed vector to the map
_colorsMap.push_back(ledColors);
totalCount += ledColors.size();
totalCapacity += ledColors.capacity();
ledCounter++;
}
Debug(_log, "Total index number is: %d (memory: %d). Reduced pixel set factor: %d, Accuracy level: %d, Image size: %d x %d, LED areas: %d",
totalCount, totalCapacity, reducedPixelSetFactor, accuracyLevel, width, height, leds.size());
}
unsigned ImageToLedsMap::width() const
int ImageToLedsMap::width() const
{
return _width;
}
unsigned ImageToLedsMap::height() const
int ImageToLedsMap::height() const
{
return _height;
}
void ImageToLedsMap::setAccuracyLevel (int accuracyLevel)
{
if (accuracyLevel > 4 )
{
Warning(_log, "Accuracy level %d is too high, it will be set to 4", accuracyLevel);
accuracyLevel = 4;
}
//Set cluster number for dominant color advanced
_clusterCount = accuracyLevel + 1;
}